SRI VENKATESWARA UNIVERSITY: TIRUPATI

S.V.U COLLEGE OF SCIENCES

DEPARTMENT OF CHEMISTRY

Course

M.Sc. ANALYTICAL CHEMISTRY

Choice Based Credit System (CBCS)

Academic Year 2017 – 18

Vision

Impart quality education & training in the field of chemistry to enable successful careers for the post graduate students in the field of research, education & industry applications of chemical sciences.

Mission

The Department of Chemistry strives:

- To get an ideal balance between knowledge creation and knowledge dissemination in the chemical sciences with a focus to train and mentor students to become responsible scientists and scientifically literate professionals to attain National and International impact.
- To contribute to the improvement of scientific and technological literacy, and the development of critical-thinking and problem-solving skills of all students in order to compete for the world of work and responsible citizenship

PROGRAM EDUCATIONAL OBJECTIVES:

At the end of the program, the student wills be able to:

PEO1	To demonstrate broad knowledge of descriptive chemistry.
PEO2	To impart basic analytical and technical skills to work effectively in various fields of chemistry.
PEO3	To motivate critical thinking and analysis skills to solve complex problems viz., analysis of data, synthetic logistics, spectroscopy, structure and modeling, team based problem solving etc.
PEO4	To demonstrate an ability to conduct experiments in the above sub disciplines with mastery of appropriate techniques and proficiency using core chemical instrumentation and modeling method
PEO5	To develop laboratory competence in relating chemical structure to spectroscopic phenomena.
PEO6	To demonstrate the ability to synthesize, separate and characterize compounds using published reactions, protocols, standard laboratory equipment and modern instrumentation.

PROGRAM OUTCOMES: On completion of M.Sc. Chemistry programme, graduates will be able to -

PO1	Have a firm foundation in the fundamentals and application of current chemical and scientific theories in different areas of chemistry <i>viz.</i> , Analytical, Environmental, Inorganic, Organic and Physical.
PO2	Understands the background of organic reaction mechanisms, complex chemical structures, and instrumental methods of chemical analysis, molecular rearrangements and separation techniques.
PO3	Familiarize with the importance of various elements present in the periodic table, coordination chemistry and structure of molecules, properties of compounds, structural determination of complexes using theories and instruments.
PO4	Understand about the physical aspects of atomic structure, dual behavior, reaction pathways with respect to time, various energy transformations, molecular assembly in nano-level,

	significance of electrochemistry, molecular segregation using their symmetry.
PO5	Create awareness and sense of responsibilities towards environment and apply knowledge to solve the issues related to Environmental pollution.
PO6	Continue to acquire relevant knowledge and skills appropriate to professional activities and demonstrate highest standards of ethical issues in the subject concerned. Ability to identify unethical behavior such as fabrication, falsification or misrepresentation of data and adoptive objective, unbiased and truthful actions in all aspects.
PO7	Be skilled in problem solving, critical thinking and analytical reasoning as applied to scientific problems.
PO8	Clearly communicate the results of scientific work in oral, written and electronic formats.
PO9	Explore new areas of research in both chemistry and allied fields of science and technology.
PO10	Design, analyze and carry out scientific experiments and interpret data to provide solutions to different industrial problems.
PO11	Independently carry out research to solve practical problems and present a substantial technical report.
PO12	Ability to think, acquire knowledge and skills through logical reasoning and to inculcate the habit of self-learning throughout life, through self- paced and self- directed learning aimed at personal development, and adapting to change academic demands of work place through knowledge/ skill development/ reskilling.

PROGRAM SPECIFIC OUTCOMES: At the end of the program, the student will be able to:

PSO1	Scientific Problem solving skills: Deep knowledge of the topic which can develop the problem solving skills using chemical principles.
PSO2	Analytical skills: Develop analytical skills such as synthesizing, separating, characterizing chemical compounds and chemical reactions with the help of sophisticated instruments
PSO3	Research skills : Develop research skills through dissertation/project work in different fields of chemistry such as organic, inorganic, analytical, physical and environmental.
PSO4	Learning skills on life processes : Acquire advanced level of knowledge in natural products as well as biological systems from the chemistry point of view.

Sl. No.	Cours e Code	Components of Study	Title of the Course	No. of Credits	IA Marks	End SEM Exam	Total
						Marks	
1	CHE- 101	Core-Theory	Inorganic Chemistry- I	4	20	80	100
2	CHE- 102	Core-Theory	Organic Chemistry I	4	20	80	100
3	CHE- 103	Core-Theory	Physical Chemistry- I	4	20	80	100
4	CHE- 104	Core-Practical	Inorganic Practical- I	2	-	-	50
5	CHE- 105	Core-Practical	Organic Practical-I	2	-	-	50
6	CHE- 106	Core-Practical	Physical Practical I	2	-	-	50
7	CHE- 107	Compulsory Foundation	General Chemistry-I	2	10	40	50
6	CHE- 108	Elective Foundation	an Values and Professional Ethics – I	4	20	80	100
		Total		24			600

SEMESTER-I

SEMESTER-II

Sl. No.	Cours e Code	Components of Study	Title of the Course	No. of Credits	IA Marks	End SEM Exam Marks	Total
1	CHE- 201	Core-Theory	Inorganic Chemistry- II	4	20	80	100
2	CHE- 202	Core-Theory	Organic Chemistry -II	4	20	80	100
3	CHE- 203	Core-Theory	Physical Chemistry- II	4	20	80	100
4	CHE- 204	Core-Practical	Inorganic Practical- II	2	-	-	50
5	CHE- 205	Core-Practical	Organic Practical-II	2	-	-	50
6	CHE- 206	Core-Practical	Physical Practical -II	2	-	-	50
7	CHE- 207	Compulsory Foundation	General Chemistry-II	2	10	40	50
6	CHE- 208	Elective Foundation	an Values and Professional Ethics – II	4	20	80	100
		Total		24			600

SEMESTER-III

	Course Code	Components of Study	Title of the Course	No. of Credits	IA Marks	End SEM Exam Marks	Total	
1	CHE- AC-301	Core-Theory	Inorganic Spectroscopy & Thermal Methods of Analysis	4	20	80	100	
2	CHE- AC -302	Core-Theory	Organic Spectroscopy	4	20	80	100	
3	CHE- AC-303	Core-Practical	Classical Methods of Analysis	4	-	-	100	
4	CHE- AC-304	Core-Practical	Instrumental Methods of Analysis-I	4	-	-	100	
5	CHE- 305	Generic Elective* (Related to	(a) Organic Chemistry III	4	20	80	100	
		subject)	(b)Physical Chemistry III (c)Green Chemistry	4	20	80	100	
6	CHE- 306	Open Elective (For other departments)	(a) Spectral Techniques or (b) Chromatographic Techniques	4	20	80	100	
		Total		24			600	

*Among the Generic Elective a student shall choose any two.

	Course Code	Components of Study	Title of the Course	No. of Credits	IA Marks	End SEM	Total
						Exam Marks	
1	CHE- AC-401	Core-Theory	Quality control and General principles	4	20	80	100
2	CHE- AC-402	Core-Theory	Instrumental Methods of Analysis	4	20	80	100
3	CHE- AC-403	Core-Practical	Instrumental Methods of Analysis-II	4	-	-	100
4	CHE- AC-404	Core-Practical/ Project work	Project work	4	-	-	100
5	CHE-405	Generic Elective* (Related to subject)	 (a) Aapplied and Environmental aspects (b) Bioinorganic, Bioorganic & Biophysical Chemistry 	4	20 20	80 80	100 100
			(c) Chemistry of Nanomaterials & Functional meterials	•			
6	CHE-406	Open Elective* (For other departments)	(a)Drug Chemistry or (b) Electroanalytical Techniques	4	20	80	100
		Total		24			600

SEMESTER-IV

*Among the Generic Elective a student shall choose any two.

CHE-10)1		INOR	GANIC C	HEISTR	RY I		L-5,T-1,	P-0		4Credits	5	
Pre-req	Pre-requisite: Understanding of graduate level chemistry												
	Course Objectives:												
	 Comprehend the key features of coordination compounds, Crystal Field Theory, different properties and bonding by spectroscopic techniques 												
•	by spectroscopic techniques												
	• Study the polymorphic forms of non-transition elements and their synthesis and properties												
	• Understand the basics of reaction mechanism and the mechanistic concepts of Dissociative (Id) and Associative												
	interchange Mechanism (Ia), Taube's classification, Trans effect and Electron Transfer Reactions												
elec	tron rule.												
Course	Course Outcomes: At the end of the course, the student will be able												
CO1	CO1 To understand the key features of coordination compounds, Crystal Field Theory, magnetic properties and												
	bonding in transition metal complexes.												
CO2	To learn about the polymorphic forms of Carbon, Sulphur and Phosphorus, synthesis and properties of												
	sulphur-	nitrogen	compound	ls, borane	es, carbide	es, silicate	s and to ki	now Wades	s rules.				
CO3	To expla	in the rea	activity of	complex	es in term	s of Vale	nce hond a	and Crystal	Field the	eories Tr	aube's		
005	-		ins effect	-				ind Crystal	i iela tik	201103, 11	1000 3		
CO4								carbonyls,	svnergist	tic effect	and 18 e	lectron	
	rule.	2	, ,					,	5 8				
			Mappi	ng of cou	rse outco	omes with	the prog	ram outco	mes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	-	3	-	2	1	1	-	2	-	1	
CO2	3	1	2	3	-	2	-	2	1	1	-	1	
CO3	3	2	-	3	2		1		2	1	1	1	
CO4	3	1	1	3	1	1	-	2	1	-	2	1	
				CHE 1	1. INOT	CANIC	CHEISTI	DVI					

CHE 101: INORGANIC CHEISTRY I

UNIT-I: CO-ORDINATION COMPOUNDS

Introduction to Crystal field Theory, CFSE and its calculation, Paring energy, Splitting of 'd' orbitals in Trigonal bi pyramidal, square planar, square pyramid and pentagonal bipyramidal geometries, Jahn –Teller effect, Application of CFT, OSSE, site Selection in Spinels, Short comings of CFT, Evidence for covalency –Nephelauxetic effect. MOT of co-ordinate bonds –M.O. Diagrams for octahedral, tetrahedral and square planar complexes. Experimental evidences for π - bonding – Crystallography, Infrared spectroscopy and Photoelectron spectroscopy.

15 Hrs

UNIT-II: CHEMISTRY OF NON-TRANSITION ELEMENTS 15 Hrs

General characteristics of the non- transition elements special features of individual elements ; Synthesis' properties and structure of their Halides and Oxides, Polymorphism of Carbon, Phosphorus and Sulphur, Synthesis, properties and structure of boranes, Carboranes, borazines, Silicates, Carbides, Sulphur-nitrogen compounds. Electron counting in boranes, Wades rules (Poly hedral skeletal electron pair theory), Isopopoly and hetero poly acids.

UNIT-III: REACTION MECHANISMS IN COMPLEXES 15 Hrs

Reactivity of metal complexes. Inert and Labile complexes. Concept of Labile and Inert complexes in terms of Valence bond and Crystal Field theories. Taube's classification of complexes as labile and inert complexes. Dissociative (D) and Dissociative interchange Mechanism (Id) & Associative (A) and Associative interchange Mechanism (Ia). Substitution reactions in octahedral complexes- Acid Hydrolysis -factors affecting Acid Hydrolysis - Base Hydrolysis-conjugate Base Mechanisms - Anation Reactions -Substitution Reactions in Square Planar complexes- Trans effect – Mechanisms of Trans effect: polarization and π -bonding theories.Electron Transfer Reaction-Inner Sphere and outer Sphere Mechanisms- Marcus theory.

UNIT-IV: METAL πCOMPLEXES-I

15 Hrs

Nature of π bonding, Classification of π ligands, π donor ligands and π -acceptor ligands.

Metal Carbonyls: Synthesis of metal carbonyls, Structures of metal carbonyls of the types M(CO)n (M= Cr, Fe, Ni; n=4-6), $M_2(CO)n$ (M=Co, Fe, Mn; n=8-10), $M_3(CO)_{12}$ (M=Fe, Ru and Os), $M_4(CO)_{12}$ (M=Co, Rh, Ir). IR Spectraof metal carbonyls (i) Detection of bridging and terminal CO ligand, (ii) Synergistic effect, EAN and 18-electron rule. Electron counting methods (i) Oxidation state method and (ii) Neutral Atom method.

Metal Nitrosyls: Synthesis of metal Nitrosyls, bonding, Electron donation by nitric oxide, Models for NO bonding (i) Covalent model and (ii) Ionic models, Structures of metal nitrosyls (1) $[Fe_4S_3(NO)]$ (2) $[Fe_2(NO)_2I_2]$ (3) $[(\phi_3P)_2Ir(CO)Cl(NO)]^+$ (4) $[(\phi_3P)_2Ru(NO)_2Cl]$, Detection of bridging NO ligand, Applications of metal nitrosyls.

Books Suggested

- 1. F.A.Cotton and G. Wilkinson, Advanced In-organic chemistry VI Edition, 1999. John wiley & sons. Inc., New York.
- 2. James E. Huheey, Inorganic chemistry- Principles of structure and reactivity, VI Edition 1993. Harper Collins College Publishers, New York.
- 3. J.D. Lee: Concise Inorganic Chemistry (Blackwell)
- 4. Gary Wolfsburg: Inorganic Chemistry (5th Ed. (Viva Books)
- 5. W.L. Jolly: Modern Inorganic Chemistry (McGraw-Hill)
- 6. B.N Figgis: Introduction to Ligand Fields (John-Willey)
- 7. S.F.A. Kettle: Coordination compounds.
- 8. Coordination Chemistry. Bassalo & Jahnson.

CHE-	102		Organ	ic Chemi	stry I		L-3	3,T-1,P-2		40	Credits			
Pre-req	Pre-requisite: Understanding of graduate level Organic Chemistry													
Course	Objectiv	es:												
	• Classify molecules based on stereochemical aspects study on optical and geometrical isomerism by the application of Cabn Ingold Prelog rules													
	 of Cahn-Ingold-Prelog rules. Familiarize with different types of substitution reactions, able to predict products, including stereochemistry in 													
• Familiarize with different types of substitution reactions, able to predict products, including stereochemistry in alighbring aroun participation														
aliphatic and aromatic nucleophilic substitution reactions, effect of neighboring group participationUnderstand thermodynamic and kinetic requirements, kinetic and thermodynamic control, potential energy														
		•			-	-				-	1	0,		
	rams, trai mediates	isition st	ates and	intermed	lates, me	thods of	determin	ing meen	lanisms,	isotope e	fiects in	reactive		
		ccurrence	e. isolatio	n. structur	e establis	hment an	d synthes	is of natu	ral p rodu	cts-terpen	oids.			
						nt will be			F	<u>-</u>				
(CO1	To de	etect stere	ochemica	l structure	es of the r	nolecules	, stereose	lective ar	nd stereoc	ontrolled			
		reacti	ons.											
0	CO2	To a	scertain tl	ne stereoc	hemistry	of the pro	ducts wit	h the effe	ct of neig	ghbouring	group			
		-	-			e various	types of a	romatic s	substitutio	on reaction	ns, their			
			anism and											
C	CO3		now the co ent intern	-	isotope et	ffects, pot	ential ene	ergy diagr	ams and	transition	states in			
0	CO4				ospecific	synthesis	of natura	ally occur	ring terpe	enoids and	l degrada	tion		
		produ	icts of ter	penoids										
			Mappi	ing of cou	irse outc	omes wit	h the pro	gram out	tcomes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	1	3	1	-	1	2	1	-	2	-		
COA	3	2	2	3		1	-	1	2	1	1	2		
CO2			1	2	1	1	1	2		1				
CO2 CO3	3	1	2	3	1	1	1	2		1	-	-		

UNIT-I: Stereochemistry

CHE102: Organic Chemistry I

 ${\bf Sereoisomerism} - {\bf Stereoisomers}\ {\bf Classification} - {\bf Configuration}\ {\rm and}\ {\rm conformation}.$

Molecular Three dimensional representations: Wedge, Fischer, Newman and Saw-horse formulae, their description and interconversions.

