SRI VENKATESWARA UNIVERSITY B.A. / B.Sc. DEGREE COURSE IN MATHEMATICS FIRST YEAR - SECOND SEMESTER (Under CBCS W.E.F. 2020-21)

THREE DIMENSIONAL ANALYTICAL SOLID GEOMETRY Syllabus (75 Hours)

Course Outcomes:

After successful completion of this course, the student will be able to;

- 1. get the knowledge of planes.
- 2. basic idea of lines, sphere and cones.
- 3. understand the properties of planes, lines, spheres and cones.
- 4. express the problems geometrically and then to get the solution.

Course Syllabus:

UNIT – I (12 Hours)

The Plane:

Equation of plane in terms of its intercepts on the axis, Equations of the plane through the given points, Length of the perpendicular from a given point to a given plane, Bisectors of angles between two planes, Combined equation of two planes, Orthogonal projection on a plane.

UNIT – II (12 hrs)

The Line:

Equation of a line; Angle between a line and a plane; The condition that a given line may lie in a given plane; The condition that two given lines are coplanar; Number of arbitrary constants in the equations of straight line; Sets of conditions which determine a line; The shortest distance between two lines; The length and equations of the line of shortest distance between two straight lines; Length of the perpendicular from a given point to a given line.

UNIT – III (12 hrs)

The Sphere:

Definition and equation of the sphere; Equation of the sphere through four given points; Plane sections of a sphere; Intersection of two spheres; Equation of a circle; Sphere through a given circle; Intersection of a sphere and a line; Power of a point; Tangent plane; Plane of contact; Polar plane; Pole of a Plane; Conjugate points; Conjugate planes;

UNIT – IV (12 hrs)

The Sphere and Cones:

Angle of intersection of two spheres; Conditions for two spheres to be orthogonal; Radical plane; Coaxial system of spheres;

Definitions of a cone; vertex; guiding curve; generators; Equation of the cone with a given vertex and guiding curve; equations of cones with vertex at origin are homogenous; Condition that the general equation of the second degree should represent a cone;

UNIT - V (12 hrs)

Cones:

Enveloping cone of a sphere; right circular cone: equation of the right circular cone with a given vertex, axis and semi vertical angle: Condition that a cone may have three mutually perpendicular generators; intersection of a line and a quadric cone; Tangent lines and tangent plane at a point; Condition that a plane may touch a cone; Reciprocal cones;

Co-Curricular Activities(15 Hours)

Seminar/ Quiz/ Assignments/Three dimensional analytical Solid geometry and its applications/ Problem Solving.

Text Book:

Analytical Solid Geometry by Shanti Narayan and P.K. Mittal, published by S. Chand & Company Ltd. 7th Edition.

Reference Books:

- 1. A text book of Mathematics for BA/B.Sc Vol 1, by V Krishna Murthy & Others, published by S. Chand & Company, New Delhi.
- 2. A text Book of Analytical Geometry of Three Dimensions, by P.K. Jain and Khaleel Ahmed, published by Wiley Eastern Ltd., 1999.
- 3. Co-ordinate Geometry of two and three dimensions by P. Balasubrahmanyam, K.Y. Subrahmanyam, G.R. Venkataraman published by Tata-MC Gran-Hill Publishers Company Ltd., New Delhi.
- 4. Solid Geometry by B.Rama Bhupal Reddy, published by Spectrum University Press.

Dr.G.Sreenivasulu Reddy, BOS Chairman.

Mathematics, S.V.University, Tirupati.

BLUE PRINT FOR QUESTION PAPER PATTERN COURSE-II, THREE DIMENSIONAL ANALYTICAL SOLID GEOMETRY

U nit	ТОРІС	S.A.Q(includi ng choice)	E.Q(includi ng choice)	Total Marks
I	The Plane	2	2	30
II	The Right Line	2	2	30
III	The Sphere	2	2	30
IV	The Sphere & The Cone	1	2	25
V	The Cone	1	2	25
TOTAL		8	10	140

S.A.Q. = Short answer questions (5 marks)

E.Q. = Essay questions (10 marks)

Short answer questions $: 5 \times 5 M = 25 M$

Essay questions : $5 \times 10 M = 50 M$

.....

