W.E.F. 2016-17

B.Sc. PHYSICS SYLLABUS UNDER CHOICE BASED CREDIT SYSTEM

B.Sc. 1st Semester Physics

Paper I: Mechanics & Properties of Matter (For Non-Mathematics Combinations)

Work load: 60hrs per semester

4 hrs/week

UNIT-I(16 hrs)

1. Mathematical Background

Scalars and vectors - vector addition - scalar and vector products of vector and their physical significance - vector calculus - gradient of a scalar point function - divergence and curl of vector - statements of Stokes and Gauss theorems - examples (no derivations).

2. Motion of System

Collisions - Elastic and inelastic collisions - Collisions in one and two dimension - Rocket propulsion - Center of mass - Motion of the centre of mass - Impact parameter - Scattering cross-section, Rutherford scattering (No derivation - Qualitative ideas only)

UNIT-II(12 hrs)

3. Mechanics of Rigid body

Rigid body, rotational kinematic relations. Rotational kinetic energy and moment of inertia - moment of inertia in simple cases (Rod, disc, sphere and cylinder) - No derivations. Parallel & Perpendicular axes theorems - Torque - relation between torque and angular momentum. Angular momentum of a particle - Torque and angular momentum for a system of particles - conservation of angular momentum - Translation and rotational motion of system - Elementary ideas about gyroscopic motion (No derivation - Qualitative ideas only) - Precession of the equinoxes.

UNIT-III(10 hrs)

4. Central Forces

Central force – Definition & examples - General Characteristics of central forces - Conservative nature of central forces, Planetary motion - Kepler's laws (Statements & Explanation), Newton's law of gravitation from Kepler's law, Geostationary Satellite Motion. Uses of communication satellites.

UNIT-IV(10 hrs)

5. Fluid Flow

The flow of ideal fluids - Stream line motion - Equation of continuity - Bernoulli's equation - Simple applications - Torricelli's theorem - The Venturimeter - Pitot's tube - Viscosity and the flow of real fluids - Poiseuille's equation.

UNIT-V (12 hrs)

6. Relativistic Effects

Moving reference frames - Inertial and Non-inertial reference frames - Galilean relativity - Special theory of relativity - Statements of the two basic postulates - (Elementary treatment and application only) Lorentz transformation equations - length contraction - time dilation -

Maby 11/2/16

addition of velocities - Momentum and relativistic mass - Mass-Energy equation, rest mass & momentum of a particle.

REFERENCE BOOKS:

- 1. B.Sc. Physics, Vol.1 -Telugu Academy, Hyderabad.
- 2. Physics for Biology and Premedical Students -D.N. Burns & SGG Mac Donald.
- 3. Unified Physics Vol.I Mechanics, Waves and Oscillations Jai Prakash Nath & Co. Ltd., Meerut.
- 4. Properties of Matter D.S. Mathur, S. Chand & Co, New Delhi ,11th Edn., 2000

5. Properties of Matter - Brijlal & Subrmanyam, S.Chand & Co. 1982

Practical paper 1: Mechanics & Properties of Matter

Work load: 30 hrs per semester

2 hrs/week

Minimum of 6 experiments to be done and recorded

- 1. Viscosity of liquid by the flow method (Poiseuille's method).
- 2. Young's modulus of the material of a bar (scale) by uniform bending.
- 3. Young's modulus of the material a bar (scale) by non-uniform bending.
- 4. Surface tension of a liquid by capillary rise method.
- 5. Determination of radius of capillary tube by Hg thread method.
- 6. Viscosity of liquid by Searle's viscometer method.
- 7. Bifilar suspension –moment of inertia of a regular rectangular body.
- 8. Determination of moment of inertia using Fly-wheel.
- 9. Determination of the height of a building using a sextant.
- 10. Rigidity modulus of material of a wire-dynamic method (torsional pendulum).

Suggested student activities

Student seminars, group discussions, assignments, field trips, study project and experimentation using virtual lab

Examples

Seminars

- A topic from any of the Units is given to the student and asked to give a brief seminar presentation.

Group discussion

- A topic from one of the units is given to a group of students and asked to discuss and debate on it.

Assignment

- Few problems may be given to the students from the different units and asked them to solve.

Field trip

- Visit to Satish Dhawan Space Centre, Sriharikota / Thermal and hydroelectric power stations / Science Centres, any other such visit, etc.

Study project

- Web based study of different satellites and applications.

Domain skills:

Logical derivation, experimentation, problem solving, data collection and analysis, measurement skills.

*** Documental evidence is to be maintained for the above activities.

Mala 115116

MODEL PAPER

THREE YEAR B.Sc DEGREE EXAMINATION

CHOICE BASED CREDIT SYSTEM

I SEMESTER: PART II: PHYSICS

Paper I: Mechanics & Properties of Matter

(For Non Mathematics Combinations)

Time: 3 Hours Max. Marks: 75

Section-A (Essay type)

Answer All questions Marks: 5X10 = 50

1. a) Explain gradient of scalar field and curl of vector field with physical significance.

OR

- b) Derive the expressions for the final velocities for the two dimensional elastic collision between two bodies
- 2. a) Prove the parallel and perpendicular axes theorems.

OR

- b) Define Torque and angular momentum for a system of particles and derive the relation between them.
- 3. a) Define a central force. Give two examples. Prove that a central force is a conservative.

OR

- b) State Kepler's laws. Derive Newton's law of gravitation from Kepler's third law.
- 4. a) Derive the Bernoulli's equation for the ideal fluids.

OF

- b) Define the coefficient of viscosity. Derive the Poiseuille's equation for the flow of real fluids.
- 5. a) State the basic postulates of special theory of relativity. Write the Lorentz transformation equations and discuss the special cases.

OR

b) What is relativistic mass. Derive the mass-energy equation.

Section-B (Short answer type)

Marks: 3X5 = 15

Marks: 2X5 = 10

Answer any three questions

- 6. Define scalar and vector products, give examples.
- 7. Write a note on precession of the equinoxes.
- 8. What is a geostationary satellite and write its uses.
- 9. Prove the Torricelli's theorem.
- 10. Explain the length contraction.

Section-C

Answer any two questions

- 11. If $A = ix + j y^2 + k yz$ find div A at point (2, -2, 2).
- 12. 2 Kg. mass moving with a velocity of 10m/s collides with another 6 Kg. mass moving in opposite direction with a velocity of 20 m/s. During collision they stick together. Find their common velocity.
- 13. A 500 gm stone is revolved at the end of a 0.4 m long string at the rate of 12.5 rad/s. What is its angular momentum?
- 14. The mean distance of mars from sun is 1.524 times the distance of the earth from the sun. Compute the period of revolution of mars around sun.
- 15. Find the velocity with which a body has to move so that its mass will be double to its rest mass.