SRI VENKATESWARA UNIVERSITY: TIRUPATI SRI VENKATESWARA UNIVERSITY COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEER

Course

M.Tech ELECTRICAL AND ELECTRONICS ENGINEERING

(Power Systems)

Choice Based Credit System (CBCS)

Academic Year 2017-2018

Vision

• The department aims at catering to the needs and aspirations of the people and their development, reach to the world through state of art technologies of Electrical and Electronics Engineering and to serve the society at large

Mission

- To provide the necessary domain expertise and infrastructure to the students.
- To make available the advanced laboratories, application oriented engineering principles for students and research scholars.
- To offer research and industry orientation to become successful service oriented technocrat.

Programme Outcomes

- Graduates will have the ability to solve the problems related to their work by applying the knowledge of basic sciences, engineering mathematics, soft computing techniques, electrical and electronics engineering.
- **2.** Graduated students will be in a position to demonstrate his ability to identify and formulate problems.
- **3.** Graduates will be able to design electrical circuits, conduct experiments, analyze and interpret results.
- 4. Graduates will have a talent to design and develop digital systems.
- 5. Graduates can visualize and work in laboratories on multidisciplinary tasks.
- 6. Graduates will be ready to use modern engineering tools and software to analyze problems.
- 7. Graduates will have the knowledge of professional and ethical responsibilities.
- 8. Graduates will be able to communicate effectively in both verbal and written form.
- **9.** Graduates will understand the impact of engineering solutions on the society being aware of contemporary issues as a member of a team.
- **10.** Graduates will develop confidence for continued self-learning.

- **11.** Graduates can participate and succeed in competitive examinations.
 - 12. Graduates can do project management with economic viability

PSOs

- Graduates will, demonstrate professional behaviour to cater the global needs of the industry and society.
- Graduates will pursue higher education to upgrade their professional and research skills and inculcate the attitude of lifelong learning.
- Graduates will develop the qualities like creativity, leadership, team work and professional ethics contributing to the societal growth.

SYLLABUS

S V University College of Engineering: Tirupati – 517502

1st-year M.Tech Degree Programme

EEPSC	(COMPUTER METHODS IN POWER SYSTEMS	
101A			
	Instruction : 4 hr / week	Credits : 4	Assessment : 20 + 20 + 60
1	<u>Syllabus</u>		
		<u>UNIT-I</u>	

Incidence and network matrices : Graphs, Incidence matrices, Primitive network, formation of network matrices by singular transformation; Bus admittance and bus impedance matrices, Branch admittance and branch impedance matrices, loop impedance and loop admittance matrices, Formation of network matrices by non-singular transformation; Branch admittance and branch impedance matrices.

<u>UNIT-II</u>

Algorithm for the formation of network matrices: Algorithm for formation of Bus impedance matrix, Addition of a branch and Addition of a link. Simple problems.

<u>UNIT-III</u>

Three - phase Networks: Representation of Three phase network elements, Symmetrical components and Clarke's components, Algorithm for formation of three-phase bus impedance matrix.

<u>UNIT-IV</u>

Short – circuit studies: Short circuit calculations using Bus impedance matrix, Fault currents and voltages, short circuit calculations for balanced 3-phase network using Bus impedance matrix.

<u>UNIT-V</u>

Load flow studies: Load flow problem, Classification of buses, Gauss-Seidal method, Newton Raphson method, Decoupled and fast decoupled load flow methods, comparison of load flow methods.

Text books :

- 1. Computer methods in Power System Analysis by Stagg and Et. Abiad, Mc.Graw Hill Book Company.
- 2. Advanced Power system analysis and dynamics by L.P.Singh, Wiley Eastern 1981.

2	At the end of this o	course the Students are able to
	CO-1	Gain the knowledge on
		• formation of suitable mathematical model of a given power system network
		• Short circuit analysis and Load flow analysis.
	CO-2	Select suitable method and mathematical model for short circuit and load flow studies
	CO-3	Analyze the given power system network under normal and fault conditions
3	MAPPING	

Course		Program Outcomes											
outcomes	1	2	3	4	5	6	7	8	9	10			
1	3			2									
2	3				2			1					
3	3	2	1	1	2			1					

EE PS	C	DIGITAL CONTROL SYSTEM	15
102A			
		• • •	
	Instruction : 4 hr / week	Credits : 4	Assessment : 20 + 20 + 60
1	Syllabus		
1.	<u></u>		
		<u>UNIT-I</u>	
	Introduction: Digital Contro	l Systems quantization an	d quantization error 7-transform
	7-transforms of elementary	functions, properties of 7-	transform Inverse 7-transform 7-
	transform mothod for solving	difference equations	
		g uniference equations	
		<u>UNIT-II</u>	
	7-nlane Analysis of Discrete	time Control Systems: In	troduction. Impulse sampling and
	data hold pulse transfer fun	tion realization of digital	controllers and digital filters
		ction, realization of digital	controllers and digital litters
		<u>UNIT-III</u>	
	Decign of Digital control o	stome by Conventional	mothode. Introduction Manning
	between a plane and a plane	real transient and steady	state response analysis Design
	between s-plane and z-pla	ne, transient and steady	-state response analysis, Design
	based on frequency response	e methods, Analytical Desi	gn method.
		UNIT-IV	
	State Cases Analysia, Child		
	State Space Analysis: State	e space representation of	digital systems, solving discrete
	state space equations, pulse	transfer function matrix,	discretozation of continuous time
	state space equations, Liapu	nov stability analysis.	