Molecular Symmetry & Chirality: Symmetry operations and symmetry elements (Cn & Sn). Criteria for Chirality. Dissymmetrization.

Optical isomerism: Molecular Symmetry and Chirality-Cahn-Ingold-Prelog rules R, S-nomenclature, stereoisomerism resulting from more than one chiral center, meso and pseudoasymmetric compounds - **Axial Chirality** - Stereochemistry of allenes spiranes - biphenyl derivatives and atropisomerism - **Planar chirality** - Ansa compounds and trans - Cycloalkenes - **Helicity**. Helically chiral compounds

Geometrical isomerism - E, Z - nomenclature - Physical and Chemical methods of determining the configuration of geometrical isomers-Stereoisomerism in 3, 4 and 5-membered cyclic compounds.

UNIT-II: Substitution Reactions

i) Aliphatic Nucleophilic Substitutions: The $S_N 2$, $S_N 1$, mixed $S_N 1$ and $S_N 2$, SET mechanisms. Reactivity- effects of substrates, attacking nucleophiles, leaving groups and reaction medium.Common carbocation rearrangements – primary, secondary and tertiary. The neighbouring group participation (NGP) -anchimeric assistance, NGP by σ and π - bonds, phenonium ions, norbornyl and norbornenyl systems, Classical and nonclassical carbocations, NGP by halogens and heteroatoms (O,N,S)

The S_N^{i} and S_N^{2} ' mechanisms. Nucleophilic substitution at an allylic, and vinylic carbons.

ii. Aromatic Nucleophilic Substitution: The S_NAr , S_N1 , benzyne and $S_{RN}1$ mechanisms. Reactivity - effect of substrate,

structure, leaving group and attacking nucleophile. The von Richter, Sommelet - Hauser and Smiles rearrangements.

UNIT-III: Reactive Intermediates

Types of reactions, types of bond cleavage mechanisms, generation, structure, stability and reactivity of carbocations, carbanions, free radicals, carbenes, nitrenes and arynes. Thermodynamic and kinetic requirements, kinetic and thermodynamic control, potential energy diagrams, transition states and intermediates, methods of determining mechanisms, isotope effects.

UNIT-IV: Terpenoids

Classification of terpenoids, occurrence, isolation, general methods of structure determination. Isoprene and special isoprene rule. Structure determination and synthesis of the following representative molecules: Farnesol, Zingeberine, Cadinene and Abietic acid.

Books Suggested:

- 1. Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, John Wiley.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J Sundberg, Plenum.
- 3. Structure and Mechanism in Organic Chemistry C.K. Inglod, Cornell University Press.
- 4. Organic Chemistry, R.T Morrison and R.N. Boyd, Prentice Hall.
- 5. Principles of Organic Synthesis, R.O.C Norman and J. M. Coxon, Blackie Academic.
- 6. Stereochemistry, P.S. Kalsi, Wiley Eastern.
- 7. Text book of Organic Chemistry, M.C. Murry
- 8. Organic Chemistry, Vol I, I.L. Finar, ELBS Eds.

CHE-10)3		Ph	ysical Cl	nemistry	I	L-:	5,T-1,P-6		40	Credits	
Pre-req	uisite: B	asic know	ledge abo	out Physic	cal Chemi	istry						
Course	Objectiv	es:										
• Acqu	uire know	ledge in	Quantum	Chemist	ry, postula	ates of Q	uantum N	lechanics	., Applica	ations of S	Schroding	ger wave
equa	tion and	Born-Opp	enheimer	• approxir	nation							
• Stud	y on Che	mical Dy	namics an	nd theorie	es in unin	nolecular,	chain an	d fast rea	ctions an	d determi	nation of	reaction
rates	•											
• Fam	iliarize v	vith conc	epts of 7	Thermody	ynamics a	and statis	stical the	rmodynar	nics, Gił	obs- Duh	em equat	ion and
Sack	ur-Tetrac	le equatio	n									
		Thermo	dynamic	and Kir	netic con	cept of	Electroch	emistry	and con	ductance,	conduct	ivity of
	rolytes											
Course	Outcom	es At the	end of the	e course, t	the studen	t will be	able to					
CO1	To kno	w the cor	cepts suc	h as Opei	rator algel	bra, Eiger	n values a	nd Eigen	functions	, Degenei	acy, Schi	odinger
	wave e	quation a	nd the pos	stulates of	f Quantun	n Mechar	nics.					
CO2	To lear	n about tl	neories of	reaction	rates, Lin	demann, I	Lindemar	nn-Hinshe	el wood, a	and RRKN	A theories	s.
CO3	To kno	w about]	Thermody	namic co	ncepts an	d entropy	change in	n reversib	le proces	s and irre	versible p	rocess,
			quation, c			1.	e		1		1	
CO4			ermodyna			-			and the o	lerivation	of Debye	e-Huckle
			Verificat					-				
			Mappi	ing of cou	urse outc	omes wit	h the pro	gram ou	tcomes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	3	2	1	-	2	1	2	1	1
	3	1	2	3	1	1	1	-	2	1	-	
CO2	5	-										1
CO2 CO3	3	2	1	3	2			3		1	2	1 2

CHE-103: Physical Chemistry I

UNIT-I: Quantum Chemistry-I

(A)Introduction to Exact Quantum Mechanical Results

Operator algebra, Eigen values and Eigen functions, Operators for momentum and energy, Degeneracy, Linear combination of Eigen functions of an operator, well behaved wave functions, Normalized and orthogonal functions, The schrodinger wave equation and the postulates of Quantum Mechanics, (B) **Applications of Schrodinger wave equation:** Particle in one dimensional and three dimensional box, harmonic oscillator, rigid rotor, hydrogen atom and its applications. Hydrogen like wave function, hydrogen like orbitals and their representation, polar plots, contour plots and boundary diagram. (C)**Approximate Methods:** The variation Theorem, Linear variation principle, perturbation Theory (first Order and non-degenerate), Application of variation Method and perturbation theory to the helium atom, The Born-Oppenheimer approximation.

UNIT-II: Chemical Dynamics

(A)**Theories of reaction rates:** Collision theory, steric factor. Theory of Absolute Reaction Rates-Reaction coordinate, activated complex and the transition state. Thermodynamic formiulation of reacton rates.

(B) Unimolecular reactions: Lindemann, Lindemann-Hinshel wood, and RRKM theories. Termolecular reactions. Complex reactions-Rate expressions for opposing, parallel and consecutive reaction (all first order type) (C) Chain reactions: Dynamic chain, hydrogen-bromine reaction, pyrolysis of acetaldehyde, decomposition of ethane, photochemical reactions- H_2 -Br₂, H_2 -Cl₂ reactions, Autocatalysis, H_2 -O₂ reaction explosion limits. (D) Fast Reactions: Flow system – Temperature and pressure Jump Methods – Relaxation Techniques.

UNIT – III : Thermodynamics

(A) **Brief review of Thermodynamic concepts:** Enthalpy, entropy, free energy. Concept of Entropy –Entropy as a state function –Entropy change in reversible process and irreversible process – Temperature – Entropy diagrams – Entropy change and phase change – Entropy of mixing – Entropy and disorder. (B) **Statistical thermodynamics:** Partial molar properties: their significance and determination of partial molar properties, fugacity and its determination. Concept of distribution, thermodynamic probability and most probable Distribution, Ensemble averaging, postulates of ensemble averaging, canonical, grand canonical and micro- canonical ensembles, partition functions, translational, rotational, vibrational and electronic partition functions, Gibbs- Duhem equation, calculation of thermodynamic properties in terms of partition functions, Entropy of monatomic gases (Sackur-Tetrade equation)

UNIT-IV : Electrochemistry I

(A) Thermodynamic and Kinetic concept of Electrochemistry

Thermodynamic and Kinetic Derivation of Nernst Equation, Chemical and Concentration Cells with and without Transference, Liquid Junction Potential, Derivation of the Expression for Liquid Junction Potentials-its determination and elimination, Applications of EMF Measurements: (i)Solubility product, (ii)pH Determination, (iii) Potentiometric Titrations.; (B)Conductivity: Theory of Electrolytic Conductance, Derivation of Debye-Huckle Equation and its Verification, Debye-Falkenhagen Effect, and Wein Effect, kohlrausch law. Calculation of Solubility of Sparingly soluble Salt from Conductance Measurements.

Conductometric Titrations : Titration of Strong Acid Vs Strong Base (HCl vs NaoH) ; Titration of Weak Acid Vs Strong Base (AcoH vs NaoH); Titration of mixture of Strong and Weak Acids vs Strong Base ; Precipitation Titrations.

Books Suggested

- 1. Physical Chemistry, P. W. Atkins (ELBS)
- 2. Quantum Chemistry, Ira N. Levine (Prentice Hall)
- 3. Atomic Structure and Chemical bond, Manas Chandra.
- 4. Chemical Kinetics, K.J. Laidler (Mc Graw Hill)
- 5. Kinetics and Mechanism of Chemical Transformations, J. Rajaraman and J. Kuriacose (Mcmilan)
- 6. Thermodynamics for chemists, S. Glasstone
- 7. Chemical thermodynamics, I.M. Klotz
- 8. Statistical Thermodynamics, M. Dole
- 9. Modern Electrochemistry, Vol. I & II, J.O. M. Bockris and A.K.N. Reddy (plen
- 10. An Introduction to Electrochemistry (3rded.), S. Glasstone (Affiliated East-West).

CHE 10	4		(Core prac	ctical I:		L-:	5,T-1,P-0)	2	Credits		
				organic C		ý							
Pre-req	uisite: Ur	nderstand	ling of gra	aduate lev	el Inorga	nic Chem	istry prac	tical.	·				
SEMI N	AICRO Q	UALIT	ATIVE A	NALYS	IS								
•]	Basic labo	oratory te	chniques	of titratio	n and ana	ılysis.							
• (Quantitati	ve estima	ation of ir	organic c	ompound	ls through	volumet	ric techni	ques.				
Course	Outcome	s: At the	end of th	e course,	the stude	nt will be	able						
CO1													
	and will make scientific claims that are supported by the observations.												
CO2	To famili	iarize wit	th techniq	ues of titr	ation and	calculatio	on of erro	ors					
CO3													
CO4													
			Mapp	ing of cou	irse outc	omes witl	n the pro	gram ou	tcomes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	2	3	2	-	1	1	-	1	2	-	
CO2	3	2	2	3	1	1	-	1	2	1	1	2	
CO3													
CO4													

CHE 104: Core practical I: Inorganic Chemistry

Semi Micro Qualitative Analysis

I. Qualitative Analysis of a mixture containing four cations including two less common cations (viz., W, Mo, Se, Te, V, Ce, Th, Zr, Li and U).

CI	HE 105			-	actical I: CheImist			L-5,T-1,	P-0		2 Cre	dits
Pre-req	uisite: U	nderstand		-			stry practi	cal.				
IdenSing	Objectiv tification le step pro Outcome	of single eparation	s			-		nalysis				
Course CO1		iarize the	e systema					compone	ents, conf	formation	al tests fo	or various
CO2	To unde molecule		he mech	anisms a	nd famil	liarize w	ith meth	odologies	to prep	are biolo	ogically	important
CO3												
CO4												
			Mapp	ing of cou	irse outc	omes wit	h the pro	gram ou	tcomes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	1	2	2	1	2	-	2	-
CO2	3	2	2	3	2	2	-	1	1	2	-	2
CO3												
CO4												

CHE: 105: PRACTICAL - II: ORGANIC CHEMISTRY

- a) Identification of single organic component by systematic qualitative analysis.
 - Aromatic acids
 - Phenols
 - Neutral compounds
 - Esters

Carbonyl compounds etc.

- b) Single step preparations.
 1. Preparation of aspirin
 2. Preparation of p-nitroacetanilide
 - 3. Preparation of p-bromoacetanilide
 - 4. Hydrolysis

CI	HE 106]	-	·actical I: CheImist			L-5,T-1,	P-0		2 Cre	dits
Pre-req	uisite: U	nderstand		•		•	stry pract	ical.				
Course	Objectiv	es:										
• Dete	rmination	of critic	al solution	n tempera	ture, eute	ctic comp	position a	nd temper	ature of l	oinary sys	tem.	
Course	Outcome	es: At the	end of th	e course,	the stude	nt will be	able					
CO1	To study	the deter	mination	of critica	l solution	temperat	ure, euted	tic comp	osition, d	istribution	coefficie	ent,
	adsorptic	on of diffe	erent									
CO2	To calibi	ate the st	atistical d	lata								
CO3												
CO4												
			Mapp	ing of cou	arse outc	omes wit	h the pro	gram ou	tcomes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	-	2	2	1	-	2	1	1
CO2	3	2	2	2	1	2	-	1	1	2	-	2
CO3												
CO4												

CHE: 106: PRACTICAL – III: Physical Chemistry

Syllabus

- Calibration of volumetric apparatus and statistical analysis of the data.
- Determination of critical solution temperature of phenol-water system and study the effect of electrolyte on CST.
- Determination of Eutectic composition and temperature of binary system
- Determination of distribution coefficient of benzoic acid between water and benzene.
- Study the adsorption of acetic acid on charcoal and analysis of the data on the basis of Langmuir and Freundlich adsorption isotherms.
- Determination of rate constant of acid hydrolysis of an ester and investigate the effect of catalyst concentration, reactant concentration and temperature.

CHI	E-107		Ge	neral Ch	emistry I	[L-:	5,T-1,P-0		2	Credits				
Pre-re	quisite: U	nderstand	ing of gra	iduate lev	el Chemi	stry									
Course	e Objectiv	es:													
• Gain	knowledge	e on prec	ision and	accuracy	, Limit o	f detectio	n, Limit	of deterr	nination,	Sensitivit	y and sel	ectivity,			
statis	tical evalua	ation of d	ata												
	liarize with applicatior		les and c	oncepts o	f flame e	emission s	spectrosc	opy and a	atomic ab	osorption	spectrosc	opy and			
Course	e Outcome	es: At the	end of th	e course,	the stude	nt will be	able								
CO1	To know	about me	an and m	edian val	ues, stand	lard devia	tion and	coefficien	t of varia	tion.					
CO2	To acquire knowledge on principle and instrumentation of AAS and difference between flame AAS and														
	furnace A		0 1	1											
CO3															
CO4															
			Mappi	ing of cou	irse outco	omes witl	1 the pro	gram out	tcomes						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	2	1	3	1	2	-	2	-	1	1	2			
CO2	3	2	2	3	1	-	2	1	-	2	-	2			
CO3															
CO4															

CHE107: General Chemistry I

UNIT-I: TREATMENT OF ANALYTICAL DATA

15 Hrs

Precision and accuracy –mean and median values –Standard deviation – coefficient of variation, Types of errors: Determinate and indeterminate errors, confidence limits, significant figures, computations, minimization of errors, statistical evaluation of data –T-test ,F- test , and X^2 –test. Correlation coefficient and coefficient of determination; Limit of detection (LOQ); Limit of determination(LOD) Sensitivity and selectivity of an analytical method.

