SRI VENKATESWARA UNIVERSITY : TIRUPATI

B.A./B.Sc. MATHEMATICS

REVISED SYLLABUS FOR CORE COURSES

CBCS/ SEMESTER SYSTEM

(w.e.f. 2020-21 Admitted Batch)

CORE COURSES STRUCTURE

(Sem-I to Sem-IV)

Course	Subje ct	H rs.	Cred its	IA	ES	Tot al
Course -I	Differential					
	Equations &	6	5	25	75	100
	Differential Equations				15	100
	Problem Solving Sessions					
Course -II	Three dimensional analytical					
	Solid geometry					
	&	6	5	25	75	100
	Three dimensional analytical					
	Solid Geometry					
	Problem Solving Sessions					
	Abstract					
Course -III	Algebra &	6	5	25	75	100
	Abstract Algebra	-				
	Problem Solving Sessions					
	Real					
Course -IV	Analysis &	6	5	25	75	100
	Real Analysis		-			
	Problem Solving Sessions					
Course -V	Linear					
	Algebra &			25		
	Linear Algebra	6	5	25	75	100
	Problem Solving Sessions					

SRI VENKATESWARA UNIVERSITY : TIRUPATI

SEMESTER-I

CBCS/ SEMESTER SYSTEMB.A./B.Sc. MATHEMATICS (w.e.f. 2020-21 admitted Batch) DIFFERENTIAL EQUATIONS SYLLABUS (75 Hours)

Course Outcomes:

After successful completion of this course, the student will be able to;

1.Solve linear differential equations

- 2. Convert non-exact homogeneous equations to exact differential equations by using integrating factors.
- 3. Know the methods of finding solutions of differential equations of the first order but not of the first degree.
- 4. Solve higher-order linear differential equations, both homogeneous and non homogeneous, with constant coefficients.
- 5. Understand the concept and apply appropriate methods for solving differential equations.

Course Syllabus:

UNIT – I (12 Hours)

Differential Equations of first order and first degree:

Linear Differential Equations; Differential equations reducible to linear form; Exact differential equations; Integrating factors; Change of variables.

UNIT – II (12 Hours)

Differential Equations of first order but not of the first degree:

Equations solvable for p; Equations solvable for y; Equations solvable for x; Equations that do not contain x (or y); Equations homogeneous in x and y; Equations of the first degree in x and y – Clairaut's Equation.

UNIT – III (12 Hours)

Higher order linear differential equations-I:

Solution of homogeneous linear differential equations of order n with constant coefficients; Solution of the non-homogeneous linear differential equations with constant coefficients by means of polynomial operators. General Solution of f(D)y=0. General Solution of f(D)y=Q when Q is a function of x,

P.I. of f(D)y = Q when $Q = be^{ax}$

P.I. of f(D)y = Q when Q is bosinax or bcos ax.

UNIT – IV (12 Hours)

Higher order linear differential equations-II:

Solution of the non-homogeneous linear differential equations with constant coefficients. P.I. of f(D)y = Q when $Q = bx^k$ P.I. of f(D)y = Q when $Q = e^{ax}V$, where V is a function of x. P.I. of f(D)y = Q when Q = xV, where V is a function of x. UNIT -V (12 Hours)

Higher order linear differential equations-III:

Method of variation of parameters; Linear differential Equations with non-constant coefficients; The Cauchy-Euler Equation, Legendre's linear equations.

Co-Curricular Activities(15 Hours)

Seminar/ Quiz/ Assignments/ Applications of Differential Equations to Real life Problem /Problem Solving. Text Book :

Differential Equations and Their Applications by Zafar Ahsan, published by Prentice-Hall of India Pvt. Ltd, New Delhi-Second edition.