	UNIT-V Pole placement and State Observors design: Controllability. Observability, weeful													
	Pole tran stat	e placement sformations e observer	and stat	State te spa	Obser ce ana	vers (Ilysis a	design: and des	Contro sign, Do	ollabili esign 1	ty, Obs through	ervabilit pole pl	y, useful acement,		
	Text	<u>t books</u> :												
	1. Katsuhiko Ogatta, "Discrete time Control Systems" Second Edition, Prentice Hall of India (2005)													
	1. 2.I H Nagrath, "State Space methods and digital control systems", New Age International (2004).													
2	COURSE	OUTCOMES:	Stude	ents ar	e able	to								
	CO-1	Acquire the	know	ledge	of digi	tal con	ntrol sy	vstem c	oncep	ts.				
	CO-2	Design the d conventiona	igital c I meth	control ods.	syster	ns by	applyin	g Z-pla	ne and	state s	pace ana	alysis and		
	CO-3	Select and a	apply	above	techr	iques	to rea	lize th	e digi	tal cont	rollers			
3		Course Outcomes				Р	rogram	Outcom	nes					
		outcomes	1	2	3	4	5	6	7	8	9	10		
		1	3			1								
		2	3	2	2					1				
		3	3	2	1		1			1				

EEPSC 103	ELECTRIC	AL POWER DISTRIBUTION	SYSTEMS
	Instruction : 4 nr / week	Credits : 4	Assessment : 20 + 20 + 60
1.		<u>UNIT-I</u>	
	Load Modeling and characterist definitions – loss factor – Load cha – load modeling.	ics: Introduction - distri aracteristics - classificatior	bution system planning – basic n of loads and their characteristics

Distribution Feeders: Design considerations – LVDS – HVDS – Factors affecting feeder voltages - Application of ABCD parameters to feeder circuits – design practice of secondary distribution system – distribution transformers – secondary network types – secondary mains.

<u>UNIT-III</u>

Voltage drop, power loss calculation, voltage control – Derivation for voltage drop and power loss in for 3-phase and non 3 phase primary lines – importance of voltage control - definitions – methods of voltage control – capacitors – voltage regulators – distributed generation.

<u>UNIT-IV</u>

Distribution system protection : Objectives – protection schemes - Circuit breakers – sectionalizers – coordination of protective devices – objectives – types of coordination – classification of faults - fault calculations.

<u>UNIT-V</u>

Distribution Automation : Need for distribution automation (DA) – Description of distribution automation – DA functionalities – benefits – Distribution SCADA – distribution management systems (DMS) – functions of DMS – Functional requirements for distribution SCADA.

Text Books:

- 1. Electrical power distribution and Automation by S.Sivanagaraju and V.Sankar, DhanpatRai and Co.
- 2. Electrical power distribution system Engineering by ToranGonen, Mc-Graw Hill book company.
- **3.** Electric power distribution by A.S.Pabla, Tata Mc-Graw Hill publication company, 4th edition.

2.	COURSE	OUTCOMES: students are able to
	CO-1	Acquire In depth Knowledge on
		Load modeling and their characteristics
		Distribution feeders and transformers
		Distribution Automation
		• Faults and protection schemes.
	CO-2	Design Distribution System with

	•	Optim Appro	um vo priate	ltage d protect	rop an	d powe hemes	r loss								
3	MAPPING	\PPING													
	Course Outcomes		Program Outcomes												
	Cuttomes	1	2	3	4	5	6	7	8	9	10				
	1	3													
	2	3	2	2		2	1		3						

EE PSC	C REACTIVE POW	ER CONTROL IN PO	OWER SYSTEMS
104			
	Instruction : 4 hr / week	Credits : 4	Assessment : 20 + 20 + 60
_			
1.			
		<u>UNIT-I</u>	
	THE STEADY STATE REACTIVE SYSTEMS: Basics of Reactive Pow transmission lines, passive shunt compe	E POWER CONTROL I ver Control, uncompensation, series compensation	N ELECTRICAL TRANSMISSION ted transmission lines, compensated on, line lodability.
		<u>UNIT-II</u>	
	REACTIVE POWER COMPENSATION SYSTEM: Introduction, study of p characteristics, comparison of comp	N AND THE DYNAMIC P assive shunt compensations.	ERFORMANCE OF TRANSMISSION tion, Static compensations, types,
		<u>UNIT-III</u>	
	PRINCIPLES OF STATIC COMPENSA and types of static compensators Thyristor Switches Capacitor (TSC), Dynamics, Incorporation of SVC in S	TORS: Introduction, Con s, SVC Schemes/Config , Mechanically Switche SMIB System, SVC Applic	npensator applications, properties urations, Fixed Capacitance (FC), d Capacitance (MSC), SVC Control ations.
		<u>UNIT-IV</u>	
	HARMONICS : Basics, harmonic resonance, shunt capacitors, filters,	sources, effect of har filter systems, telephon	monics on electrical equipment, le interference.
		<u>UNIT-V</u>	
	OVERVIEW OF POWER QUALITY AN	ND POWER QUALITY STA	NDARDS : Basics of power quality

	and vo standar	oltage ds.	quality,	over\	view of	f powe	er quali	ty pher	iomena	, power	quality	and	EMC	
	<u>Text Bo</u>	ooks:												
	1. Read	ctive Po	ower Co	ontrol ir	n Electr	ical Pov	ver Syst	ems by ⁻	ſ.J.E.Mi	ller				
	2. Und	lerstan	ding P	ower (Quality	Proble	ms by N	1ath.H.J	Bollen,	Standar	d Publisł	ners	and	
	Distribu					1								
2.	Course	Outco	mes: St	udents	are ab	ie to								
	CO-1	CO-1 Understand the significance of reactive power control in power systems to maintain quality of power												
	CO-2	CO-2 Design appropriate control scheme to compensate reactive power and to filter harmonics.												
3	MAPPING													
	Cou	rse					Program	Outcom	es					
	Outer	JIIES	1	2	3	4	5	6	7	8	9	10)	
	1		3			3								
	2		3	2	3	2	2	1		3				
EEPSE			RI	ELIABI	LITY A	AND PI	ANNIN	G OF PO	OWER S	SYSTEM	S			
101	Instruc	tion :4	hr / we	eek			Credits :	4		Assess	sment : 2	20 + 20	+ 60	
1.							UNIT-	I						
	LOAD) FOR	ECAS	FING ach to	: Short load fo	time a recasti	nd Lon ng – Ba	g time o Isic Rel	onside	rations,	statistic ts	al and		
	probut	Jiiistie	uppiot		1000 10	leeusti	UNIT-	III	luointy	concep				
	Gener	ating c	apacity	y, Tran	smissi	on stał	oility an	d asses	sment o	of syster	n resour	ce.		
							UNIT-I	II						
	Gener	ation p	lannin	g, vari	ous asp	pects o	f systen	n plann	ing and	extensi	on.			
	Voltas	ge and	load st	abilitv	, Short	circui	UNIT-l t level a	<u>V</u> ind read	tive po	wer con	sideratio	ons.		
		,		5	,		<u>UNIT-</u>	V	1 -					