UNIT-II: FLAME EMISSION AND ATOMIC ABSORPTION SPECTROSCOPY 15 Hrs

(a) **Flame Emission Spectroscopy**: Principles, chemical reactions in flames, Interferences, evaluation methods, flame photometer and experimental technique, procedure for determinations, limitations and disadvantages. Applications

(b)Atomic Absorption Spectroscopy: Flame AAS: Principle, Instrumentation – Sources of radiation (HCL and EDL), Different types of burners, Interferences- Physical, Chemical, spectral and back ground correction, and methods of

minimization

GF AAS: Principle and technique –Comparison between Flame AAS and furnace AAS, Applications of AAS, Comparison between Atomic Absorption & Flame Photometry.

Books Suggested

- 1. H.W. Willard, LL. Merritt and J.A. Dean: Instrumental Methods of Analysis
- 2. Vogel's Text book of Quantitative Inorganic Analysis.
- 3. Analytical Chemistry
- 4. Instrumental Methods of Analysis H. Kaur

СН	E 108	Hum	an Value	es and Pr	ofessiona	l Ethics-	[L-	3,T-1,P-2	2		4 Credits	5
Pre-req	uisite: Ur	derstand	ing of gra	iduate lev	el Humar	n Values a	ind profe	ssional eth	nics			
Course	Objective	es:					-					
	yze value		ous ethical	l professio	ons							
	erstand mo			-		multiple						
• ethic	ept of eth al interest ext and pro	ts at stak						ess own e	ethical va	lues with	respect t	o social
Course	Outcome	s: At the	end of th	e course,	the stude	nt will be	able to					
CO1	To know	v about tl	he needs a	and impor	rtance of	professio	nal ethics					
CO2	To anal	yze natur	e of Valu	es, basic	Moral Co	ncepts ch	aracter ai	nd Conduc	et.			
CO3	To gain	knowled	ge on ind	ividual aı	nd society	v ethical v	alues, ah	imsa, saty	a and bra	hmachary	a.	
CO4	To unde	erstand va	alues of B	hagavd C	ita, vario	us religio	ns, religi	ous tolere	nce, Gano	lhian ethi	cs.	
						•						
			Маррі	ng of cou	irse outco	omes wit	n the pro	gram out	comes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	-	1	3	2	1	1	2	3	-	1	2
CO2	3	-	2	3	1	2		2	3	2	-	2
CO3	3	1		3	2		1				1	3
CO4	3	1	2	3		2	2	2	2	2	-	3

CHE 107: ELECTIVE FOUNDATION (HUMAN VALUES AND PROFESSIONAL ETHICS – I)

Chapter I: Definition and Nature of Ethics – Is relation to Religion, Politics, Business, Law, Medicine and Environment. Need and Importance of Professional Ethics – Goals – Ethical Values in Various Professions.

Chapter II: Nature of Values – Good and Bad, Ends and Means, Actual and Potential Values, Objective and Subjective Values, Analysis of Basic Moral Concepts – Right, Ought, Duty, Obligation, Justice, Responsibility and Freedom, Good Behavior and Respect for Elders, Character and Conduct.

Chapter III: Individual and Society: Ahimsa (Non-Violence), Satya (Truth), Brahmacharya (Celibacy), Asteya (Non Possesion) and Aparigraha (Non-stealing). Purusharthas (Cardinal virtues) - Dharma (Righteousness), Artha (Wealth), Kama (Fulfillment Bodily Desires), Moksha (Liberation), Crime and Theories of Punishment – (a) Reformative, Retributive and Deterrent, (b) Views on Manu and Yajnavalkya

Chapter IV: Bhagavd Gita – (a) Niskama Karma, (b) Buddhism – The Four Nobel Truths – Arya astanga marga, (c) Jainism - Mahavratas and Anuvratas. Values Embedded in Various Religions, Religious Tolerence, Gandhian Ethics.

Books for study:

- 1. Johns S Mackenjie: A Manual of ethics
- 2. "The Ethics of Management" by Larue Tone Hosmer, Richard D. Irwin Inc.
- 3. "Ethics in Management" by S.A. Shelekar, Himalaya Publishing House.
- 4. Harold H. Titus: Ethics for Today
- 5. Maitra, S.K: Hindu Ethics
- 6. William Lilly: Introduction to Ethics
- 7. Manu: Manava Dharma Sastra or the Institute of Manu: Comprising the Indian System of Duties: Religious and Civil (ed) G.C. Haughton.
- 8. Sasruta Samhita: Tr. Kaviraj Kunjanlal, Kunjanlal Brishagratha, Chowkamba Sanskrit Series, Vol I,II and III, Varanasi, Vol I PP, 16-20, 21-32 and 74-77 only.
- 9. Charaka Samhita: Tr. Dr. Ram Karan Sarma and Vaidya Bhagavan Dash, Chowkambha Sanskrit Series Office. Varanasi I, II, III Vol I PP 183-191.
- 10. Ethics, Theory and Contemporary Issues. Barbara Mackinnon, Wadsworth/Thomson Learning, 2001.

- 11. Analyzing Moral Issues, Judith A. Boss, Mayfield Publishing Company, 1999.
- 12. I.C. Sharma Ethical Philosophy of India. Nagin& Co Julundhar.

CHE - 2	201		Inorga	nic Chemi	stry II			L-5, T-1	, P-0	4	Credits			
Pre-req	uisite: U	nderstand	ing of gra	iduate leve	l chemis	try								
C	ourse Obj	jectives:												
	Understar synthesis.	-	tic prope	erties of tr	ansition	metal co	omplexes	and variou	is reaction	ons on lig	ands with	respect to		
•	Gain knov	wledge or	electron	ic spectra o	of compl	ex molect	ules of oct	ahedral and	l tetrahec	lral geome	try			
•	Understar	nd magne	tic prope	rties viz.,	diamag	netism ar	nd parama	ignetism ai	nd other	related pr	roperties o	f complex		
1	molecules Familiarize with different catalytic reactions of complex molecules and factors effecting the reactions.													
•	Familiariz	ze with di	fferent ca	talytic read	ctions of	complex	molecules	and factor	s effectin	ig the react	tions.			
Course														
CO1	e Outcomes: At the end of the course, the student will be able To familiarize with the general methods of complex preparations and properties, nature of bonding and structural													
	features of metal complexes. To know about Russel-Saunders coupling, splitting of energy levels in octahedral field and differentiate between													
CO2				-	• •	-	energy leve	els in octah	edral fiel	d and diffe	erentiate be	tween		
		-		e-Sugano d	-									
CO3					ls, Curie	and Weis	ss, magnet	tism and ma	agnetic si	usceptibilit	ty determin	ation by		
			y method											
CO4	To gain	knowledg	ge on Indu	iced reaction	ons, Free	e radical r	eactions,	Thermal de	composit	ion reactio	ons, Chain i	reactions.		
				pping of c	ourse ou	itcomes v	with the p	rogram ou	tcomes		-			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	2	3	-	2	1	2	-	2	-	1		
CO2	3	1	1	3	1	2	-	2	-	1	-	1		
CO3	3	-	2	3	-	2	1	-	2	1	1	-		
CO4	3	1	1	3	1	2	-	1	-	1	-	1		
	•			HF 201.1	NODO		IEIOTEN	TT	•	•	•	•		

CHE 201: INORGANIC CHEISTRY II

UNIT – I: TRANSITION METAL II – COMPLEXES

Transition metal π – complexes with unsaturated organic molecules – alkenes, alkynes, diene, dienyl and Cyclopentadienyl complexes and arene complexes-general methods of preparation, properties, nature of bonding and structural features – Important reactions relating to Nucleophilic and Electrophilic attack on ligands and to organic synthesis.

Π

UNIT – II: ELECTRONIC SPECTRA OF COMPLEXES

Russel-Saunders coupling – Spectroscopic term symbols- Derivation of term symbols of p^2 and d^2 configuration, Hole Formulation, Energy ordering of terms (Hund's Rules), Splitting of energy levels and spectroscopic states in Octahedral field, Selection rules – Break – down of selection rules, Orgel diagrams, Definition and utility–Orgel Diagrams for d^1 to d^9 configurations in Octahedral and tetrahedral fields. Interpretation of electronic spectra of high spin octahedral and tetra hedral complexes of Ti(III), V(III), Cr(III), Mn(II), Mn(II), Fe(II), Fe(III), Co(III), Co(II), Ni(II) and Cu(II) complexes, Calculation of Dq and B¹ parameters for Cr(III) and Ni(II) complexes. Tanabe – Sugano diagrams, Differences between Orgel diagrams and Tanabe – Sugano diagrams, Tanabe – Sugano diagrams of d² to d⁶ and d⁸ configurations. Charge transfer spectra- LMCT and MLCT.

UNIT – III: MAGNETIC PROPERTIES OF TRANSITION METAL COMPLEXES 1

Diamagnetism and paramagnetism-orbital and spin contributions, spin-orbit coupling, Hunds third rule and Energies of J levels – Curie law and Curie – Weiss law- Ferromagnetism and antiferromagnetism – Temperature independent magnetism Magnetic susceptibility and its determination by Gouy's and Faraday methods.Calculation of magnetic moment from magnetic susceptibility, spin-only formula, Orbital contribution to magnetic moment (Oh and Td Complexes) –Paramagnetism and crystalline fields – Ti (III), V (III), VO²⁺, Cr (III), Mn (II), Fe (III), Co(II), Ni (II) and Cu (II). Magnetic Exchange in copper acetate and other dimmers – spin cross over in complexes.

UNIT -IV: CATALYSIS

Homogeneous catalysis, Metal ion catalyzed reactions – Redox potentials and processes – Mechanism of redox processes involving ligands – Factors affecting redox potentials - other types of metal catalyzed reactions – Reactions involving Ag (I), Cu (II) and Os (VIII) – Reactions of Oxyanions – Factors affecting rate (General discussion only) – Induced reactions – Free radical reactions – Thermal decomposition of peroxy disulphate – $Fe(III) -S_2O_8$ reactions – chain reactions – H-Br reactions, $H_2O_2 - S_2O_8$ reactions.

Books Suggested

1. Inorganic Chemistry principles of Structure and Reactivity 6th Edition. James E. Huheey.

15 Hrs

15 Hrs

15 Hrs

15 Hrs

- 2. Organometallic Chemistry: R.C. Mehrotra and Singh.
- 3. R. S. Drago: Structural methods in Inorganic Chemistry.
- 4. H. H. Willard, L. L. Merritt, Jr., J. A. Dean and F. A. Settle, Jr.: Instrumental Methods of Analysis (CBS Publishers).
- 5. R. L. Carlin: Magnetic Chemistry. R. L. Datta and A. Syamal: Elements of Magnetic Chemistry.

CHE-2	202		Org	anic Che	mistry II	[L-	3, T-1, P-	2	4	Credits				
Pre-req	uisite: U	nderstand	ling of Or	ganic Ch	emistry		I								
	Objectiv														
										$E_1, E_{1CB}.$					
				ngements	involvin	ng electro	n deficie	nt carbon	n, nitroge	en and o	xygen ato	oms and			
		arbon ato			0 1		1.0			1 5					
								membere	d heteroo	cycles. B	e able to	predict			
			emical real					ania of m		durata alle	alaida				
• Be fa	unnar W	iiii occuri	ence, isol	ation, stru	uctural en	ucidation	and syntr	iesis oi na	uurai pro	ducts- alk	aloids				
Course	Outcom	es. At the	end of th	e course	the stude	nt will be	able								
CO1				-				s sterose	lectivity	and a	wnnwroly	tic			
COI		To familiarize the mechanisms of E_1 , E_2 and E_{1CB} reactions, steroselectivity and synpyrolytic eliminations and use of isotopes, chemical trapping and crossover experiments.													
CO2				-		11 0		-		oxygen at	oms and	electron			
001								ations of							
CO3	To lear	n the syn	thesis of t	hree and	four men	bered he	erocycles	mechan	ism of rij	ng openin	g reaction	is and			
005										opening re	0	is und			
				e		C		-	U	1 0					
CO4	To und	erstand th	ne structur	al elucida	ation and	synthesis	of alkalo	ids using	specific r	eagents.					
			M	C		•									
			Mapp	ing of cot	irse outc	omes wit	n the pro	gram out	comes						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	3	2	2	3	_	2	1	1	2	_	1			
CO1 CO2	3	3	2	2	3	2	2	-	1	-	- 1	1			
CO2 CO3	3	3	2	2	3	2	2	1	1	1	2	1			
CO3	3	3	2	2	3	-	2	-	1	1	-	1			
004	5	5		-	-	C CHEN	_		1	1	-	1			

UNIT-I: Reaction mechanism-I

15 Hrs

15 Hrs

Electrophilic addition to carbon carbon double bond: Stereoselective addition to carbon carbon double bond; anti addition-Bromination and epoxidation followed by ring opening. Syn addition of OsO_4 and $KMnO_4$.

Elimination reactions Elimination reactions E_2 , E_1 , E_{1CB} mechanisms. Orientation and stereoselectivity in E_2 eliminations. Pyrolytic syn elimination and α -elimination, elimination Vs substitution. Facors influencing the elimination reactions

Determination of reaction mechanism: Determination of reaction mechanism: Energy profiles of addition and elimination reactions, transition states, product isolation and structure of intermediates, use of isotopes, chemical trapping, crossover experiments. Use of IR and NMR in the investigation of reaction mechanism.

UNIT-II: Molecular Rearrangements:

Rearrangements to electron deficient Carbon atom:

Pinacol-Pinacolone, Wagner-Meerwein, Dienone-Phenol and Demjonove Rearrngements

Rearrangements to electron deficient Nitrogen atom:

Hofmann, Curtius, Schimidt and Beckmann Rearrangements.

Rearrangements to electron deficient Oxygen atom: Baeyer-Villiger and Dakins Rearrangements

Rearrangements to electron rich Carbon atom: Favorski and Neber Rearrangements

Aromatic and Sigmatropic Rearrangements: Fries and Claisen Rearrangements

UNIT III: Three and four membered heterocycles:

Systematic nomenclature (Hantzsch-Widmann system) and Replacement nomenclature for monocyclic heterocycles (Three and four membered rings). Synthesis and chemical reactions of aziridines, oxiranes, thiiranes, azetidines, oxetanes, and thietanes.

15 Hrs

UNIT-IV: Alkaloids

15 Hrs

Occurrence, isolation, general methods of structure elucidation and physiological action, degradation, classification based on nitrogen heterocyclic ring, structure elucidation and synthesis of the following: Atropine, Papaverine and Quinine.

Books Suggested:

- 1. Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, John Wiley.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J Sundberg, Plenum.
- 3. Structure and Mechanism in Organic Chemistry C.K. Inglod, Cornell University Press.
- 4. Organic Chemistry, R.T Morrison and R.N. Boyd, Prentice Hall.
- 5. Modern Organic Reactions, H.O. House, Benjamin.
- 6. Principles of Organic Synthesis, R.O.C Norman and J. M. Coxon, Blackie Academic.
- 7. Stereochemistry, P.S. Kalsi, Wiley Eastern.
- 8. Text book of Organic Chemistry, M.C. Murry
- 9. Text book of Organic Chemistry, Fessendon and Fessendon.
- 10. Text book of Organic Chemistry, T.W. Solomon,
- 11. Organic Chemistry, Vol II, I.L. Finar, ELBS Eds.
- 12. Heterocyclic chemistry T.L Gilchrist, Longman Scientific Technical
- 13. An Introduction to the Heterocyclic compounds, R M Acheson, John Wiley.

