SRI VENKATES WARA UNIVERSITY SKILL DEVELOPMENT COURSE SCIENCE STREAM FIRST YEAR - SECOND SEMESTER (UNDER CBCS W.E.F. 2020-21)

SOLAR ENERGY

Total 30 hrs (02h/wk),

02 Credits & Max Marks: 50

Learning Outcomes:

After successful completion of the course, students will be able to:

- 1. Acquire knowledge onsolarradiation principles with respect to solar energy estimation.
- 2. Get familiarized with various collecting techniques of solar energy and its storage
- Learn the solar photovoltaic technology principles and different types of solar cells for energy conversion and different photovoltaic applications.
- Understand the working principles of several solar appliances like Solar cookers, Solar hot water systems, Solar dryers, Solar Distillation, Solar greenhouses

SYLLABUS:

UNIT-I - Solar Radiation:

(6 hrs)

Sun as a source of energy, Solar radiation, Solar radiation at the Earth's surface, Measurement of Solar radiation-Pyroheliometer, Pyranometer, Sunshine recorder, Prediction of available solar radiation, Solar energy-Importance, Storage of solar energy, Solar pond

UNIT-II - Solar Thermal Systems:

(10 hrs)

Principle of conversion of solar radiation into heat, Collectors used for solar thermal conversion: Flat plate collectors and Concentrating collectors, Solar Thermal Power Plant, Solar cookers, Solar hot water systems, Solar dryers, Solar Distillation, Solar greenhouses.

UNIT-III - Solar Photovoltaic Systems:

(10 hrs)

Conversion of Solar energy into Electricity - Photovoltaic Effect, Solar photovoltaic cell and its working principle, Different types of Solar cells, Series and parallel connections, Photovoltaic applications: Battery chargers, domestic lighting, street lighting and water pumping

Co-curricular Activities (Hands on Exercises): (04 hrs)

[Any four of the following may be taken up]

- Plot sun chart and locate the sun at your location for a given time of the day.
- Analyse shadow effect on incident solar radiation and find out contributors.
- Connect solar panels in series & parallel and measure voltage and current.
- 4. Measure intensity of solar radiation using Pyranometer and radiometers.
- 5. Construct a solar lantern using Solar PV panel (15W)
- 6. Assemble solar cooker
- Designing and constructing photovoltaic system for a domestic house requiring 5kVA power
- 8. Assignments/Model Exam.

Reference Books:

- 1. Solar Energy Utilization, G. D. Rai, Khanna Publishers
- Solar Energy- Fundamentals, design, modeling & applications, G.N. Tiwari, Narosa Pub., 2005.
- Solar Energy-Principles of thermal energy collection & storage, S.P. Sukhatme, Tata Mc-Graw Hill Publishers, 1999.
- Solar Photovoltaics- Fundamentals, technologies and applications, Chetan Singh Solanki, PHI Learning Pvt. Ltd.,
- 4. Science and Technology of Photovoltaics, P. Jayarama Reddy, BS Publications, 2004.

Salan

BOS Chauman

SRI VENKATES WARA UNIVERSITY SKILL DEVELOPMENT COURSE SCIENCE STREAM FIRST YEAR - SECOND SEMESTER (UNDER CBCS W.E.F. 2020-21)

SOLAR ENERGY

MODEL QUESTION PAPER

Max. Marks: 50 Time: 1 ½ hrs (90 minutes)

(4x5M=20 Marks)

SECTION - A

Answer any four questions. Each answer carries 5 Marks

- 1. Explain solar Radiation at the Earth's surface
- 2. Write short note on solar pond.
- 3. Explain Pyranometer.
- 4. Explain the Principal of conversion of solar radiation into heat
- 5. Write a note on solar green houses
- 6. Describe about solar cookers
- 7. Write a note on battery charges.
- 8. Mention the applications of photo voltaic system

SECTION - B

(3x10M=30 Marks)

Answer any four questions. Each answer carries 10 Marks

- 1. Explain solar energy storage systems
- 2. Describe the experimental set up used in measurement of solar radiation by pyroheliometer.
- 3. Explain the flat plate collectors
- 4. Explain the concentrating collectors
- 5. What is photo voltaic effect? describe working Principal of solar photo voltaic cell
- 6. Explain various solar cells.