	Mathema	Aathematical modeling of interconnected systems for planning studios												
	Overall a	Overall assessment of power systems planning and operation.												
	Text Boo	oks:												
	1. '	Power sys	tem re	liabilit	y evalu	uation"	by Roy	Billint	on.					
	2. "	Power sys	tem re	liabilit	y calcu ad Mat	lations	" by Ro	y Billit I G Kr	ton					
2.	Course O	utcomes: St	udents	are ab	le to	Incinatio	cs by t	J.U.KI	ngni					
	CO-1	Acquire t	he kno	wledge	e of bas	sic relia	bility co	ncepts	and plar	nning asp	pects.			
	<u> </u>	Assocs th	0 0000	ration	canacit	w and a	stability	of the	system		prious load			
	0-2	 CO-2 Assess the generation capacity and stability of the system under various load conditions. CO-3 Derive the mathematical model for the power systems and assess the reliability of the modeled power system. CO-4 Apply the knowledge of reliability and planning concents to the practical. 												
	CO-3													
	<u> </u>													
	0-4	O-4 Apply the knowledge of reliability and planning concepts to the practical and real time systems.												
3.	MAPPING	MAPPING												
	Course	Course Program Outcomes												
	Outcom	es	2	3	4	5	6	7	8	9	10			
		3												
	2	3												
	3	3			1									
	4	3	2	2	1		1		1					
EEPSE		Eľ	NERGY	AUDIT	ING, CO	ONSERV	ATION 8	& MAN	AGEMEN	IT				
102	Instructi		le			Cuadita	. 7		4		0 / 20 / 00			
	Instructio	on : 3nr / W	еек			Creaits	: Z		Assess	sment : 2	0 + 20 + 60			
1.	Syllabus	:												
						<u>UNIT-</u>	<u> </u>							
	Principle	s of energ	gy mai	nageme	ent –	organiz	ing an	energy	manag	ement p	orogram –			
	initiating	and mana	ging ar	n energ	y mana	gement	: program	n – pla	nning – le	eading –	controlling			
	and pror	noting – mo	nitorin	ig and r	eportir	ıg.								
						UNIT-	<u>II</u>							

	Flastui a				t		off: e: e re	+					
	Electrica	ai ene	rgy ma	nagem	ent – e	energy	efficien	t moto	rs – Po	ower tact	or impro	vement -	-
	lighting	and I	ighting	syster	n cont	rol en	ergy sav	ving op	portuni	ities – so	ources of	losses -	-
	demand	l contr	ol.										
								_					
	<u>UNIT-III</u>												
	Energy cost ind	Auditir lex – p Audit c	ng – De iechart of indus	finition s – San	s and c kei dia	concept grams	s – Type – load p	es of pla problems	int ene s – ene	rgy studie rgy conse	es - ener ervation s	gy index - schemes -	_
	6116187				circi 8)	Saring		1					
		Qualities and functions of energy managers – language of energy manages – questionnaire – checklist for top management. <u>UNIT-V</u>											
	Qualitie checklis												
	Economic analysis – Depreciation method – Time value of money – evaluation methods of projects – Replacement analysis – special problems – inflation – Roscoe analysis. <u>Text Books:</u>												
	1. Cari	g. B.S	mith.	Energy	mana	gemen	t Princi	ples. A	pplicat	ions. Bei	nefit and	Saving	s.
	Per	gamon	press,	New yo	ork	0			1.1				.,
	2. Ene	rgy ma	anagem	, ent – V	V.R.Mu	irphy &	G.Meke	ey BV He	erworth	า			
	3. Ene	rgy co	nservat	ion – p	au 1 0 (callaga	n pagan	non pre	SS				
	4. Ene	rgy ma	anagem	ent Ha	ndbool	k – W.C	Turner,	, John w	iley & s	sons			
	5. Ene	rgy ma	anagem	ent an	d conse	ervatio	n – Pren	tice Hall	inc en	gle wood	cliffs(uj)	7632	
	6. Ene	rgy, pl	anning	& Polic	y – B.B	ukhoot	seo eva	Ι.					
	Course	Outco	mes(CC)s): stu	dents v	vill be a	able to						
	CO-1	Gain	the k	nowled	lge on	energ	v mana	agemen	t. elec	trical an	d lightir	g energy	v
		mana	igemen	it, role	e of o	energy	manag	ger, en	ergy a	auditing,	econon	nical and	d
		conse	ervation	n schei	nes.	0.			0.	U,			
	CO-2	Analy	ze ene	rgy savi	ng opp	ortunit	ies, audi [.]	ting and	apply s	suitable n	nethods t	o estimat	e
		the e	conomi	c benef	its of co	onserva	ition, ma	anageme	ent and	auditing	of energy		
	MAPPI	١G											
	-							<u> </u>					
	Cou	rse					Program	Outcom	es				
3	Outco	mes	1	2	3	4	5	6	7	8	9	10	
-			-										
	1		3										
	2		3	2	2	2		1	1				
			5		-				-				

EE	PSE	EE PSE 103	EHV AC TRANSMISSION	
103		Instruction : 4 hr / week	Credits : 4	Assessment : 20 + 20 + 60
1.		Syllabus:		
			<u>UNIT-I</u>	
		Introduction to EHV AC Transmission – Energy Sources and their development.	- Role of EHV AC Transn	nission, Brief description of
		Transmission line trends and prelimin values of line parameters, Power-Handli pools and Number of Lines, Costs of considerations in line performance.	naries : Standard trans ng capacity and Line Los Transmission Lines ar	mission voltages, Average s, Examples of Giant Power nd equipment, Mechanical
			<u>UNIT-II</u>	
		Calculation of line and ground paramet conductors and current carrying capacit e.h.v. line configurations, Line capa Capacitances, Line parameters for Mod Ground Return.	ers : Resistance of cond y, Properties of Bundled citance calculation, Se des of Propagation, Res	uctors, Temperature rise of Conductors, Inductance of equence Inductances and sistance and Inductance of
			<u>UNIT-III</u>	
		Corona Effects – I : Power loss and Aud formulas, Attenuation of Travelling Way and characteristics, Limits for Audible No	dible Noise : I ² R Loss an ves due to corona loss, s bise, AN Measurement ar	d Corona loss, Corona-Loss Audible Noise : Generation nd Meters,
			<u>UNIT-IV</u>	
		Corona Effects –II : Radio Interference Limits for Radio Interference Fields, Late	e : Properties of pulse T ral profile of RI and Mod	Trains and Filter Response, es of Propagation.
			<u>UNIT-V</u>	
		Power – Frequency voltage control an Generalized constants, No-Load voltage Diagram and its use, Voltage control usi components – shunt and series com capacitor compensated lines, Static react	nd over voltages : Prob conditions and charging ng synchronous condens pensation, Sub-synchron tive compensating syster	plems at power frequency, g current, The power circle sers, Cascade connection of nous resonance in series- ms (static VAR).
		<u>Text Books</u> :		
		1. "Extra High Voltage A.C.Transmis	ssion Engineering by Rak	osh Das Begamudre.