CHE -	-203		Ph	ysical ch	emistry l	Ι	L-:	5,T-1,P-6		4	Credits			
Pre-re	equisite: B	asic know	ledge abo	out Physic	al Chemi	istry	·							
Cours	e Objectiv	ves:												
• Lea	arn Angula	r moment	tum and N	Iolecular	Orbital T	heory and	d applicat	tion of Hu	ckel theo	ry to orga	nic mole	cules.		
• Kn	ow about c	oncepts in	n Surface	Chemistr	y, concep	ot of elect	ric double	e layer mo	odel and I	Micelles.				
• Ge	t knowledg	ge on sym	metry and	l group th	eory their	r use in sp	oectroscop	py, Mullil	ken char	acter tabl	es.			
	derstand Ir							ectrolysis	and pola	rography				
Cours	e Outcom	es At the	end of the	e course, t	he studen	t will be	able							
CO1	To know	about Pa	uli Exclus	sion princ	iple and S	Slater dete	erminant,	atomic of	rbitals, Si	mple mol	ecular or	oitals and		
	Huckel theory of conjugated systems.													
CO2	To learn Gibbs adsorption isotherm, BET equation and correlate limitations, critical micellar concentration													
	To learn Gibbs adsorption isotherm, BET equation and correlate limitations, critical micellar concentration (CMC) and factors affecting the CMC of surfactants.													
CO3	To identi	ify Relatio	on betwee	n order o	f a finite g	group and	l its sub-g	roup, con	jugacy, S	ymmetry	point gro	up (MLS,		
	Ν	/HS and I	MSS) and	orthogor	ality theo	orem.								
CO4	-		-						lled Pote	ential Ele	ctrolysis,	to derive		
	equation	for Tafel	plots, hal	f-wave po	otentials f	or reversi	ble system	m.						
		Μ	apping	of cour	se outco	omes wi	ith the J	progran	n outco	mes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	-	3	-	2	1	1	-	1	1	1		
CO2	3	2	2	3	2	2	2	-	2	-	2	-		
CO3	3	2	2	3	-	-	1	1	-	1	1	1		
CO4	3	2	-	2	2	1	1	-	2	1	1	1		
				СНЕ /	C 203 D	hysical (homistry	TII						

UNIT-I: Quantum Chemistry-II

CHE-AC-203 Physical Chemistry III

15 Hrs

15 Hrs

15 Hrs

(A) Angular momentum: Angular momentum, Rotations and angular momentum, Eigen functions and Eigen values of angular momentum, Ladder operator, addition of angular momenta, spin, antisymmetry and pauli Exclusion principle. Slater determinant.;

(B) Molecular Orbital TheoryAtomic Orbitals, Simple Molecular Orbitals, Hybrid Atomic Orbitals, Shapes and energies of Molecular Orbital, Systems of Organic Molecules (Ex: Methane, Ethylene, Acetylene). Huckel theory of conjugated systems, Π-bond order and charge density calculations, application of Huckel theory to ethylene, butadiene and benzene.

UNIT-II: Surface Chemistry

Surface tension, capillary action, pressure difference across curved surface, (Laplace equation), vapour pressure of droplets (Kelvin equation), Gibbs adsorption isotherm, BET adsorption isotherm, derivation of BET equation, limitations of BET equation, estimation of surface area from BET equation, Surface films on liquids. Concept of electric double layer model-Helmholtz perrin, Gouy- Chapman and stern models (no derivation)

Micells: Surface active agents, classification of surface active agents micellisation, hydrophobic interaction, critical micellar concentration (CMC), factors affecting the CMC of surfactants, thermodynamics of micellisation, emulsions, reverse micelles.

UNIT-III: SYMMETRY AND GROUP THEORY

Definition of a group, rules that are set for a group, sub-group, order of a group, Relation between order of a finite group and its sub-group, conjugacy relation and class of a group, symmetry elements and symmetry operation. Symmetry point group (MLS, MHS and MSS), Schoenflies symbols - Representation of groups by matrices (representation for C_n , C_{nv} , D_{nh} etc. groups to be worked out explicitly), character of a representation, group multiplication tables, reducible - irreducible representations The great orthogonality theorem (without proof) - character tables (H₂O,NH₃) and their use in spectroscopy, Mulliken character tables.

UNIT-IV: ELECTROCHEMISTRY- II

15 Hrs

Irreversible Electrode phenomenon: Reversibility and irreversibility, Dissolution and deposition potentials, Decomposition voltage, overvoltage, diffusion overvoltage, charge transfer overvoltage, concentration overvoltage-hydrogen and oxygen overvoltages, Tafel plots, Exchange current density and Transfer coefficient, Butler-Volmer equation for one electron transfer processes.

Polarography:Theory, classification, principle, Instrumentation of Polarography, DME, HMDE diffusion current, Ilkovic equation, DC-Polarography, AC-Polarography, Controlled Potential Electrolysis, Millicoulometry, Equation for half-wave potentials, for reversible system when oxidant alone, reductant alone and both are present.

Books Suggested

- 1. P.W. Atkins: Physical Chemistry (ELBS).
- 2. Ira N. Levine: Quantum Chemistry (Prentice Hall).
- 3. R. Mcweeny: Coulson's Valence (ELBS).
- 4. J.O.M. Bockris and A.K.N. Reddy, Modern Electrochemistry, vol.I & II (Plenum).
- 5. S. Glasstone; An Introduction to Electrochemistry (3rd ed.)(Affiliated East-West).
- 6. V. Moroi: Micelles, theoretical and applied aspects (Plenum).
- 7. Maron and prutton: principles of physical Chemistry.
- 8. Silbey, Alberty, Bawendi. Physical Chemistry. Jhon-Wiley & Sons. 4th edition-2006.
- 9. D.N. Bajpai: Advanced physical Chemistry: S. Chand & Company, 1998.

CHE 2)4			Core pra	etical I:		L-	-5,T-1,P-	0	2	Credits	
			In	organic	Chemistr	У						
Pre-rec	luisite: U	nderstan	ding of gi	aduate le	vel Inorga	anic Chen	nistry pra	ctical.				
SEMI	MICRO	QUALIT	TATIVE	ANALY	SIS							
•	Separatio	n and de	terminatio	on of the	two comp	onent mix	ctures.					
•	Preparati	on of me	tal compl	exes								
Course	Outcom	es: At the	e end of t	he course	, the stude	ent will be	e able					
CO1	CO 1: T	o separat	e and det	ermine th	e two con	nponent n	nixtures.					
CO2		1			preparatio	1		xes				
001	002.1	o uoquii		8°	Proparation of the second							
CO3												
CO4												
	-		Mapp	oing of co	ourse outo	comes wit	th the pro	ogram ou	itcomes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	2	1	-	2	-	3	3	1
CO2	3	2	2	3	-	1	2	-	2	3	3	1

CHE 204: Core practical I: Inorganic Chemistry

I. Quantitative Analysis:

CO3 CO4

Separation and determination of two component mixtures:

(i) Separation of Al(III) and Determination of Fe (III)

(ii) Separation of Cu(II) and Determination of Zn (II)

- (iii) Separation of Ca(II) and Determination of Mg (II)
- (iv) Separation of Cu(II) and Determination of Ni (II)
- (v) Determination of Ferrocyanide and Ferricyanide

II. Preparation of Metal Complexes:

(i) Tetra(ammine) copper (II) sulphate.

(ii) Mercury tetra(thiocyanato) cobaltate(II).

- (iii) Hexa(ammine) Nickel (II) chloride.
- (iv) Tris(acetylacetonato) Manganese (III) chloride.

(v) Tris (ethylenediammine) Nickel (II) thiosulpha

CI	HE 106			-	actical II CheImist			L-5,T-1,	,P-0		2 Cre	dits
Pre-req	uisite: Ur	nderstand	ling of gra	aduate lev	vel Organi	ic Chemis	stry practi	cal.				
	Objectiv iliarize wi		omponent	mixture	separation	n and ider	ntification					
	aration of		1		1							
Course	Outcome	es: At the	end of th	e course,	the stude	nt will be	able					
CO1	To famili	iarize wit	h binary	mixture s	eparation	and to ga	in hands-	on-experi	ence in p	urification	n of the	
CO2	To get kr	nowledge	about the	e chemica	ıl behavio	or of diffe	rent comp	onents ar	nd mechai	nisms.		
CO3												
CO4												
			Mapp	ing of cou	urse outc	omes wit	h the pro	gram ou	tcomes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	2	-	1	2	-	1	1	1
CO2	3	2	2	3	-	2	-	1	2	1	-	2
CO3												
CO4												

CHE: 205: PRACTICAL - II: ORGANIC CHEMISTRY

Separation and Identification of two component organic mixture by systematic qualitative analysis.

Binary mixture of

Acid + Neutral Phenol + Neutral Base + Neutral Acid + Ether insoluble component Phenol + Ether insoluble component Base + Ether insoluble component

Cl	HE 206]	-	actical II CheImist			L-5,T-1,	P-0		2 Cr	edits
Pre-req	uisite: U	nderstand			vel Physic	v	stry pract	ical.				
• Fam		ith condu	ctometric etric metl		ometric an nalysis	id redox n	nethods o	f analysis				
Course	Outcom	es: At the	end of th	e course,	the stude	nt will be	able					
CO1	To study	the deter	rmination	of cell co	onstant an	d verifica	tion of O	nsagar eq	uation, st	trength of	strong	
CO2	To get k	nowledge	e on the ap	oplication	s of cond	uctometry	, potentio	ometry, co	oulometr	y and pH	metry.	
CO3												
CO4												
			Mapp	ing of cou	urse outc	omes wit	h the pro	gram ou	tcomes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	3	1	1	2	-	1	1	1
CO2	3	2	2	3	2	1	1	-	2	1	-	2
CO3												
CO4												

CHE: 106: PRACTICAL – III: Physical Chemistry

Syllabus

1. Conductometry:

- (a) Getermination of cell constant
- (b) Verification of Onsagar equation
- (c) Determination of dissociation constant of a weak acid
- (d) Titration of a strong acid with a strong base
- (e) Titration of a weak acid with a strong base

2. Potentiometry:

- (a) Titration of a strong acid with a strong base
- (b) Titration of a weak acid with a strong base
- (c) Redox titration
- 3. Coulometry: Estimation of Manganese
- 4. pH metry: Strong acid, Strong base titrations.

CHE-	207		Gei	neral Che	emistry I	I	L-5	5,T-1,P-0		2	Credits	
Pre-req	uisite: U	nderstand	ing of gra	duate lev	el Chemi	stry						
Course	Objectiv	ves:										
		edge on th with chror	1 1			ctro analy	tical meth	nods.				
Course	Outcom	es: At the	end of th	e course,	the stude	nt will be	able					
CO1	To acqu	ire knowle	edge on io	on selectiv	ve electro	des, solid	membrai	ne electro	des and g	lass elect	rodes and	
CO2	To learn	general p	rinciples	and class	ifications	of chrom	atographi	ic separati	ions and a	application	ns of TLC	C, GLC
CO3												
CO4												
			Mappi	ng of cou	irse outc	omes wit	h the pro	gram out	tcomes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	1	2	-	2	2	-	1	1
CO2	3	-	2	3	1	2	1	2	-	2	1	1

CHE 204-A: General Chemistry II

UNIT-I: ELECTRO ANALYTICAL METHODS

Theory of potentiometry, calculation electrode potential at the equivalence. Finding of equivalence volume, derivative and linear titration plots. Ion-sensitive electrodes –types of ion sensitive electrodes –metal based cation and anion sensitive electrodes, solid membrane electrodes, glass electrodes. Liquid ion-exchange electrodes, gas sensing membrane electrodes, Amperometric titrations - Anodic stripping voltammetry, chronoamperometry, chronopotentiometry, Cyclic Voltammetry, Differential Pulse Polarography, linear sweep voltammetry, square wave voltammetry.

UNIT-II: CHROMATOGRAPHY

General principles and classifications of chromatographic separations

Thin layer chromatography: Classification, principle, experimental technique, sample application, development of plate, retardation factor.

Gas liquid chromatography: Gas liquid chromatography - instrumentation (columns and detectors), retention time and retention volume. Chromatographic behaviour of solutes, column efficiency and resolution, column processes and band broadening, time of analysis and resolution, Van-Deemter equation.

High performance liquid chromatography: Theory and instrumentation-column performance, gradient elution, delivery system, sample introduction, separation columns, detectors and applications of HPLC.

Books Suggested

CO3 CO4

- 1. H.W. Willard, LL. Merrit and J.A.Dean: Instrumental Methods of Analysis. Affiliated East-West).
- 2. G.H. Jeffery J. Bassett, J. Mendham and R.C. Denny. Vogel"s Text Book of Quantitative Chemical Analysis (ELBS).
- 3. D.A. Skoog and D.M. West: Principles of Instrumental Analysis (Holt, Rinehart and Wilson).
- 4. J.G. Dick : Analytical Chemistry (McGraw Hill).
- 5. D. Midgley and K. Torrance : potentiometric Water Analysis (John Wiley).

CHE	208	H	luman Va		-	onal ethic	s- L-	-3,T-1,P-2	2	4	Credits	
-				-	II	<u> </u>						
Pre-ree	quisite: U	Inderstand	ding of Hi	uman Val	ues and p	rofessiona	l ethics					
	Objectiv											
		-			•	and adjust	•					
• Dev	elop ethio	cs toward	s medical	, health ca	are profes	sionals and	d ethical	issues in	genetic er	ngineerin	g	
• Une	derstand	the impor	rtance of	social eth	nics towar	rds organ	trade, h	uman traf	fic king l	numan rig	ghts viola	tion and
soci	al dispari	ties.										
• <u>K</u> no	w about	environm	ental ethic	cs, ecolog	ical crises	s, pollutior	n and pro	otection o	f environr	nent		
Course	Outcom	es: At the	e end of th	ne course,	the stude	nt will be	able to					
CO1	Tound	lerstand t	he concer	ts of hum	an values	, responsił	vilities o	f family y	values and	status of	women i	n family
COI	and so		ne concep	to or num	un varaes	, response	onnei es e	i iuiiiiy (uides and	status or	wonnen i	ii iuiiiiy
CO2		2	vledge on	different	medical e	ethics the v	views of	charaka a	and sushru	ita on mo	ral respor	sibilities
02		lical pract	-				10 11 01					
CO3		-		cial ethics	and unde	erstand the	charact	eristics of	fethical p	roblems i	n manage	ment
000	10 gui			enur etimet	, and ana		enaraet		etinear p		n manage	inent.
CO4	To fan	niliarize e	nvironme	ntal ethic	s, ethical t	theory and	ecologi	cal crisis.				
			Mann	ing of an	urso outo	omes with	the pr	arom ou	teomos			
			wiapp	ing of co		unies with	i the pro	Jgi alli ou	licomes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	3	1	2	1	-	3	1	1	1
CO2	3	1	1	3	-	2	-	3	3	1	1	1
CO3	3	2	2	3	2	2	2	2	2	3	-	1
CO4	3	1	1	3	1	2	-	-	2	3	1	1

CHE 207: ELECTIVE FOUNDATION (HUMAN VALUES AND PROFESSIONAL ETHICS-II)

Chapter I: Value Education – Definition – Relevance to present day – Concept of human values - Self introspection – Selfesteem. Family values-Components, Structure and responsibilities of family Neutralization of anger – Adjustability – Threats of family life – Status of women in family and society – Caring for needy and elderly – Time allotment for sharing ideas and concerns.

Chapter II: Medical ethics – Views of Charaka, Sushruta and Hippocratus on moral responsibility of medical practitioners. Code of ethics for medical and healthcare professionals. Euthanasia, Ethical obligation to animals, Ethical issues in relation to health care professionals and patients. Social justice in health care, human cloning, problem of abortion. Ethical issues in genetic engineering and Ethical issues raised by new biological technology or knowledge.

Chapter III: Social ethics – Organ trade, Human trafficking, Human rights violation and social disparities, Feminist ethics, Surrogacy/pregnancy. Ethics of media – Impact of Newspapers, Television, Movies and Internet, Business ethics – Ethical standards of business – Immoral and illegal practices and their solutions. Characteristics of ethical problems in management, ethical theories, causes of unethical behavior, Ethical abuses and work ethics.