Reference Books :

- 1.A text book of Mathematics for B.A/B.Sc, Vol 1, by N. Krishna Murthy & others, published by S.Chand & Company, New Delhi.
- 2.Ordinary and Partial Differential Equations by Dr. M.D,Raisinghania, published by S. Chand & Company, New Delhi.
- 3.Differential Equations with applications and programs S. Balachandra Rao & HR Anuradha-Universities Press.
- 4.Differential Equations -Srinivas Vangala & Madhu Rajesh, published by Spectrum University Press.

Dr.G.Sreenivasulu Reddy, BOS Chairman.

Mathematics, S.V.University, Tirupati

Recommended Question Paper Patterns and Models BLUE PRINT FOR QUESTION PAPER PATTERN COURSE-I, DIFFERENTIAL EQUATIONS

Unit	TOPIC	S.A.Q(including choice)	E.Q(including choice)	Total Marks
Ι	Differential Equations of 1 st order and 1 st degree	2	2	30
п	Orthogonal Trajectories, Differential Equations of 1 st order but not of 1 st degree	2	2	30
ш	Higher Order Linear Differential Equations (with constant coefficients) – I	1	2	25
IV	Higher Order Linear Differential Equations (with constant coefficients) – II	2	2	30
v	Higher Order Linear Differential Equations- III (with non constant coefficients)	1	2	25
	TOTAL	8	10	140

S.A.Q. = Short answer questions (5 marks)

E.Q. = Essay questions (10 marks)

Short answer questions	: 5 X 5 M	= 25 M
Essay questions	: 5 X 10 M	= 50 M

Total Marks

.....

= 75 M

.....

SRI VENKATESWARA UNIVERSITY : TIRUPATI

CBCS/ SEMESTER SYSTEM

I SEMESTER (W.e.f 2020-21 Admitted Batch) B.A./B.Sc. MATHEMATICS SE-I, DIFFERENTIAL EQUATIONS

MATHEMATICS MODEL PAPER

Time: 3Hrs

Max.Marks:75M

SECTION - A

Answer any **<u>FIVE</u>** questions. Each question carries <u>FIVE</u> marks5 X 5 M=25 M

1. Solve $x \frac{dy}{dx} + 2y - x^2 \log x = 0$ 2. Solve $y + px = p^2 x^4$. 3. Solve (px - y)(py + x) = 2p4. Solve $(D^2 - 3D + 2) = \cosh x$ 5.Solve $(D^2 - 3D + 2)y = \sin e^{-x}$ 6.Solve $(D^2 - 6D + 13)y = 8e^x \sin 2x$ 7.Solve $(D^2 - 4D + 3)y = \sin 3x \cos 2x$. 8.Solve $x^2y'' - 2x(1 + x)y' + 2(1 + x)y = x^3$ SECTION - B

Answer <u>ALL</u> the questions. Each question carries <u>TEN</u> marks. 5 X 10 M = 50 M

9 a) Solve $(xy^{3} + y)dx + 2(x^{2}y^{2} + x + y^{4})dy = 0$ (Or) 9b). Solve $\frac{dy}{dx}(x^{2}y^{3} + xy) = 1$

10.a) Solve
$$p^2 + 2py \cot x = y^2$$

(Or)

10 b) Find the orthogonal trajectories of the family of curves $x^{2/3} + y^{2/3} = a^{2/3}$ where 'a' is the parameter.

11a) Solve
$$(D^3 + D^2 - D - 1)y = \cos 2x$$

(Or)
11b) Solve $(D^2 - 4D + 3)y = \sin 3x \cos 2x$

12 a) Solve $(D^2 - 2D + 4)y = 8(x^2 + e^{2x} + \sin 2x)$ (Or)

12b) Solve $(D^2 + 3D + 2)y = xe^x \sin x$

13a) Solve $(D^2 - 2D)y = e^x \sin x$ by the method of variation of parameters.

(Or)

13 b) Solve $3x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = x$

Dr.G.Sreenivasulu Reddy, BOS Chairman. Mathematics, S.V.University, Tirupati.