2.	Course o	outcomes:	Student	s will b	e able t	0						
	CO-1Understand the factors that decide rating of EHVAC Transmission.CO-2Calculate the Line & Zone parameters.											
	CO-3	Analyze Travelli	alyze the Effect of corona on various parameters such as power loss and welling waves.									
	CO-4	Analyze frequen	and d	esign ge con	the co trol pro	ompensa oblems.	ating e	quipmo	ent's fo	r differe	nt powe	ər
3.	MAPPIN	G										
	Cours	Course Program Outcomes										
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
	1	3		2	2		1					
	2	2	2	2								
	3	2			2		2	2				
	4	2	1	1	2							
EEPSE	INTELLIG	SENT SENS	ORS ANI	O TRAN	SDUCE	RS						-
100	Instructi	on : 4 hr /	week			Credits :	4		Assess	sment : 2) + 20 + 6	0
1.	Syllabus											
						<u>UNIT –</u>	<u>I</u>					
	Smart Se Sensors, Introduc	ensor Basi Integrat tion).	cs: Intro ion of	duction Micro	, Mech omachi	anical-E ning a	lectroni nd, N	c Trans licroele	itions in ctronics	Sensing, (Micror	Nature on nachining	of g-
						<u>UNIT – I</u>	<u>II</u>					
	Semicon Piezo-res Operatic Effect, C	ductor Se sistivity in on ,Other hemical Se	nsor ::In Silicon, Sensing nsors, In	troduct Semic Techno nprovin	cion, Se conduct blogies, g Sense	ensor Ou cor Sens Capacit or Chara	utput C or E tive S cteristic	haracte Definitic Sensing, cs.	eristics, N ons ,Stat Piezoel	Wheatsto ic Versus ectric Se	ne Bridge 5 Dynam nsing ,Ha	e, ic all
						<u>UNIT - I</u>	<u> </u>					

Digital Sensors: Digital Output Sensors, Incremental Optical Encoders, Digital Techniques, Noise/Interference Aspects, Low-Power, Low-Voltage Sensors, Impedance Analysis of Sensitivity Improvement, Thin Diaphragm, Increased Diaphragm Area Combined Solution: Micromachining and Microelectronics, Getting Sensor Information into the MCU :Introduction, Amplification and Signal Conditioning

<u>UNIT - IV</u>

Instrumentation Amplifiers: SLEEPMODE. Operational Amplifier, Rail-to-Rail Operational Simplifiers, Switched-Capacitor Amplifier, Barometer Application Circuit, 4- to 20-mA Signal Transmitter, Separate versus Integrated Signal Conditioning, Integrated Passive Elements, Integrated Active Elements, Digital Conversion, A/D Converters, Performance of A/D Converters, Implications of A/D Accuracy and Errors.

<u>UNIT - V</u>

Using MCUs/DSPs to Increase Sensor IQ: Introduction, Other IC Technologies, Logic Requirements, MCU Control, MCUs for Sensor Interface, Peripherals Memory, Input/Output, Onboard A/D Conversion, Power-Saving Capability, Local Voltage or Current Regulation, Modular MCU Design, DSP Control, Algorithms versus Lookup Tables, Techniques and Systems Considerations, Linearization, PWM Control, Auto zero and Autorange.

TEXT BOOKS:

- 1. Randy Frank , "Understanding Smart Sensors" Artech House, London (2000)
- 2. Creed Huddleston, "Intelligent Sensor Design" Elsevier (2007).

Course	Outcomes(COs): students will be able to
CO-1	Exhibit the knowledge in
	• Smart Sensors(analog & Digital)
	• Instrumentation amplifiers
	• Interfacing of sensors with MCUs
CO-2	Apply to solve interfacing of sensors with amplifiers and MCU

		CO-3 Understand Principles of interfacing D/A and A/D converters and apply to simple											
			applic	ations									
		MAPPI	NG										
		Cou	rse					Program	Outcom	es			
3		Outco	omes	1	2	3	4	5	6	7	8	9	10
•													
		1		1					1		1		
		2 1 1 1							1				
		3		1					1				
EE	PSE												
107													
		Instruction : 4 hr / week Credits : 4 Assessment : 20 + 20 + 60											
1.								<u>UNIT-I</u>					
		Introdu	ction t	o pro	cess c	ontrol	, Elem	ents of	proces	ss cont	trol loop	o, Contro	ol system
		Evaluat	ion, Ana	alog an	d Digit	al Proc	essing.						
		Principl	es of	Analog	g signa	al con	ditionir	ng, OPA	MP cir	cuits i	n instru	mentatio	n, Design
		guidelir	nes, Pr	inciple	s of	Digita	l signa	al cond	litioning	, com	parators,	Digital	-to-Analog
		convert	ers (DA	CS), A	nalog-t	o-Digit	al conv	verters (ADCS), I	requer	ncy-Base	d convert	ers, Data-
		Acquisit	tion sys [.]	tems (I	DAS).								
								UNIT-II					
									-				
		Review	of trans	sducer	s relate	ed to p	ressure	e, tempe	rature, f	low, lev	el meas	urements	s. Final
		control	operati	on, Ele	ectrical	actuat	ors, flu	id Valve	s.				
								<u>UNIT-II</u>	<u>I</u>				
		Process	chara	cterist	ics, co	ntrol	system	n param	neters,	Discont	inuous	controlle	er modes,
		continu	ious Co	ntrolle	r mod	es, co	mposit	e contro	ol mode	es, casc	ade con	trol, fee	d forward
		control	, Ration	contro	ol, Proc	ess loc	op tunir	ng.					
								<u>UNIT-IN</u>	<u>/</u>				
		Discrete	e-State	proces	s Cont	rol. Ch	aracter	istics of	the syst	ems R	elav Con	trollers a	nd Ladder
		diagram	ns,								,		
		Program	nmable	Logic	Contro	llers :	Relay S	Sequenc	es, Prog	ramma	ble Logic	c Control	ler design,