Chapter IV: Environmental ethics – Ethical theory, man and nature - Ecological crisis, Pest control, Pollution and waste, Climate change, Energy and pollution, Justice and environmental health.

Books for study:

- 1. Johns S Mackenjie: A Manual of ethics
- 2. "The Ethics of Management" by Larue Tone Hosmer, Richard D. Irwin Inc.
- 3. Management Ethics Integrity at work by Joseph A. Petrick and John F. Quinn, Response Books, New Delhi.
- 4. "Ethics in Management" by S.A. Shelekar, Himalaya Publishing House.
- 5. Harold H. Titus: Ethics for Today
- 6. Maitra, S.K: Hindu Ethics
- 7. William Lilly: Introduction to Ethics
- 8. Sinha: A Manual of Ethics
- 9. Manu: Manava Dharma Sastra or the Institute of Manu: Comprising the Indian System of Duties: Religious and Civil (ed) G.C. Haughton.
- 10. Sasruta Samhita: Tr. KavirajKunjanlal, KunjanlalBrishagratha, Chowkamba Sanskrit Series, Vol I,II and III, Varanasi, Vol I PP, 16-20, 21-32 and 74-77 only.

- 11. Charaka Samhita: Tr. Dr. Ram Karan Sarma and Vaidya Bhagavan Dash, Chowkambha Sanskrit Series Office. Varanasi I, II, III Vol I PP 183-191.
- 12. Ethics, Theory and Contemporary Issues. Barbara Mackinnon, Wadsworth/Thomson Learning, 2001.
- 13. Text Book for Intermediate First Year Ethics and Human Values, Board of Intermediate Eduction Telugu Academy, Hyderabad.
- 14. I.C. Sharma Ethical Philosophy of India. Nagin& Co Julundhar.

CHE-	AC- 301	Inc	0	pectrosco thods of		Fhermal	L-:	5,T-1,P-0		4 (Credits	
Pre-req	uisite: Ui	nderstand	ing of Ba	sic Inorga	anic Spec	troscopy	and Therr	nal Meth	ods of An	alysis		
Course	Objectiv	es:										
• Gain k	nowledge	e on therr	nal metho	ds of ana	lysis and	principles	s and app	lications t	o inorgan	ic materia	ıls.	
• Famili	arize with	n basics o	f Mossba	uer and N	QR spect	troscopy.						
• Learn	the prope	rties like	g-factor,	nuclear sp	oin, hyper	rfine coup	ling cons	tants.				
						and photo		spectrosc	opy.			
Course						nt will be						
CO1	To know about TG and DTA and applications of different scanning calorimetry.											
CO2	To gain knowledge on Doppler shift and chemical shift, basic principles and applications of NQR spectroscopy.											
CO3	To learn		ld splittin	g and Kra	amer's de	generacy,	relaxatio	n process	es, instru	mentation	and appl	lications
CO4			photoele spectrosc		ct and Ko	oopmans	theorem	and impa	rt the app	olications	of X-ray	and UV
			Mapp	ing of cou	irse outc	omes wit	h the pro	gram ou	tcomes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	-	2	1	1	-	2	2	1
CO2	3	2	2	3	2	2	-	2	1	2	2	-
CO3	3	2	2	3	2	2	1	2		2		1
CO4	3	2	2	3	2	-	-1		2	-	2	1

CHE-AC- 301: Inorganic Spectroscopy and Thermal Methods of Analysis

UNIT -I: THERMAL METHODS OF ANALYSIS

Thermo gravimetry –Principle, Factors affecting the results, instrumentation. Application with special reference to $CuSO_45H_2O$, CaC_2O_4 2H₂O. Different thermal analysis – principle, instrumentation, difference between TG and DTA, applications with special reference to the clays and minerals.Different scanning calorimetry –principle, and applications to inorganic materials like chlorates and perchlorates, ammonium nitrate.

UNIT -- II: MOSSBAUER SPECTROSCOPY and NQR

Mossbauer spectroscopy: Basic principles, Recoil energy, Doppler shift, Chemical shift, Quadrapole effects, Magnetic effects. Instrumentation, spectral parameters and spectrum display.

Aapplication of the technique to the studies of (1) bonding and structures of Fe^{2+} and Fe^{3+} compounds, (2) Sn^{2+} and Sn^{4+} compounds.

NQR spectroscopy: Basic principles of NQR spectroscopy, quadrupole nuclei, quadrupole moments, electric field gradient, coupling constant and applications.

UNIT –III: ELECTRON SPIN RESONANCE SPECTROSCOPY

Basic Principles, Hyper fine splitting, Factors affecting the 'g' value. Isotropic and anisotropic hyperfine coupling constants, Hamiltonian and spin densities. Zero field splitting and Kramer's degeneracy, Relaxation process and line widths. Instrumentation and Applications. The EPR spectrum of bis(salicylidimine)-copper(II) complex, study of inorganic free radicals, biological applications of Electron Spin Resonance (Study of free radicals and Iron-sulfur proteins)

UNIT -- IV: PHOTO ELECTRON SPECTROSCOPY

Photoelectric effect, Koopmans's theorem, ionization energy.

X-ray photoelectron spectroscopy (ESCA): Principle, Binding energies, Chemical shift, Applications of XPES to Qualitative analysis, to surface studies and structural analysis. Ultraviolet photoelectron spectroscopy- Principle, application of UPES in studying the molecular orbitals of O_2 and N_2 molecules. Block diagram of photoelectron spectrophotometer. Sources of radiation, detectors. Auger spectra – Principle, Applications of Auger spectra to surface studies and use of Auger spectra as a finger print tool.

Books Suggested

1. F.A. Cotton and G. Wilkinson, Advanced In-organic chemistry VI Edition, 1999. John wiley & sons. Inc., New York.

15 Hrs

15 Hrs

15 Hrs

15 Hrs

- 2. J.E. Huheey, E.A. Keiter and R.L. Keiter: Inorganic Chemsitry, Principles of Structure and Reactivity (4th Ed.) (Addison-Wesley)
- 3. Gary Wulfsberg: Inorganic Chemistry (5th Ed. (Viva Books)
- 4. J.D. Lee: Concise Inorganic Chemistry (Blackwell)
- 5. W.L. Jolly: Modern Inorganic Chemsitry (McGraw-Hill)
- 6. R.L. Carlin: Magneto-chemsitry (Springer-Verlag)
- 7. R.L. Dutta and A. Syamal: Elements of Magnetochemsitry (Affiliate East-West).
- 8. K. Hussain Reddy Text book of Bioinorganic chemistry

CHE-A	C 302 Organic Spectroscopy and					plications	s L-:	5,T-1,P-0)	40	Credits		
Pre-rec	uisite: U	Understan	ding of O	rganic Sp	ectroscop	y and Ap	plications	5					
 Fam the r Und Stud Und 	nolecules erstand I y on the erstand tl	with the in	metry and ns of NM g principl	applicati R spectro e and frag	ons to asc oscopy in gmentatio	certain the ascertaini on rules of	e fundame ing the ste f different	ental grou preochemi	ps by obs ical struct	erving ab ures of th	sorption l e molecu	oands	
CO1	To get	experience ounds.	e to calcu	ılate λ ma	x values	for dienes	s, enones,	polyenes	, aromatic	and hete	eroaromat	ic	
CO2	To familiarize with the absorption bands of the molecules with specific functional groups												
CO3		erpret the are of the			· •		carbons p	resent in	a molecul	e so as to	ascertain	the	
CO4	To acq	uire knov	vledge ab	out specif	ic fragme	entation ru	lles of dif	ferent mo	lecules w	hich are ı	inique.		
			Марр	ing of co	urse outc	omes wit	h the pro	gram ou	tcomes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	2	3	2	2	2	-	1	2	2	1	
CO2	3	2	2	3	2	2	-	2	-	2	2	-	
CO3	3	2	2	3	2	2	1		2	2	2	2	
CO4	3	2	2	3	2	2	1	2	-	2	2	-	

CHE 302: CORE THEORY: ORGANIC SPECTROSCOPY AND APPLICATIONS UNIT-I: ULTRAVIOLET AND VISIBLE SPECTROSCOPY: 15Hrs

Various electronic transitions (185-800 nm), effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, conjugated polyenes. Fisher-Woodward rules for conjugated dienes and carbonyl compounds, ultraviolet spectra of aromatic and heterocyclic compounds. Steric effect in biphenyls.

UNIT – II: INFRARED SPECTROSCOPY

Instrumentation and sample handling. Characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ether, phenols and amines. Detailed study of vibrational frequencies of carbonyl compounds (ketones, aldehydes, esters, amides, acids, anhydrides, lactones, lactams and conjugated carbonyl compounds). Effect of hydrogen bonding and solvent effect on vibrational frequencies, overtones, combination bands and fermi resonance, FT-IR

15Hrs

15Hrs

UNIT -III: NMR SPECTROSCOPY:

¹H NMR spectroscopy: Magnetic properties of nuclei, Principles of NMR. Instrumentation, CW and pulsed FT instrumentation, equivalent and nonequivalent protons, enantiotopic and diastereotopic protons, Chemical shifts, factors affecting the chemical shifts, electronegativity and anisotropy, shielding and deshielding effects, Signal integration, Spin-spin coupling: vicinal, germinal and long range, Coupling constants and factors affecting coupling constants.

Applications of ¹H NMR spectroscopy: Reaction mechanisms (cyclic bromonium ion, electrophilic and nucleophilic substitutions, carbocations and carbanions), E, Z isomers, conformation of cyclohexane and decalins, keto-enol tautomerism, hydrogen bonding, proton exchange processes (alcohols, amines and carboxylic acids), C-N rotation. Stereochemistry, hindered rotation, Karplus curve variation of coupling constant with dihedral angle. Simplification of complex spectra, nuclear magnetic double resonance, contact shift reagents, nuclear Overhauser effect (NOE).

¹³C NMR spectroscopy: General considerations, chemical shift (aliphatic, olefinic, alkyne, aromatic, heteroaromatic and carbonyl carbon), coupling constants. Two dimensional NMR spectroscopy-COSY.

UNIT-IV: MASS SPECTROMETRY

Introduction, ion production, type of ionization, EI, CI, FD, and FAB-factors affecting fragmentation, ion analysis, ion abundance. Mass spectral fragmentation of organic compounds, common functional groups, molecular-ion peak, metastable peak, Mc. Lafferty rearrangement. Nitrogen rule, isotope labeling. High resolution mass spectrometry, Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.

Books suggested:

- 1. Organic spectroscopy, W. Kemp 5th Ed, ELBS
- 2. Spectroscopy of organic compounds, RM Silversteen and others, 5th Ed, John Wiley
- 3. Spectroscopy of organic compounds, P.S. Kalsi, Wiley, 1993.
- 4. NMR in chemistry-A multi nuclear introduction, William Kemp, Mc Millan, 1986.
- 5. Spectroscopic methods in Organic chemistry, DH Williams & I Flemmi

15Hrs

CHE A 304	C 303 &		Core-Practical:L-5,T-1,P-04 CredClassical Methods of Analysis							Credits		
Pre-req	uisite: U	nderstan	ding of A	nalytical	Chemistr	y- Practic	cal.					
Course	Objectiv	'es:										
	-		nthesis of	inorgani	c complex	xes.						
• Ana	lysis of or	res, alloy	s and wat	er.								
			n working									
Estir	nation of	metal io	ns by com	plex met	ric and co	olorimetr	ic metho	1.				
Course	Outcom	es: At th	e end of th	ne course,	, the stude	ent will b	e able					
CO1	To know	the basi	ic principl	es of inst	rumental	methods	of analys	sis.				
CO2	To gain	knowled	ge on che	mistry of	alloys.							
CO3	To Unde	erstand th	ne comple	xity, theo	ry and wo	orking pr	inciple o	f colourim	etry			
CO4	To famil	iarize w	ith laws of	f colorime	etric titrat	ions.						
			Mapp	ing of co	urse outo	comes w i	ith the p	rogram o	itcomes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	1	3		2	3	2	1	-	1	-
CO2	3	2	2	3	2	2	3	2		1	1	2
CO3	3	2		3	-	2	-	2	1	2	-	-
CO4	3	2	2	3	2	-	1	2	2	1	1	2

CHE -AC -303: Core-Practical Classical Methods of Analysis PRACTICAL -I

Analysis of ores and alloys:

- a) Brass/Bronze
- b) Cement
- c) Illmenite/Chalcopyrite
- d) Dolamite
- e) Copper and Nickel alloy

II. Water Analysis:

1.

- a) Determination of dissolved Oxygen
- b) Determination of BOD of Waste water
- c) Determination of COD of Waste water
- d) Hardness of Water
- e) Chloride, sulphates, carbonates and bicarbonates.

CHE AC 304 Core-Practical PRACTICAL -II -Instrumental methods of analysis

- 1. Colorimetric Determinations:
 - a) Determination of manganese
 - b) Determination of nickel
 - c) Determination of iron by 1,10 Pheren-thiroline
 - d) Determination of chromium
 - e) Determination of Phosphate
 - f) Determination of Pesticides
 - g) Determination of Nitrite.

CHE-A(C-305A		Or	ganic Ch	emistry	III	I	L-3,T-1,P	-2	40	Credits	
Pre-rec	quisite: U	Inderstand	ling of Or	rganic Ch	emistry							
Course	Objecti	ves: Cour	·se Objec	tives:								
					ent reage	nts in orga	anic syntł	nesis, Me	chanisms	and stere	ochemistr	у.
		-	-		-	of organo	-					-
• Und	erstand to	opocity, p	rochiralit	y, auxilla	ry and rea	igent-cont	rolled me	ethods in a	asymmetr	ic synthe	sis.	
• App	lications	of differ	ent oxidiz	zing and	reducing	agents ir	organic	synthesi	s with re	gion and	stereo co	ontrolled
	lucts.			-	-	-	-					
Course	Outcom	es: At the	end of th	ne course,	the stude	ent will be	able to					
CO1 CO2	 To familiarize with the specific functions of the reagents particularly diazomethane, N-bromosuccinimide, Ziegler Natta catalyst, 1,3-dithianes and Merrifield resin in the synthesis of a variety of complex molecules. To gain knowledge in the synthesis of different organometallic reagents and also stereo and regio specificity 											
	and se	lectivity c	of reaction	is with or	ganometa	llic reage	nts					
CO3	To uno	derstand d	iastereose	electivity,	stereosel	ectivity a	nd substra	ate contro	lled auxil	lary contr	colled read	ctions
CO4	To ac	quire kno	wledge a	bout the	reagents	which c	auses oxi	idation ir	various	compour	nds and a	also the
	reagen	ts that cau	ises selec	tive and c	omplete 1	reductions	s to synthe	esize vari	ous comp	ounds.		
			Марр	ing of co	urse outc	omes wit	h the pro	ogram ou	tcomes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	2	2	1	2	1	2	2	1
CO2	3	2	2	3	2	2	1	2	1	-	2	1
CO3	3	2	2	3	2	2	-	-	1	1	2	-
CO4	3	2	2	3	2	2	1	2		2	2	1

CHE-AC-303A Core-Theory Organic Chemistry III

UNIT I: REAGENTS IN ORGANIC SYNTHESIS

Use of the following reagents in organic synthesis: Anhydrous AlCl₃, Boran trifluoride, N-Bromosuccinimide, Diazomethane, Dicyclohexylcarbodiimide, Lead tetraacetate, Zieglar-Natta catalysts, DDQ, Dithianes, Merrifield resin.