Total Marks = 75 M

.....

SRI VENKATESWARA UNIVERSITY B.A. / B.Sc. DEGREE EXAMINATION IN MATHEMATICS FIRST YEAR - SECOND SEMESTER (Under CRCS W.E.E. 2020.21)

(Under CBCS W.E.F. 2020-21)

THREE DIMENSIONAL ANALYTICAL SOLID GEOMETRY MODEL OUESTION PAPER

Time: 3Hrs Max.Marks:75 M

SECTION - A

Answer any FIVE questions. Each question carries FIVE marks 5 X 5 M=25 M

- 1. Find the equation of the plane through the point (-1,3,2) and perpendicular to the planes x+2y+2z=5 and 3x+3y+2z=8.
- 2. Find the bisecting plane of the acute angle between the planes 3x-2y-6z+2=0, -2x+y-2z-2=0.
- 3. Find the image of the point (2,-1,3) in the plane 3x-2y+z=9.
- 4. Find the equation of the plane through the origin and containing the line x-3y+2z+3=0=3x-y+2z-5
- 5. A variable plane passes through a fixed point (a, b, c). It meets the axes in A,B,C. Show that the centre of the sphere OABC lies on $\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = 2$
- 5. Show that the plane 2x-2y+z+12=0 touches the sphere $x^2+y^2+z^2-2x-4y+2z-3=0$ and find the point of contact.
- 6. Find the equation to the cone which passes through the three coordinate axes and the lines $\frac{x}{1} = \frac{y}{-2} = \frac{z}{3}$ and $\frac{x}{2} = \frac{y}{1} = \frac{z}{1}$
- 7. Find the equation of the enveloping cone of the sphere $x^2 + y^2 + z^2 + 2x 2y = 2$ with its vertex at (1, 1, 1).

SECTION - B

Answer <u>ALL</u> the questions. Each question carries <u>TEN</u> marks. $5 \times 10 \text{ M} = 50 \text{ M}$

9(a) A plane meets the coordinate axes in A, B, C. If the centroid of △ABC is

(a,b,c), show that the equation of the plane is $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 3$.

(OR)

(b) A variable plane is at a constant distance p from the origin and meets the axes in A,B,C. Show that the locus of the centroid of the tetrahedron OABC is $x^{-2}+y^{-2}+z^{-2}=16p^{-2}$.

10(a) Find the shortest distance between the lines

$$\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}; \quad \frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}.$$
(OR)

(b) Prove that the lines

$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4} : \frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$$

are coplanar. Also find their point of intersection and the plane containing the lines.

11 (a) Show that the two circles $x^2+y^2+z^2-y+2z=0$, x-y+z=2; $x^2+y^2+z^2+x-3y+z-5=0$, 2x-y+4z-1=0 lie on the same sphere and find its equation.

- (b) Find the equation of the sphere which touches the plane 3x+2y-z+2=0 at (1,-2,1) and cuts orthogonally the sphere $x^2+y^2+z^2-4x+6y+4=0$.
- 12 (a) Find the limiting points of the coaxial system of spheres $x^2+y^2+z^2-8x+2y-2z+32=0$, $x^2+y^2+z^2-7x+z+23=0$. (OR)
 - (b) Find the equation to the cone with vertex is the origin and whose base curve is $x^2+y^2+z^2+2ux+d=0$.
- 13 (a) Prove that the equation $\sqrt{fx} \pm \sqrt{gy} \pm \sqrt{hz} = 0$ represents a cone that touches the coordinate planes and find its reciprocal cone.

(b) Find the equation of the sphere $x^2+y^2+z^2-2x+4y-1=0$ having its generators parallel to the line x=y=z.

Dr.G.Sreenivasulu Reddy, BOS Chairman. Mathematics, S.V.University, Tirupati.