	PLC Ope	ration, Progr	ammin	g, PLC S	Softwa	re functi	ons.					
						<u>UNIT-V</u>						
	Compute controlle	Computers in process control : Data logging, supervisory control, computer-based controller.										
	Process – control Networks : Functions of the network, General characteristics, foundation field bus and profibus.											
	Text Boo	Text Books:										
	1. F	 Process control instrumentation technology by CourterD.Johnson, PHI, Edition (2006) 										
	2. F 3. F	 Principles of process control by D.Patranabis, TMH Edition (2001). Process Control Principles and applications by SurekhaBhanot, Oxford University press, 2008. 										
	Course o	outcomes:Stu	udents	will be	able to)						
	CO-1	Learn abou	ıt									
		• analog	and d	igital c	onditi	oning						
		SensorCompl	s and j uter an	proces: plicati	s contr on in r	ol techi process	nques control					
	CO-2	Analyze di circuits	fferent	: meth	ods of	interfa	cing se	nsors v	with am	plifiers a	nd digital	
	CO-3	Design sigr	nal cono	ditionin	g and a	analog c	ontrolle	rs for p	rocess co	ontrol		
3	MAPPING											
	Course Program Outcomes											
	Outcomes 1 2 3 4 5 6 7 8 9 10											
	2 3 1 1 1 1 1											
	3	2	1	1	1		1		1			

2ndSemester M.Tech Degree Programme

EE	PSC	ADVANCE	D POWER SYSTEM P	ROTECTION
201A	\			
		Instruction : 4 hr / week	Credits : 4	Assessment : 20 + 20 + 60
1		Svllabus:		
-				
			<u>UNIT-I</u>	
		Introduction-Need for Protective Effects of Faults, Essential Quali Zones of protection, primary a Transformers & Potential Transfor Operating Principles and Relay C Terminology, classification of Pro	Systems, Nature a ties of Protection, and Back-up Prote mer for protection. <u>UNIT-II</u> Construction-Evoluti tective Relays. El	nd Causes of Faults, Types of Faults Classification of Protective Schemes ction, Automatic Re-closing, Curren on of Protective Relays, Basic Relay ectromagnetic Relays, Introductory
		aspects of static relaying.		
			<u>UNIT-III</u>	
		Over-current Protection- Over-cu Parallel Feeders, Protection of R Relay, Static Over-current Relays,	urrent Protective So ing Mains, Earth Fa applications of Ove	chemes, Directional Relay, Protection nult Protection, Directional Earth Fa r-current Relay.

		<u>UNIT-IV</u>
	Distanc Protect	ce Protection- Characteristics ofImpedance Relay, Reactance Relay, Mho Relay, Zones tion, Applications of distance protection.
		<u>UNIT-V</u>
	Pilot F Protect - Co-o protect	Relaying Schemes- Pilot types, construction and operating principles, Bus-zone tion-Protection of Generators, Transformer Protection, Auto re-closing mechanisms rdination of relaying schemes in power system. Testing and maintenance of tive relays.
	Text Boo	<u>ks:</u>
	1.B.Ravir Easte	ndranath and M.Chander, Power System Protection and Switchgear, Wiley rn, New Delhi, 1977.
	2.Badrina McGr	ath and D.N.Viswakarma, Power System Protection and Switchgear, Tata aw-Hill, 1995.
	3.C.R.Ma 4.A.R.Va ed. Chap	ason, The Art and Science of Protecting relaying, John wiley& Sons, 195 nC.Warrington, Protective Relays-Their Theory and Practice, Vol.I and II, 3 rd oman & hall, London and John Wiley & Sons, New York, 1977.
	5. S.S.Ra	ao, Switchgear and Protection, Khanna publishers, delhi,1986.
	6. 1 micropro	F.S.M.Rao, Power System Protection: Static relays w ocessor applications,2 nd ed, Tata McGrah-Hill, New delhi,1989.
2	Course C	Outcomes: Students will be able to
	CO-1	Understand
		 various types of faults Protective schemes Power system protective equipment significance of relay testing and co-ordination
	CO-2	Design and develop different protection schemes
	CO-3	Select and apply different relays in real time power system protection

3	MAPPING										
	Course					Program	Outcom	es			
	outcomes	1	2	3	4	5	6	7	8	9	10
	1	3									
	2	3	3			2			1		
	3	3	2	2		1	1		2		

EE PSC	OP	FIMAL CONTROL THE	ORY
202A	Instruction : 4 hr / week	Credits : 4	Assessment : 20 + 20 + 60
1	Syllabus:		
		<u>UNIT-I</u>	
	Introduction : The m performance measure, state variable repres equations,Solution of selection of performan	athematical model of a pro The optimal control proble sentation of system –syst state equation-Linear Syst ce measure, Controllability an	ocess, Physical constraints. The m,Forms of the optimal control, cem classification and output ems, typical control problems, nd observability.
		<u>UNIT-II</u>	
	The calculus of varia functions, fundamenta function, The simples problem- free end p functions- problem wit extrema-costrained min	tions : Fundamental conce al theorem of calculus of v st variational problem – Eu point problem functionals h fixed end points- problem v nimization of function and fu	pts , maxima and minima of ariations , functionals of single ler's equation , fixed end point involving several independent with free end points, Constrained nctional.
		<u>UNIT-III</u>	
	Variational approach optimal control Hama problems – Linear reg problem.	to optimal : control prob Itonian function – Boundar Julator problems – Matrix ri	lems: Necessary conditions for y conditions in optimal control icalti equation – linear Tracking
	Numerical determination	on of optimal trajectories:	Two – point boundary – value

	pro	blem – me	ethod o	of steep	est des	scent – s	steepest	Descer	nt algorit	hm.			
						<u>UNIT-I\</u>	<u>/</u>						
	Po pro ene	n tryagin's oblem – m ergy proble	minim inimur em	n um pr i n contr	i nciple rol effo	: State rt prob	un equ lem — n	ality co ninimur	nstraints n fuel pr	– minim oblem –	num time minimum		
		UNIT-V											
	Dynamic programing optimality, control: The optimal control law, The principle of Dynamic programming applied to routing problem, An optimal systems- A recurrence relation of dynamic programming – procedure for solving optimal control problems- Analytical linear regulator problems, Hamilton-Jacobian-Bellman linear regulator problems.												
	<u>Text Books</u>	<u>Fext Books:</u>											
		 Optimal Control Theory – Donald E.Kirk Optimal System Control – A.P.Sage. Modern Control Systems Theory – M.GOPAL. 											
2	Course Out	tcomes: St	udents	will be	e able t	0							
	CO-1	Demonst	rate kn	owledg	ge in								
		 Varia Min/2 dynamical 	ntional max pr mic pr	approa rinciple ogram	aches t e ming a	o contr	ol syste ion in c	oms ontrol					
	CO-2	Analyze c	lifferer	nt soluti	ions for	[.] minimi	zing per	forman	ice meas	ure			
	CO-3	Apply abo	ove prii	nciples	for solv	ing nun	nerical p	oroblem	is in optir	mal contr	ol.		
3	MAPPING												
	Course Program Outcomes												
	1 2 3 4 5 6 7 8 9 10												
	1	3		3	2								
	2	3	2	3	3	3	3						
	3	3	1	3	3	3			1				