UNIT-II: ORGANOMETALLIC REAGENTS

Synthesis and applications of Grignard reagents, Organolithium, Zinc, Copper, Mercury, Palladium and Rhodium compounds in Organic Synthesis, Homogeneous catalytic hydrogenation and hydroformylation reactions

UNIT III: ASYMMETRIC SYNTHESIS

Topocity - Prochirality- Substrate selectivity - Diastereoselectivity and enantioselectivity-Substrate controlled methods-use of chiral substrates - examples

Auxiliary controlled methods-Use of chiral auxiliaries-Chiral enolates-alkylation of chiral imines - Stereoselective Diels-Alder reaction

Reagent controlled methods-Use of chiral reagents-Asymmetric oxidation-Sharpless epoxidation-Asymmetric reduction-Use of lithium aluminium hydride and borate reagents.

UNIT IV: METHODS OF ORGANIC SYNTHESIS

i). Oxidations: (a) Alcohols to carbonyls-Chromium (iv) oxidants-Dimethylsulfoxide oxidation, periodate xidation, Oppenauer oxidation, oxidation with manganese dioxide, oxidation with silver carbonate (b) Alkenes to epoxidesperoxide induced epoxidations. (c) Alkenes to diols-oxidation with potassium permanaganate, osmium tetraoxide, Prevost reaction (d) Ketones to esters-Bayer-Villiger oxidation (e) Oxidative bond cleavage-cleavage of alkenes by transition metals. (f) Oxidation of alkyl or alkenyl fragments-selenium dioxide and chromium trioxide oxidations.

ii). Reductions : Reduction with lithium aluminium hydride, sodium borohydride, alkoxides, bis- methoxy ethoxy aluminium hydride, Boran aluminium hydride and derivatives-catalytic, hydrogenation-dissolving metal reductions, Non-Metallic reducing agents including enzymatic and microbial reductions.

15 Hrs

15 Hrs

15 Hrs

15 Hrs

Suggested Books

- 1. Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, John Wiley.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J. Sundberg, Plenum.
- 3. Structure and Mechanism in Organic Chemistry, C.K. Inglod, Cornell University Press.
- 4. Organic Chemistry, R.T Morrison and R.N. Boyd, Prentice Hall.
- 5. Name reactions and reagents in organic synthesis, B.P. Muway and M.G Ellord, John Wiley.
- 6. Principles of Organic Synthesis, R.O.C Norman and J.M Coxon, Blackie Academic & Professional.
- 7. Reaction Mechanism in Organic Chemistry, P.S. Kalsi, New Age International.
- 8. Principles of organometallic chemistry, P. Powell, ELBS.
- 9. Organo transition metal chemistry-Applications to organic synthesis, S.G. Davis, Pergmon.
- 10. Stereochemistry to Organic Compounds, D. Nasipuri, New Age International.
- 11. Stereochemistry, P.S. Kalsi, Wiley Eastern.

CHE-A	C-305B		Ph	ysical Ch	emistry	III	L-:	5,T-1,P-0		40	Credits		
Pre-ree	quisite: U	nderstand	ing of gra	iduate lev	el Physic	al Chemis	stry						
Course	e Objectiv	es:											
	rn applicat		-		2								
	olications o	•							•	D			
	niliarize w knowledg												
	itions		leept of	Thermou	ynamies	or porym	CI 013301		1 101 y-11	uggins u	leory of	porymer	
Course	e Outcome	s. At the	end of th	e course	the stude	nt will be	able to						
Course													
CO1	To know the determination of Character Co-ordinate of C_2V point group based on 3N Coordinates and to learn the Mutual exclusion Principle.												
CO2				1	T 1'	r d	1.D	.1 1			.1 1 0	N	
CO2	structural				Indices-	Laue met	nod, Brag	g method	, Debye S	Scherrer r	nethod of	X-ray	
CO3					k effect. v	vibration-	otation s	pectrosco	ov. POR	branches.	selection	rules	
000	and V	ibrationa	l- rotatior	nal Ramar	n spectros	copy.							
CO4							ution theo	ory, Hilde	brand sol	lubility pa	rameter,		
	concept o	of Flory-F	iuggins tr	leory of p	orymer so	olutions							
			Mappi	ing of cou	irse outc	omes wit	h the pro	gram out	comes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	2	3	-	2	1	-	2	1	2	1	
CO2	3	2	2	3	2	2	2	1	-	2	-	2	
CO3	3	2	2	3	2	2	1	-	2	-	2	2	
CO4	3	2	2	3	_	2		2	_	2	_	2	

CHE-AC-303B CORE-THEORY PHYSICAL CHEMISTRY III oup Theory 15 Hrs

UNIT-I Applications of Group Theory

Construction of reducible and irreducible representations, Determination of Character Coordinate of C_2V point group based on 3N Coordinates. Standard reduction formula, Determination of normal modes of vibrations of SO₂, NH₃, POcl₃, Ptcl₄²⁻ 'H₂O₂ molecules. Mutual exclusion Principle, Direct Product, Accidental Degeneracy and Fermi resonance Group Theory and Spectroscopy: IR Spectral activity of NH₃ molecule, selection rules, symmetry Criteria for optical activity, symmetry restrictions on dipole moments, symmetry and stereo isomerism. Prediction of IR and Raman Spectral activity of H₂O and CO₂.

UNIT-II: X-ray Diffraction:

(A) Solid State Chemistry: Dislocation of Solids, Schottky and Frenkel defects, insulaters, a, d semiconductors, Band theory of solids, solid state reactions.

(B) Bragg conditions-Miller Indices- Laue method, Bragg method, Debye Scherrer method of X-ray structural analysis of crystals. Index reflections, identification of unit cells from systematic absences in diffraction pattern- structure of simple lattices and X-ray intensities- structure factor and its relation to intensity and electron density- Description of procedure for X-ray structure analysis (NaCl and KCl)

(C) Electron Diffraction: Scattering intensity Vs scattering angle, Wierlequation, and its importance. Measurement techniques, Elucidation of structures of simple gas phase molecules, Low energy electron diffraction (LEED) for the study of surfaces.

UNIT-III: SPECTROSCOPHY

Microwave spectroscopy: classification of molecules, rigid rotator model, effect of isotopic substitution on the transition frequencies, intensities- stark effect.

Infrared spectroscopy: Linear harmonic oscillator, zero point energy, anharmonity, Mores potential energy diagram, fundamental and overtone transitions, hot bands and combinations bands. Vibration-rotation spectroscopy, PQR branches, selection rules, factors affecting the band positions and intensities for IR region. **Raman spectroscopy:** Classical and quantum theories of Raman effect, pure rotational, pure vibrational Raman spectroscopy, selection rules, mutual exclusion principle, resonance Raman spectroscopy and coherent antistokes Raman spectroscopy. Vibrational- rotational Raman spectroscopy.

UNIT-IV: POLYMER SOLUTIONS

15 Hrs

Thermodynamics of polymer dissolution, effect of molecular weight on solubility, solubility of crystalline and amorphous polymer, heat of dissolution, regular solution theory, Hildebrand solubility parameter, Flory-Huggins theory of polymer solutions, conformational entropy, osmotic pressure and viscosity of polymer solutions. Molecular weight determination by light scattering, ultra-centrifugation and sedimentation equilibrium method. Liquid Crystals- synthesis and applications

Books Suggested

- 1. F.A. Cotton : Introduction to Group theory for chemists.
- 2. Geroge Davidson Elsevier : Introductory Group Theory for Chemists.
- 3. Gurdeep Raj, Ajay Bhagi&Vinod Jain : Group Theory and Symmetry in Chemistry
- 4. Instrumental methods of analysis M.H. Willard, Meritt Jr. and J.A. Dean
- 5. Principles of instrumental analysis Skoog and West
- 6. F. W. Billmeyer, Jr.: Text Book of Polymer Science. Wiley Interscience.
- 7. V. R. Gowariker, N. V. Viswanathan, Jayadev Sreedhar: Polymer Science. New Age international Publishers.

CHE AC 306Spectral TechniquesL-5,T-1,P-04 CreditsPre-requisite: Understanding of Spectral Techniques														
Pre-re	quisite: U	Jndersta	nding of	Spectral '	Techniqu	ies								
 Course Objectives: Familiarize with the instrumentation of UV and visible spectroscopy, applications of identifying the structures of the molecules. Understand IR spectrometry and applications to ascertain the fundamental groups by observing absorption bands. Study on the applications of flame atomic absorption spectroscopy. Understand the working principle and fragmentation rules of different molecules in Mass spectroscopy. 														
	Course Outcomes: At the end of the course, the student will able													
CO1				-		•								
CO2														
CO3	To Under	rstand th	e applica	tions of A	AAS.									
CO4	To gain k	mowledg	ge about	Mass sp	ectral fra	gmentation	of orga	anic compo	unds and	common f	unctional	groups.		
			Maj	oping of	course o	utcomes w	ith the	program o	utcomes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	1	-	3	-	2	3	2	1	-	1	2		
CO2	3	2	2	3	2	2	3	2	-	1	-	2		
CO3	3	2	-	2	2	-	2		1		1	1		
CO4	3	2	2	3	-	2	-	1	-	1		2		
			CHE A	0 200		DU DI DO		SPECTRA		NILOURO				

CHE : AC : 306(A): (OPEN ELECTIVE) SPECTRAL TECHNIQUES

UNIT - I: ULTRAVIOLET AND VISIBLE SPECTROSCOPY

Various electronic transitions (185-800nm.), Beer-Lambert Law, effect of solvent on electronic transitions , ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, Fieser-Woodward rules for conjugated dienes and carbonyl compounds

UNIT - II : INFRARED SPECTROSCOPY

Instrumentation and sample handling, characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ethers, phenols, amines, ketones, aldehydes, esters, amides, acids and anhydrides. Effect of hydrogen bonding.

UNIT - III:ATOMIC ABSORPTION SPECTROSCOPY: FLAME AAS:

Principle, Instrumentation - Sources of radiation (HCL and EDL), Different types of burners, Interferences- Physical, Chemical, spectral and back ground correction, and methods of minimization

GF AAS: Principle and technique -Comparison between Flame AAS and furnace AAS, Applications of AAS, Comparison between Atomic Absorption & Flame Photometry.

UNIT -IV: MASS SPECTROMETRY

Principle, instrumentation, different methods of ionization, EI, CI, FD and FAB, Mass spectra-molecular ion, base peak, meta-stable peak, nitrogen rule and Mc Lafferty rearrangement. Mass spectral fragmentation of organic compounds and common functional groups. Normal and branched alkanes, alkenes, cycloalkanes, benzene and its derivatives, alcohols and phenols, ethers, aldehydes and ketones, carboxylic acids and their derivatives, amines and nitro compounds. Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.

15 Hrs

15 Hrs

15 Hrs

- 1. Organic spectroscopy, W. Kemp 5th Ed, ELBS .2.
- 2. Spectroscopy of organic compounds, RM Silversteen and others 5th Ed, John Wiley 1991
- 3. Spectroscopy of organic compounds, PS Kalsi, Wiley, 1993
- 4. NMR in chemistry A Multi nuclear introduction, William Kemp, Mc Millan 1986
- 5. Spectroscopic methods in Organic Chemistry, DH Williams & I Flemmi TMH . 2005

CHE A	C 306	Chro	omatogra	phic Tec	hniques		L-:	5,T-1,P-0		40	Credits	
Pre-req	uisite: U	nderstand	ing of gra	duate lev	el Chrom	atographi	c Technio	ques				
Course	Objectiv	es:										
amiliarize	e with Cla	ssificatio	n of Chro	matograp	hic metho	ods.						
• Und	erstand D	emonstra	tion expe	riment in	TLC.							
	ly on the a						natograpl	ny (HPLC	^c).			
• Und	erstand th	e workin	g principl	e of gas c	hromatog	raphy.						
Course	Outcome	es: At the	end of th	e course,	the stude	nt will ab	le to					
	_											
CO1	To know	the statio	onary and	mobile p	hases in c	chromatog	graphic te	chniques.				
CO2	To famil	iarize app	olications	of differe	nt chrom	atographi	c method	s.				
CO3	To Unde	rstand the	e principle	e of chror	natograph	nic technio	ques.					
CO4	To gain l	nowledg	e on the r	normal ph	ase and r	everse ph	ase.					
	-	_	Mappin	g of cour	se outcor	nes with	the prog	ram outc	omes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1
												2
CO1	3	-	2	3	-	2	3	2	1	1	1	1
CO2	3	2	2	3	2	2	3	2	1	1	-	2
CO3	3	2	1	2	2	-	2		2	-	1	1
CO4	3	2	2	3	1	2	-	1	-	1	-	2

CHE AC 306 : Chromatographic Techniques

Unit –**I**: Introduction - Classification of Chromatographic methods – Column chromatography-Adsorption phenomenon: Nature of adsorbents-Solvent systems-Differential migration-Separation of mixture of o-/p-nitro anilines (A demonstration experiment).

Unit –**II:** Thin-Layer Chromatography (TLC)-Coating materials and preparation of TLC plates- Solvents for development-Detection of compounds in TLC- R_f values in TLC-Applications of TLC in chemistry-Preparative TLC – Demonstration experiment in TLC.

Unit –III: High-Performance Liquid Chromatography (HPLC) - Application of HPLC- HPLC instrument-Stationary phases in HPLC-Normal and reversed phase HPLC: A comparison- Normal phase HPLC: Principle-Retention times in Normal and reversed phase HPLC: Principle.

Unit –IV: Gas-Liquid Chromatography- Instruments for Gas-Liquid Chromatography- Gas-Chromatographic Columns and the Stationary Phase- Application of Gas-Liquid Chromatography- Gas-Solid Chromatography.

Reference Books:

- 1. Analytical chemistry: G L David Krupadanam, D. Vijaya prsad, K. Varaprasad Rao, KLN Reddy, C. Sudhakar.
- 2. Analytical chemistry: Skoog West Holler.
- 3. Modern Analytical Chemistry : David Harvey DePauw University.
- 4. J.G. Dick. Analytical Chemistry, Mc Grraw Hill, New Delhi, (1973).

CHE-	AC- 401	Q	uality Co	ntrol and	l Genera	l Principl	es L-:	5,T-1,P-0		4	Credits	
Pre-req	uisite: Un	derstand	ing of Qu	ality Con	trol and C	General P	rinciples					
	Objective											
	on quality											
	n practice of											
	stand stan	dard red	uction po	otential, n	nechanisr	n of com	plex form	nation rea	actions. I	Enzyme cl	haracteris	tics and
applic					1 1			1.4	1	• .•, .•	41 FI	
	on Equilib							a the com	plexomet	ric titratio	n with El	JIA.
-	Outcome							1 .	1 1			1
CO1	To diagno	ose probl	ems in th	e quality	improven	nent proce	ess and E	xplain eac	h total q	uality imp	lementati	on phase
CO2						organic r	-		-			
CO3	To unders	stand dif	ferent typ	es of kine	etic metho	ods and th	eir evalua	ation and	to determ	ine the ki	netics of	enzyme
CO4			e oxidatio	on reactio	ons with	Ce (IV) s	sulphate	solutions	and app	lications of	of comple	xometric
	titrations.											
-			Mappi	ing of cou	irse outc	omes wit	h the pro	gram out	comes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	1	2	2	2		2	2	-
CO2	3	2	2	3	1	2	1	2	2	2	-	2
CO3	3	3	3	3	2	2	2	-	2	1	1	1
CO4	3	3	3	3	1	-	1	-	2	1	-	1

CHE AC 401: CORE THEORY: QUALITY CONTROL AND GENERAL PRINCIPLES

UNIT-I: QUALITY CONTROL IN ANALYTICAL CHEMISTRY 15 Hrs

Definition of analytical terms: Accuracy, precision, limit of detection, sensitivity, selectivity and specificity, ruggedness, principles of Ruggedness test, validating the Method as a Standard Method.