EE 203	PSC	OPERATION & CONTROL OF INTERCONNECTED POWER SYSTEMS
		Instruction : 4 hr / week Credits : 4 Assessment : 20 + 20 + 60
1		Syllabus:
		<u>UNIT-I</u>
		Economic operation of power systems : Introduction – operating cost of a thermal plant – Economic dispatch neglecting losses and no generation limits – economic dispatch neglecting losses and including generation limits, Economic dispatch including losses – derivation of loss formula
		<u>UNIT-II</u>
		Hydrothermal scheduling – Hydroelectric power plants – Scheduling of hydro power plant – hydro thermal scheduling- problems.
		<u>UNIT-III</u>
		Unit commitment and optimal power flow; constraints of unit commitment problem – Solution methods of unit commitment priority list methods – Dynamic programming approach to solve the unit commitment problem – optimal power flow solution – Elementary treatment of optimal power flow with and without constraints.
		<u>UNIT-IV</u>
		Load frequency control : The load frequency control problem – Basic p-f and Q-V control loops of a synchronous generator – Governor model – prime mover model – Generator model – Load model – Block diagrams representation of an isolated single area power system – steady state and dynamic responses of uncontrolled and proportional plus integral control of single area power system – load frequency control of two-area power system.
		<u>UNIT-V</u>
		Automatic voltage regulator – modeling of amplifier, exciter, Generator and sensor – A simplified automatic voltage regulator block diagram – Excitation system stabilizer – Rate feedback and PID controller – automatic excitation generation control - optimal feed back design
		Text Books:
		1. "Power System Analysis" by HadiSaadat, Tata Mc.Graw Hill International.

	2. "	Modern Po	wer sy	vstem a	analysis	5″ by J.	Nagrath	& DP	Kothari,	Tata Mc	.Graw Hill	
	S	econd editic	on.		ما ما م ه		D.C.unt	.	ما مار بر مر	hing		
	3. / "	Power Syste	em Ana	alysis ar	ia aesię	gn by B	.R.Gupt	a wnee	er publis	ning td.cocon	d aditian	
	4. 5 5		ergy sy	stem ti	neory stability		igera ra				a edition.	
	<u></u> Э. Р	ower system	Contr	of and s	stability	y . Dy Al	luerson	rouu				
	Course O	Course Outcomes (COs): students are able to										
2	CO-1	CO-1 Acquire knowledge on optimum operation and scheduling of thermal and hydel										
		plants, ur	nit cor	mmitm	ent, lo	oad fre	quency	contro	ol and	automati	c voltage	
		generatior).				. ,				0	
		0										
	CO-2	Solve econ	omic d	lispatch	, unit c	ommitn	nent, loa	ad frequ	uency cor	ntrol and	automatic	
		voltage ge	neratio	n using	conve	ntional	method					
	CO-3	Select and	apply	approp	riate m	ethods	to oper	ate inte	er connec	ted powe	er systems	
		most econ	omical	ly and	at cons	stant fre	equency	by opt	imum ut	ilization	of fuels at	
		different lo	oads.									
3	MAPPIN	G										
							<u> </u>					
	Cours	e				Program	Outcom	es				
	Outcon	nes1	2	3	4	5	6	7	8	9	10	
	1	3										
	2	3	2	3		2			2			
	3	3	2	2			1		1			

EE 204	PSC	PC	POWER SYSTEM STABILITY												
		Instruction : 4 hr / week	Credits : 4	Assessment : 20 + 20 + 60											
1		Syllabus:													
			<u>UNIT-I</u>												
		Steady State Stability: Stability, Stea line, Power angle characteristic ar	dy state stability, nd steady state	Power limit of a short transmission stability limit of cylindrical rotor											
		synchronous machines, Power angle of pole synchronous machines, steady s	characteristic and tate stability limit	steady state stability limit of salient of a two machine system with and											

without losses, incremental analysis and synchronizing coefficient.

<u>UNIT-II</u>

Clarke's Diagrams: Clarke diagram for single machine connected to infinite bus bar, Clarke diagram for two machine system with negligible losses, Clarke diagram for reactance network including shunt admittance, Clarke diagram for two machine system with losses, Effect of inertia and governor operation on stability.

<u>UNIT - III</u>

Transient Stability: Swing equation, Equal area criterion; sudden change in mechanical input, effect of clearing time on stability, sudden loss of one of parallel lines, short circuit at one end of the line, short circuit away from the line ends, reclosure, determination of critical clearing angle. Simulation of equal area criterion using MATLAB.

<u>UNIT-IV</u>

Numerical solution of swing equation: Numerical solution of swing equation by point by point method, Swing curve, determination of critical clearing time, SIMULINK block diagram model for the swing equation, determination of critical clearing time using MATLAB.

<u>UNIT-V</u>

Voltage Stability: Introduction, Reactive power transmission, voltage stability limit, Graphical methods: P-V curve and V-Q curve, shunt compensation and series compensation, comparison of series and shunt compensation.

Text Books :

1. Power System Analysis by HadiSaadat, Tata Mc.Graw Hill edition.2. Analysisand stability of Electric power systems by K.A. Gangadhar.3. Modern power system analysisby Nagrath and Kothari,TataMc.Graw Hilledition.4. Power system analysis and designby B.R. Gupta.

2	Course Outcomes(COs):										
	CO-1	Gain the knowledge on Steady State, Transient and Voltage Stability aspects									
	CO-2	Select suitable method, mathematical model and tool for stability studies									

	CO-3	Analyze th	e given	power	system	n netwo	rk with ı	respect	to stabili	ity point o	of view	
3	MAPPING	ì										
	Course Program Outcomes											
		1	2	3	4	5	6	7	8	9	10	
	1	3										
	2	3				2						
	3	3	2	1		2			2			

EE PSE 203	FAC	FS AND CUSTOM DE	VICES
	Instruction : 4 hr / week	Credits : 4	Assessment : 20 + 20 + 60
1	<u>Syllabus:</u>		
		<u>UNIT-I</u>	
	FLEXIBLE AC TRANSMISSION SY systems, loading capability, c controllers.	STEM: Transmission inter lynamic stability conside	connections, flow of power in ac erations, basic types of FACTS
		<u>UNIT-II</u>	
	STATIC SHUNT COMPENSATE compensators, STATCOM config STATCOM and SVC.	DRS: Objectives of sh guration, characteristics a	unt compensation, static var nd control, comparison between
		<u>UNIT-III</u>	
	STATIC SERIES COMPEN Impedance type series compe external control for series reac	ISATION: Objectives of ensators, switching convertive compensators.	f series compensation, Variable erter type series compensators,
		<u>UNIT-IV</u>	

	UPFC: power angle re	Prin flow egulat	ciple o control ors.	f oper , com	ation parisoi	and ch n of U	naracter PFC w	istics, i vith the	indepe series	ndent ac comper	etive and nsators a	l reactive nd phase	
	IPFC:	Princi	iple of	operati	ion and	l chara	cteristi	cs and c	control	aspects.			
							<u>UNIT-V</u>	<u>/</u>					
	CUSTOM POWER DEVICES: Introduction to custom power devices, DSTATCOM and DVR operating principles, their applications In Distribution Systems												
	Text Books:1. Hingorani ,L.Gyugyi, ' Concepts and Technology of flexible ac transmission system',IEEE Press New York, 2000.												
	2. K.R. Inte	Padiya rnatio	ar, "FA nal Pub	CTS co lishers	ontrolle , Delhi,	rs in µ 2007.	ower 1	transmis	sion a	nd distri	bution",	New age	
2	Course	Outco	mes(CC	s):Stud	dents w	vill be a	ble to						
	CO-1	Acqu • T • T	iire kno Transmis Transmis	wledge ssion lin ssion lin	e on: ne perfe ne perfe	ormano ormano	ce witho	out FACT FACTS.	S.				
	CO-2	Acqu	ire kno	wledge	operat		inacteris		meren	TACTS.			
	 Distribution line performance without Custom power. Distribution line performance with Custom power. Construction & operation characteristics of different Custom power devices. 												
3	MAPPING												
	Cour	se					Program	Outcom	es				
	Outco	mes	1	2	3	4	5	6	7	8	9	10	
	1		3	3	3		3						
	2		3	3	3		3						

EE PSE	NEURAL AND F	JZZY CONTROL SYSTE	٧S
205			
	Instruction : 4 hr / week	Credits : 4	Assessment : 20 + 20 + 60
1	Syllabus:		
		<u>UNIT-I</u>	
	Biological Neurons and their artificial me Processing, Learning and adaptation, Neu networks, Multi layer feed forward r propagation, Learning and training, Hopfi	odels, Models of artific ral networks learning r etworks, Single layer eld network.	tial neural networks, Neural ules. Single-layer Perception feedback networks: Back
		<u>UNIT-II</u>	
	Neural networks for non-linear systems, Forward model and inverse model, Indi Case studies.	Schemes of neuro co rect learning neural ne	ntrol, system identification, etwork control applications,
		<u>UNIT-III</u>	
	Fuzzy sets, Fuzzy operation, Fuzzy rela Fuzzy functions, Approximate reasoning,	tions, Fuzzy relational Fuzzy propositions, Fuz:	equations, Fuzzy measure, zy quantifiers, If-then rules.
		<u>UNIT-IV</u>	
	Structure of Fuzzy Logic Controller, Fuz Engine, Defuzzication modules, Fuzzy Con	zzification models, Dat trol Applications, Case	abase, Rulebase, Inference studies.
		<u>UNIT-V</u>	
	Adaptive Fuzzy Controllers: Design and Pe Self organizing Controllers, Modelbased C	erformance Evolution, N Controller, Stability of Fu	Nembership function tuning, uzzy Control systems.
	Text Books:		
	 Jacker.M.Zurada, "Introduction to House,1999. Kosko.B, "Neural Networks and F Drainkov,Hellendroon,Reinfran, " John Yen and RejaLangari, "Fuz Pearson Education,2003. 	Artificial Neural Syster uzzy Systems", PHI,199 Introduction to Fuzzy C zzy Logic Intelligence,	ns". Jaico Publishing 4. ontrol", Narosa Publishers. Control and Information",

2	Course	Outco	mes(CC	s):Stud	dents w	vill be a	ble to								
	CO-1	Dem	onstrat	instrate knowledge in:											
		Neural networks and fuzzy logicDesign of fuzzy controllers													
		• /	Adaptiv	e fuzz	y cont	rollers.									
	CO-2	Appl real t	y fuzzy time sys	logic fo stems	or desig	gning o	f Fuzzy a	and ada	ptive fu	izzy cont	rollers fo	r different			
3	MAPPI	NG													
	Cou	rse					Program	Outcom	es						
		incs	1 2 3 4 5 6 7 8 9												
	1		3 3 3												
	2		2	2	2	2		3		3					

EE PSE 209	RE	NEWABLE ENERGY SOUI	RCES
	Instruction : 4 hr / week	Credits : 4	Assessment : 20 + 20 + 60
1	Syllabus:		
		<u>UNIT-I</u>	
	Introduction to Energy Source reserves and resources; renewa in India.	s :Energy sources and ble resources, Transforn	their availability, Non-renewable nation of Energy, Energy scenario
		<u>UNIT-II</u>	
	Solar Energy - Basic characteris and spectral composition of so collectors. Types and performan	tics of sunlight – solar e lar radiation; Radiation ce characteristics.	energy resource – Solar processes flux at the Earth's surface. Solar
		<u>UNIT-III</u>	
	Applications photovoltaic cell - photo voltaic for battery chargin	Characteristics – equiva g – applications.	lent circuit –photo voltaic effect –
		<u>UNIT-IV</u>	