Quality assurance and management systems: Elements of quality assurance, Quality and quantity management system ISO 9000 and ISO 14000 series.

Good laboratory practices (GLP): Elements of Good Laboratory Practice, Laboratory accreditation, GLP status in India.

UNIT-II: ORGANIC REAGENTS IN INORGANIC ANALYSIS

Theoretical basis for the use of organic reagents in inorganic analysis: Application of the following reagents in inorganic analysis: dimethylglyoxime, salicylaldehyde, cupferron, d-benzoin, 1,10 phenanthroline, 8-hydroxy quinoline, nitron, tannin, pyridine, 8-hydroxyquinoldine, dithizone, Acetylacetone, theonyl, trifluoroacetone, 8-hydroxy quinoline, tri-Moctylphosphine oxide.

UNIT – III: KINETIC METHODS OF TRACE ANALYASIS

Rate laws, Analytical use of reaction rates, First and second order reactions, relative rate of reactions. Determination of reaction rates. Analytical utility of first and pseudo first order reactions. Types of kinetic methods, differential, integral, logarithmic, extrapolation method. Evaluation of kinetic methods – Scale of Operation, Catalyzed reactions, measurement method for catalyzed reaction. Micro determination of Inorganic species like Iodine and Hg in complex materials. Determination of organic species. Kinetics of enzyme, catalyzed reactions. Michael's constant factors affecting the rate of enzyme, Catalyzed reactions, Enzyme characteristics and applications of Kinetic methods of trace analysis.

UNIT-IV:REDOX AND COMPLEXOMETRIC TITRATIONS:

Redox Titrations: Standard reduction potential, equilibrium constants of oxidation-reduction reactions, change of electrode potential during the titration of reductant with an oxidant. Formal potential primary standard substance. Standard solutions. Preparation and storage. Oxidations with cerium (IV) sulphate solutions. Theory and use of (i) acid-base, (ii) Oxidation-reduction (iii) Metal ion indicators.; **Complexometric titrations:** Introduction, complexones, stability constants of EDTA complexes, conditional stability constants, titration curves, types of EDTA titration's, titration of mixtures.

15 Hrs

15 Hrs

- 1. Vogel's Text book of Quantitative Chemical Analysis, Basselt, Denmy, Jaffery and Merdhan, ELBS, Orientlong-Manan, 5th Ed.1990.
- 2. Analytical Chemistry, Gary D. Christian, John Laliley and Senes, New York, 6th Ed., 2007.
- 3. Fundamentals of ANALYTICAL CHEMISTRY, Skoog, West, Holler; 7th Editin 2001
- 4. Fundamentals of Analytical Chemistry, D.A. Skoog & D.M. West, Holf-Saunderrs, 5th Ed., 1991.
- 5. Principles and Methods Chemical Analysis: H.F. Walton, Prentice Hall, New Delhi.
- 6. Chemical Analysis, H.A. Laitinan, Mc.Graw Hill Book Company.
- 7. Technical methods of analysis Griffin, Mc Graw Hill Book Co.
- 8. K.V.S.G Murali Krishna, An Introduction ISO 9000, ISO 1400 Series,
- 9. Environmental Management Quality Assurance and Good Laboratory Practices, Prof. Y. Anjaneyulu, In Now Publication, New York.
- 10. Quality Assurance in Analytical Chemistry G.Kateman and F.W Pijpers, John Wiley and Sons, New York

CHE-A	C 402	:]	Instrume	ntal Metl	hods of A	alysis	L-	5,T-1,P-()	40	Credits	
Pre-req	uisite: 1	Understan	ding of Ir	strumenta	al Methoo	ls of Ana	lysis					
Cour	se Objec	ctives:										
•	Gain sou	ind know			opic metl	hods of I	CP-AES,	ICP-MS	, x-ray fl	uorescene	ce, spectr	oscopic
	1	es and the										
						mance L	iquid Chr	omatogra	phy, Cap	illary Ele	ectrophore	esis and
		ical Fluid				dionizati	00 001100		15 and I (TMS		
• Familiarise with instrumentation, resolution and ionization sources of GCMS and LCMS.												
Course Outcomes: At the end of the course, the student will be able to												
				-								
CO1									s of ICP			energy
600									fluorescen			T · · 1
CO2									of the H : Capilla			
		critical Fl					latograph	y (GFC)	. Capina	Ty Election	ophoresis	s (CE),
CO3						applica	tions of (GCMS in	n drug an	alysis an	d enviro	nmental
		es analysi				11			U	5		
CO4	To im	prove the	knowled	e about c	oulometr	ic technio	ues and t	their anal	ysis of cat	tions (As	(III). Fe (II)) and
	anions	s (I ⁻ and S	²⁻) by usir	ng I ₂ liber	ations and	d Ce ⁴⁺ lib	eration in	solutions) 	((), (
			Марр	ing of co	urse outc	omes wit	h the pro	ogram ou	tcomes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
					103			108			TOTT	
CO1	3	2	2	3	-	2	2	-	2	1	-	1
CO2	-	-	3	3	3			1	-		1	1
CO3	3	3	3	3	3	2	1	2	1	1	1	3
CO4	3	3	2	2	-	2	2	-	1 OF ANAI	1	1	3

CHE-402: CORE THEORY: INSTRUMENTAL METHODS OF ANALYSIS UNIT –I SPECTROSCOPIC METHODS 15 Hrs

Emission Spectroscopy:

(i) ICP-AES: Principles, instrumentation, AES detectors, applications in the analysis of trace and toxic metals in water, geological and industrial samples.

(ii) ICP-MS: Principles, instrumentation, quadrupole mass spectrometers, applications

Fluorescence Spectroscopy:

i) **Molecular Fluorescence Spectroscopy:** Principle, Theory of fluorescence, phosphorescence, relation between intensity of fluorescence and concentration, Correlation of fluorescence with molecular structure, Fluorescence quenching, Instrumentation and applications.

ii) X-ray Fluorescence Spectroscopy: Principle, energy dispersive X-ray fluorescence (EDXRF), Wavelength dispersive X-ray fluorescence (WDXRF), applications.

UNIT - II: CHROMATOGRAPHIC METHODS

High Performance Liquid Chromatography (HPLC): Principles, Stationary phases, Instrumentation, Solvent delivery system, sample introduction, gradient elution, columns and detectors.Partition Chromatography, adsorption chromatography, Gel permeation chromatography.

Capillary Electrophoresis: Principle, Electroosmotic flow, Instrumentation, Applications to separation of small ions, separation of Molecular Species, DNA sequencing

Supercritical-fluid chromatography: Supercritical-fluids, Instrumentation and Applications

UNIT –III: HYPHENATED TECHNIQUES

Mass Spectroscopy: Principle, basic instrumentation, resolution, Ionization sources- Electron impact and Chemical ionization, Mass Analyzers- Quadrupole Mass analyzer and Time- of- Flight Analyzer.

Gas Chromatography- Mass spectrometry: Introduction, GC – MS interface, processing of GC – MS data – ion chromatogram. Quantitative measurement – sample preparation, Selected ion monitoring – Application of GC-MS for Trace constituents. Drugs analysis, Environmental analysis and others.

Liquid chromatography- Mass spectrometry – Introduction – Instrumentation – liquid chromatography – Mass spectrometer Interface – Instrumental details – Processing LC-MS data – ion chromatograms, Sample preparation – selected ion monitoring. Application of LC-MS for Drug analysis, Environmental samples and others.

15 Hrs

UNIT- IV: ELECTRO ANALYTICAL METHODS

15 Hrs

Anodic stripping voltametry: principle, instrumentation, Hanging mercury drop electrode, application in the analysis of Pb and Cd in environmental samples, principle of cathode stripping voltametry.

Coulometric analysis: principles of coulometric analysis with constant current, coulometric analysis with controlled potential, applications of coulometric methods for the analysis of cations-As (III), Fe (II) and I- and S₂- by using I₂ liberations and Ce⁴⁺ liberation in solutions

Ion Selective Electrodes: types of ion selective electrodes, basic properties, potentials and construction, calibration of ion selective electrodes, ion selective electrodes with fixed membrane sites, silver, lead, cadmium, sulfide, fluoride, cyanide and glass electrodes, applications in the analysis of air and water pollutants, principles of liquid membrane, gas sensing and enzyme based electrode

- 1. Analytical Chemistry, Gary D. Christian, John Laliley and Senes, New York, 6th Ed., 2007.
- 2. Analytical Chemistry Principles and Techniques, I.G. Harge, Prentice Hall.
- 3. Principles of Instrumental analysis, D.A. Skoog and J.L. Loacy, W.B. Saunders.
- 4. Handbook of Instrumental Techniques for Analytical Chemistry, F. Serlie, Prentice Hall.
- 5. Vogels Text book of Quantitative Chemical Analysis, Basett, Denny Jebbary, 5th Ed. ELBs 1990.
- 6. Instrumental Methods of Chemical Analysis, Willard Merrit, Dean, Stella Jr 6th Edition.
- 7. Separation methods, M.N Sastri, Himalaya Publishing Company, Mumbai

CHE A	C 403		ore prac lytical C		- Practic	al	L-	5,T-1,P-0		4	Credits		
Pre-req	uisite: Ui	nderstand	ing of An	alytical C	Chemistry	- Practica	1.						
Course	Objectiv	es:											
					l flame pl		e analysis	of pestic	ide residu	ies			
					polarogra								
	Principle, instrumentation, determination of metal ions By AAS. Interpretation of NMR chemical shifts and hydrogen bonding.												
	Interpretation of NMR chemical shifts and hydrogen bonding. Course Outcomes: At the end of the course, the student will be able to												
				-									
CO1 L	nderstan	d the com	mon labo	ratory teo	chniques i	including	separatio	n techniq	ues				
CO2 P	olarograp	ohy, atom	ic absorpt	tion spect	roscopy i	n both em	ission an	d absorpt	ion mode				
CO3 (ain know	ledge on	impleme	ntation of	f gas chro	matograp	hy and H	PLC for s	eparation	of mixtu	res.		
CO4 F	amiliarizo	e with int	erpretatio	n of data	to structu	res by NM	AR.						
			Mappi	ng of cou	urse outc	omes wit	h the pro	gram ou	tcomes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	3	3	-	2	2	1	-	2	3	
CO2	3	3	3	3	2	2	1	2		2	-	3	
CO3	3	3	-	3		3	-	2	2	3	2	3	
CO4	3	-	3	1	3	2	2	-	1	2	-	3	

CHE AC 404: CORE PRACTICALS: <u>PRACTICAL – I-</u>

Instrumental methods of analysis- II

- 1. Flame Photometry: Determination of Na and K, Ca and Li in Water and Soil.
- 2. TLC/Paper chromatographic separation.
- 3. Determination of Pesticide residues by gas chromatographic method
- 4. Polarography: a) Determination of E ½ of Zn and Cd; b) Determination of amounts of Zn and Cd
- 5. Atomic Absorption Spectroscopy: Determination of transition metal ions (Cd, Cr, Cu, Pb, Zn etc.,) by AAS.
- 6. Separation of Metal ion by Solvent Extraction /Ion exchange.

II DEMONSTRATION EXPERIMENTS

- 1. IR Interpretation of IR spectrum of alcohols, ketones, aldehydes and other standard materials
- 2. AAS: Demonstration of AAS Determination of Zn, Cd, Pb, Mn, Fe and Ni in effluents using AAS.
- 3. Spectrofluorimetry estimation of quinine and fluoroscene
- 4. Ion selective electrodes estimation of F, S^{2-} and CN^{-} in effluents using ion selective electrode meter.
- 5. Polarography and Anode stripping voltametry
 - a). Polarography and Anode stripping voltametry behavior of Cd, Zn, Pb in a mixture.
- b). Determination of Pb and Cd in samples using Anode stripping voltametr
- 6. Gas chromatography- Determination of pesticides
- 7. HPLC- Determination of pesticides
- 8. NMR
- (a). Demonstration of NMR spectrometer and study of hydrogen bonding in a given alcohol or phenol.
- (b). Interpretation of NMR chemical shifts of ethyl benzene, ethyl alcohol
- 9. TGA, DTA, DSC Demonstration of TG, DTA and DSC and study of decomposition of calcium oxalate, calcium carbonate, copper sulfate, oxalic acid.
- 10. pH metry
 - (a). Determination of alkalinity in a colored effluent using pH metric end point.
 - (b). Determination of purity of commercial HCl, H_2SO_4 , H_3PO_4 and CH_3COOH using pH metric end point.

CHE AC	404			Project V	Vork		L-:	5,T-1,P-0		40	Credits	
Pre-requ	uisite: Pr	oject Wo	rk									
Course	Obiectiv	es:										
	•	tion of pr	oblem									
• A	Ability to	carry out	independ	lent chem	istry rese	arch with	competer	ncy in res	earch des	ign, data	gathering	
• Ii	nterpreta	tion and o	communic	cation of 1	research r	esults thre	ough scie	ntific pub	lications	and prese	ntations.	
• P	reparatic	on of diss	ertation									
Course	Outcome	es: At the	end of th	e course,	the stude	nt will be	able to					
CO1	Perform	experime	nts, colle	ction and	evaluatio	n of data.						
CO2	Interpret	ation of r	esults wh	ile adheri	ng to scie	ntific prir	ciples of	responsib	ole and et	hical beha	aviour.	
CO3	Analysin	g and con	npiling th	ne data an	d results i	in a chron	ological	order in th	ne form of	f dissertat	tion.	
CO4	Prenarati	on of dis	sertation									
001	reputut	on or all										
			Mappi	ing of cou	irse outco	omes wit	1 the pro	gram out	comes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	3	-	2	3	2	1	2	1	3
CO2	3	3	3	3	3	2	3	3	-	-	2	3
CO3	3	3	3	3	3	-	3	2	-	3	-	3
CO4	3	3	3	3	3	2		2	1	-	2	3

CHE AC 404: PRACTIAL II/ PROJECT WORK

CHE-A	C-405		Applied a	nd Envir	onmenta	al Aspect	s l	L-3,T-1,F	2-2	4	Credits			
Pre-re	quisite: (Jnderstan	ding of Er	nvironmer	ntal Aspe	cts								
Course	e Objecti	ves:												
			e on prepa	ration of	sampling	. decomp	osition, se	paration	and pre-co	oncentrati	on			
							als and ore							
			of fuels, al											
• Exp	pertise wit	th water q	uality mo	nitoring	-									
			e end of th		the stude	ent will b	e able to							
CO1	Have of	idea abo	ut prepar	tion of so	mnling	lecompo	sition, sep	aration	nd precon	centration	of metal	ions at		
COI	llave al		ut prepara		unphing, c	accompo	sition, sep	aration ai	ia precon	centration	l of metal	ions et		
CO2	Gain ex	Gain experience on agrochemicals and fertilizers and their analysis.												
00-	ouiii en	perience	on agroon	enneuis u		lors and t	nen unury	515.						
CO3	Have a	n idea on t	the analys	is of fuels	s, alloys a	ind explo	sives							
			•			1								
CO4	Experie	nce with	environm	ental pollu	ution moi	nitoring to	echniques							
			Марр	ing of co	urse outo	comes wi	th the pro	ogram ou	tcomes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	2	3	-	2	1	-	1	1	-	1		
CO2	3	3	3	3	3	2	-	1	1	1	1	1		
CO3	3	3	3	3	3	2	1	2	2	1	1	3		
					1									

CHE : AC 403(A): (GENERIC ELECTIVE) APPLIED AND ENVIRONMENTAL ASPECTS UNIT-I: SAMPLING AND SEPARATION METHODS 15 Hrs

Preparing the sample for analysis: Sampling, The effect of sampling uncertainties, Gross sample, determination of the size of the gross sample. Analytical sample. Preparation of laboratory sample from gross sample, Moisture in the sample, Karl-Fisher reagent for the determination of moisture content in samples.

Decomposition and dissolving the sample: Decomposition of sample by fluxes, wet digestion, dry ashing, combustion with oxygen, microwave decomposition.

Separation and pre-concentration: Extractive separation of metal ions as chelates (dithizone, oxine, APDC, NaDDTC), Solid-phase extraction

UNIT-II: ANALYSIS OF AGRO CHEMICALS and MINERALS

Soil analysis: Soil moisture, pH, total nitrogen, Phosphorus, silica, boron and metals (Cd, Cu, Fe, Mn, and zinc) in soil. **Fertilizer analysis:** Analysis of Ammonical fertilizers, Phosphate fertilizers, Nitrate fertilizers

Pesticide Analysis: Analysis of organo chlorine pesticides by gas chromatography, Determination of DDT residue in vegetable and food grains. Analysis of organo phosphorous pesticides (Malathion, parathion) by spectrophotometric and chromatographic methods.

Analysis of Minerals and Ores: Limestone, Ilmenite, Chalcopylites and Beryl. Analysis of Cement, Ceramics and glass.

UNIT-III: ANALYSIS OF COMPLEX MATERIALS

Analysis of Fuels: Coal, proximate and ultimate analysis, heating valves and grading of coal.

Liquid Fuels: Flash point, aniline point, octane number and carbon residue.

Analysis of Gaseous Fuels: Producer gas, Water gas, Calorific values

Analysis of alloys: German Silver, Brass, bronze, Solder, Steels containing elements such as Mo, Co, V, Cr, Si and Ni.

Aanalysis of Explosives: Introduction, Classification, Deflagrating or low explosives, Characteristics of explosives, Nitrocellulose, PETN or PENTHRIT, Di-nitrobenzene (DNB), Trinitrobenzene (TNB), Trinitrotoluene (TNT),

UNIT – IV: ENVIRONMENTAL POLLUTION MONITORING:

Water Quality monitoring: Methods of water sample collection, Determination of Dissolved oxygen (D.O), Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand(COD)

Analytical methods for the determination of the following ions in water:

Anions: F⁻, PO₄³⁻, NO₃⁻, NO₂⁻Cations: Cr⁶⁺, As⁵⁺, Pb²⁺, Hg²⁺, Cd²⁺

Air Quality Monitoring: Air sampling methods, Chemical analysis of the following Air pollutants. i) Gaseous pollutants: Carbon monoxide (CO). sulphur dioxide (SO₂), nitrogen dioxide (NO₂), Aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (PAH). (ii) Particulate matter

Books Suggested

1. Analytical Chemistry, Gary D. Christian, John Laliley and Senes, New York, 6th Ed., 2007.

- 2. Fundamentals of ANALYTICAL CHEMISTRY, Skoog, West, Holler; 7th Editin 2001.
- 3. Analytical Chemistry Principles and Techniques, I.G. Harge, Prentice Hall.
- 4. Principles of Instrumental analysis, D.A. Skoog and J.L. Loacy, W.B. Saunders.
- 5. Fundamentals of Air Pollution by A.C. Strem and others, Academic Press, 1975.
- 6. Standard methods for the examination of water and waste water published by American public health association, 15th Ed.1981.
- 7. Methods of Soil Analysis, C.A. Black, Part I and II.
- 8. Handbook of Analytical Control of Iron and Steel Production, Harrison John Weily 1979
- 9. Standard methods of Chemical Analysis, Welcher.
- 10. Technical Methods of Analysis, Griffin, Mc Graw Hill.
- 11. Environmental Chemistry, Anil Kumar De, Wiley Eastern Ltd.

15 Hrs

15 Hrs

CHE-A	C-406				ic, Bioorg Chemist		L-:	5,T-1,P-0		40	Credits			
Pre-re	quisite: U	nderstand					ohysical (Chemistry	, I					
Cours	e Objectiv	ves:												
•	Highlight													
٠		-		0		·	1			s in biolog				
•	Learn phy	-			•	-	•			-	•			
٠	The basic	concepts	of bioph	ysical che	emistry in	biochemi	cal reacti	ons, exer	gonic and	l endergoi	nic reaction	ons.		
Cours	rse Outcomes: At the end of the course, the student will be able to													
Cours	e outcom	c 5. <i>i</i> it the	end of th	e course,	the stude		4010 10							
CO1	Gain knowledge on metallo proteins in electron transfer processes.													
CO2	Know the applications of trace metal ions and metal ions as chelating agents in medicine.													
CO3		and deve nentally.	lop highly	y stereose	elective sy	onthesis of	f organic	compour	nds and di	rugs by ac	lopting			
CO4	Understa	and therm	odynamic	cs of biop	olymer re	actions a	nd to corr	elate free	energy a	nd biopol	ymer para	meters.		
			Mappi	ing of cou	irse outc	omes wit	h the pro	gram out	tcomes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	2	3	1	2	1	2	1	1	1	1		
CO2	3	3	3	3	-	2	-	2	2	-	1	3		
CO3	3	3	3	2	2	-	2	3	-	1	1	3		
CO4	3	2	2	3	2	2	1	-	2	2	-	1		

CHE AC-406: (GENERIC ELECTIVE): BIOINORGANIC, BIOORGANIC, BIOPHYSICAL CHEMISTRY

UNIT-I: BIO-INORGANIC CHEMISTRY- I

15 Hrs

Metal complexes as oxygen carriers –Heme proteins –Hemoglobin and myoglobin –Non heme proteins –hemerythrin and hemocyanin – model synthetic complexes of iron, cobalt and copper.Co-enzymes Vitamin B_{12} , carboxy peptidase and superoxided is mutate.

Electron Transfer in Biology: Structure and functions of metalloproteins in electron transfer processes –catalase – peroxidose –cytochromes and iron –sulphur proteins –synthetic models.

UNIT – II: BIOINORGANIC CHEMISTRY- II: Metal ion transport and storage in biological systems, Metal ions in Biology, Molecular mechanism of ion transport across membranes: ionophores, photosynthesis.

Hydrolytic metalloenzymes: Carbonic anyhdrase, carboxy peptidase, calcium in control processes, calcium and muscle contraction, calcium and secretion, calcium in blood clotting mechanisms. Therapeutic uses of enzymes.

Importance of trace metals in biology: Metal ions as chelating agents in medicine, trace metal ions and metal and nonmetal deficiency. Biological nitrogen fixation, in-vivo and in-vitro nitrogen fixation.

UNIT-III: BIOORGANIC CHEMISTRY

Carbohydrates: Structure and biological functions of mucopolysaccharides, glycoproteins, and glycolipids- Role of sugars in biological recognition- Blood group substances

Lipids: Essential fatty acids-structure and function of triglycerols, Glycerophospholipids, cholesterol, bile acids prostaglandins- composition and functioning of lipoproteins

Enzymes: Nomenclature and classification, properties, factors affecting enzyme catalysis, enzyme inhibition- reversible and irreversible inhibition. Uses of enzymes in food drink industry and clinical laboratories.

UNIT-IV: BIOPHYSICAL CHEMISTRY:

Standard free energy change in biochemical reactions, exergonic and endergonic reactions, hydrolysis of ATP, thermodynamics of biopolymer solutions, chain configuration of bio polymers, and calculation of average dimensions. Membrane equilibrium, ion transport through cell membrane.dialosis and its function. Structure and functions of proteins, enzymes, DNA and RNA in living systems, forces involved in bio polymer interactions, electrostatic forces, hydrophobic forces, molecular expansion, and dispersion forces.

- M.N. Hughes, The Inorganic chemistry of Biological Processes, John wiley and Sons, New York 2nd Edition, 1981.
- 2. A Text book of Biochemistry, A.V.S.S. Rama Rao
- 3. Physical chemistry by Atkenes
- 4. Physical chemistry by Albertz.
- 5. Bio physical chemistry by Van Holde
- 6. Bio Physics by Narayanam
- 7. Organic Chemistry, Vol. 2, I. L. Finar, ELBS.
- 8. Chemistry of Natural Products, P.S. Kalsi, Kalyani Publishers.
- 9. Chemistry of Organic Natural Products, O. P. Agarwal, Vols., 1 & 2, Geol Pubs.
- 10. Natural products Chemistry K.B.G. Torssell, John Wiley, 1983.
- 11. Burger's Medicinal Chemistry, M.E. Wolff, John Wiley
- 12. Medicinal Chemistry, A. Kar, New Age International

CHE AC	2 406A		D	rug Che	mistry		L-3	3,T-1,P-2		40	Credits	
Pre-req	uisite: U	nderstand	ing of Dr	ug Chemi	istry				I			
Cou	rse Obje	ctives:										
	To learn a		natural pr	oducts as	leads for	new drug	ζS					
•]	Determina	ation of c	ardiovasc	ular drug	s							
• '	To study .	Autacoids	5	-								
•	Interpreta	tion of A	ntipyretic	s								
Course	Outcome	es: At the	end of th	e course,	the stude	nt will be	able to					
CO1	Know ab	out natur	al produc	ts.								
CO2	Know In	terpretati	on of carc	liovascula	ar drugs.							
CO3	Know th	e Analyzi	ing about	prostagla	ndins.							
CO4	Know th	e Definiti	on, Class	ification,	Nomencl	ature, Str	ucture and	d Synthes	is of anti-	inflamma	atory drug	ţs.
	•		Mappi	ing of cou	irse outc	omes wit	h the pro	gram ou	tcomes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	1	1	2	-	-	2	3
CO2	3	3	3	3	-	2	1	2	2	2	2	3
CO3	3	3	1	3	-	3	-	2		3	-	3
CO4	3	1	3	1	3	2	1	-	1	2	1	3

CHE : AC : 406 (A): (OPEN ELECTIVE) : DRUG CHEMISTRY

UNIT - I: NATURAL PRODUCTS AS LEADS FOR NEW DRUGS

Occurrence, Structure and therapeutic uses of Drugs acting on Central Nervous System

Morphine alkaloids (morphine, codeine, thebaine, heroin, pethidine)

Cannabinoids (9-cannabinol, Tetrahydrocannabinol)

Neuromuscular Blocking Agents (Curare, Decamethonium)

Vinca Alkaloids (Vincristin and Vinblastin), Taxol and Taxotere, podophyllotoxin, Etoposide, Teniposide.

UNIT – II: CARDIOVASCULAR DRUGS

Definition, Classification, Nomenclature, Structure and Synthesis.

Cardiac glycosides (ex: Digoxin, Digitoxin);

Antihypertensive drugs (ex: Methyl dopa, Clonidene hydrochloride);

Antiarrhythmic agents (ex: Quinidine sulfate);

Antisympathetic drugs (ex: Propranolol hydrochloride, Verapamil hydrochloride);

Vasopressor drugs (ex: Prenylamine, Buphenine).

UNIT - III: AUTACOIDS

Definition, Occurrence, Isolation, Nomenclature, Classification, Synthesis, Biosynthesis and Stereochemical structures of Prostaglandins. Structural elucidation of PGE₁, PGE₂; Synthesis and biosynthesis of PGE₂, PGF_{2 α}.

Structure and Biosynthesis of Thromboxane A2 and Prostacyclin (synthesis not expected).

UNIT – IV: ANTI-INFLAMMATORY DRUGS

Definition, Classification, Nomenclature, Structure and Synthesis of Paracetamol, Aspirin (Antipyretic), Salol, Cinchophen, Antipyrene, Phenylbutazone, Indomethacin, Tolmetin, Ibuprofen, Diclofenac and Naproxen.

- 1. Medicinal Chemistry by Ashitosh Kar
- 2 Medicinal Chemistry by D. Sriram, P. Yogeeswari
- 3 Medicinal Chemistry by David A. Williams, Thomas L. Lemke
- 4 Medicinal Chemistry by V. Alagarsamy
- 5 Biochemistry by U. Satyanarayana
- 6 Natural Products Chemistry and Applications by Sujata V. Bhat, B.A. Nagasampagi, S. Meenakshi
- 7 Medicinal Chemistry by V.K. Ahluwalia, Madhu Chopra
- 8 Medicinal Chemistry by Balkishen Razdar
- 9 Advanced Practical Medicinal Chemistry by Ashutosh Kar
- 10 Chemistry of Organic Natural Products by O. P. Agarwal, Vols., 1 & 2, Geol Pubs.
- 11 Chemistry of Natural Products by S. V. Bhat, B.A. Nagasampagi, M. Sivakumar
- 12 Natural Products Chemistry by K.B.G. Torssell, John Wiley, 1983.

CHE A	AC 406 E	3	Elect	roanalyt	ical Tecł	nniques		L-5,T-1,P	-0	4	Credits			
Pre-re	quisite: 1	Understa	nding of	Electroar	alytical '	Technique	s							
	Course	Objectiv	ves:											
•						nalytical m	nethods							
•			f types of											
•						reversible	cyclic vo	ltammogra	ams					
•	Interpretation of Ion selective electrodes													
Course														
	Course Outcomes: At the end of the course, the student will able to													
CO1	CO1 Know how to interpret potentiometry and conductometry													
CO2	Know the Interpretation of results while adhering to DC Polarography.													
CO3	Know	the Anal	ysing and	compili	ng the da	ta and resu	lts in pol	arography	•					
CO4	Familia	arize Typ	es of ion	sensitive	electrod	les.								
			Maj	oping of	course o	utcomes v	vith the p	orogram o	utcomes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	3	3	3	-	1	2	-	1	2	3		
CO2	3	3	3	3	1	2	-	2	2	2	-	3		
CO3	3	3	1	3	1	3	2	2	-	3	2	3		
CO4	3	2	3	1	3	2	-	-	-	2	-	3		

CHE : AC : 406(B): (OPEN ELECTIVE) : ELECTRO ANALYTICAL TECHNIQUES

Unit I: Types and Classification of Electro analytical Methods.

i) **Potentiometry-** Types of electrodes, Hydrogen gas, Calomel, Quin hydrone and glasselectrodes. Determination of pH. Potentiometric titrations.

ii) Conductometry – Definition of terms – conductivity, specific conductivity, cell constant. Mobility of ions, Conductometric titrations.

Unit II: D.C Polarography :. Dropping mercury electrode- Instrumentation-polarogram. Types ofCurrents : Residual, Migration, Limiting. Two and Three electrode assemblies. Ilkovic equation(derivation not necessary) and its consequences. Types of limiting Currents: Adsorption,Diffusion, Kinetic. Applications of polarography in qualitative and quantitative analysis. Analysis of mixtures. Application to inorganic and organic compounds. Determination of stability constants of complexes.

Unit III: (i) A.C. polarography (ii) Square-wave polarography (iii) Pulse polarography (iv) Differential pulse polarography(V) Cyclic Voltammetry: Principle, instrumentation, reversible and irreversible cyclic voltammograms.

Unit IV: Ion selective electrodes: Ion-sensitive electrodes –types of ion sensitive electrodes –metal based cation and anion sensitive electrodes, solid membrane electrodes. Liquid ion-exchange electrodes, gas sensing membrane electrodes.

- 1. H.W. Willard, LL. Merrit and J.A. Dean: Instrumental Methods of Analysis. Affiliated East-West).
- 2. G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denny. Vogel's Text Book of Quantitative Chemical Analysis (ELBS).
- 3. D.A. Skoog and D.M. West: Principles of Instrumental Analysis (Holt, Rinehart and Wilson).
- 4. J.G. Dick : Analytical Chemistry (Mc Graw Hill).