	Biomass Energy Systems- Biomass sources – production processes – Gasification,												
	Anaerob	ic Dig	estion,	, Pyroly	sis, Bio	gas – p	performa	ance an	alysis a	nd testin	ıg.		
								,					
								-					
	Wind energy- Wind distribution – principles of wind energy conversion – basic components of wind energy conversion – advantages and disadvantages – principles of operation of wind turbines, types of wind turbines and characteristics. Generators for wind Turbines, Control strategies												
	Text Bo 1. G.D Delh 2. G.N princ	 <u>Text Books</u>: 1. G.D.Rai "Non Conventional Energy sources", Khanna publishers, New Delhi, 1999. 2. G.N.Tiwari and M.K.Ghosal, "Renewable energy resources, Basic principles and applications", Narosa Publishing house, New Delhi. 											
l	3.	S.N	.Badra	, D.I	Kastha	and	S.Ba	nerjee	"Win	d elec	trical S	Sustems'	',
	Oxfo	rd M	Uni (VP)	versity	y press	, New	Delhi. "Eperor	U *ASC	NIPOOR	Conve	ntional	& No	n
	conv	entio:	nal"	BS	public	cations	– Hyd	erabad.	2004.	COnve	Illionai	α into	п
	5.	Gilb	ert M	[.Maste	ers "R	Renewa	able an	d Effi	cient	electric	power	systems	,"
ſ	Wile	y Dutco	inter	rscienc	e Pub	licatio	ns, 2004	4.					
Z	Course	Juico	nies (C	053. 50	uuents	areau							
	CO-1	Gain	n knowl	ledge o	n non-	renewa	able sou	rces like	e solar,	biomass	, wind er	ergies	
	CO-2	Real	lize sola	ar ener	ду арр	licatior	is using	photo v	oltaic c	cells			
	CO-3	Ana	lyses bi	iogas p	erform	ance a	nd testii	ng					
3	MAPPIN	G											
	Cours	se					Program	Outcom	ies]
	Outcor	nes .	1	2	3	4	5	6	7	8	9	10	-
	1		2			2		2					-
			3			2		2					
	2		3		2	1	2	2		2			
	3		3	1	1			2		1			

EEPSC	COMPUTER METHODS IN POWER SYSTEMS Lab											
101B	Instruction : 2hr / week	Credits : 2	Assessment : 40 + 60									

1	Syllabus:												
	Based on the CMPS theory syllabus (EEPSC 101A) the experiments are to be conducted practically with MATLAB/ETAP/MATPOWER environment. Aminimum numberof 8 experiments out of maximum 10 experiments are to be conducted.												
2	Course (Dutco	mes (C	Os): sti	udents	are ab	le to						
	CO-1	Sele Syst	Select and apply modern Engineering tools like MATLAB for solving Power System problems										
	CO-2	Ana	lyze the	e powe	r syste	m netv	vork for	differer	nt cond	itions			
3	MAPPIN	G											
	Cour: Outcor	se nes					Program	Outcom	es				
			1	2	3	4	5	6	7	8	9	10	
1 3 3 3 2													
	2		3	2	1	2	3			3			

EEPSC			DIGITAL CONTROL SYSTEMS L	ab										
102B	Instruct	Instruction : 2hr / weekCredits : 2Assessment : 40 + 60												
1	Syllabus Based of MATLAE course p	: n the DCS syllabus (E s/ETAP/MATPOWER period.	EPSC 102A) the experiments have a seriment of 8 and a seriment minimum of 8 and 3 an	as conducted practically with d maximum of 10 during their										
2	Course (Outcomes (COs): stu	dents are able to											
	CO-1	Interpret and recal	I the basic mathematical opera	tions										
	CO-2	Assess the differen	t state space techniques											
	CO-3	Select and apply st	ability methods for digital cont	rol system										

3	MAPPING											
	Course Program Outcomes Outcomes											
		1	2	3	4	5	6	7	8	9	10	
	1	3				3						
	2	3				3			2			
	3	3	2		2	3			2			

EE PSE				ADVA	NCED	POWE	R SYSTE	M PRO	τεςτιο	N Lab				
201A	Instructi	ion : 2	hr / wo	eek		C	Credits :	2		Assessment : 40 -				
1	Syllabus	Syllabus:												
	Based of MATLAB course p	Based on the APSP syllabus (EEPSC 201A) the experiments has conducted practically with MATLAB/ETAP/MATPOWER environment minimum of 8 and maximum of 10 during their course period.												
2	Course (Course Outcomes (COs): students are able to												
	CO-1	CO-1 Conduct test on different types of electromechanical relays												
	CO-2	Conc	duct te	st on d	ifferen	t types	of micr	o-contr	oller re	lays				
	CO-3	Find dyna	soluti imics	ons fo	r the	numer	ical pro	blems	related	l to synd	chronous	machine		
3	MAPPIN	G												
	Cours	se					Program	Outcom	ies					
	1		1	2	3	4	5	6	7	8	9	10		
			3	1						1				
	2		3	1						3				
	3		3	1		1	3			1				

EEPSC				OPTI	MAL CO	ONTROL	THEOR	Y Lab				
202B	Instructi	ion : 2hr / w	eek		Credits : 2					ssessment : 40 + 60		
1	Syllabus	:										
	Based on the OCT syllabus (EEPSC 202A) the experiments has conducted practically with MATLAB/ETAP/MATPOWER environment minimum of 8 and maximum of 10 during their course period.											
2	Course Outcomes (COs): students are able to CO-1 Convert state space representation of the system into Jordan canonical form and test controllability and observability.											
	CO-2	Investigate methods	e the s	tability	ofa	system	by time	e doma	ain and	frequenc	y domain	
3	MAPPIN	IG										
	Cours	se				Program	Outcom	es				
	Outcol	1	2	3	4	5	6	7	8	9	10	
	1	3				3			1			
	2	3	1			3			1			

EE PSE 209		SEMINAR	
	Instruction : 3hr / week	Credits : 2	Assessment : 100
1	Syllabus:		
	The seminar topics are should topics from different subjects in For each seminar course, the based on the quality, depth ar	d be relevant to the current trend the semester. sessional marks for a maxim nd organization of contents,	s in field of power systems or the num of 100 shall be awarded documentation, presentation

	and answering capability of questions from the participants of the seminar.													
2	Course	Outco	mes (C	Os): st	udents	are ab	le to							
	CO-1	prepare comprehensive report based on literature survey/Topics related to different subjects in the semester												
	CO-2	Ider	Identify the applicability of modern software tools and technology.											
	CO-3	Deli	Deliver presentation based on the preparation											
	CO-4	Ans	Answer queries posed by the listeners.											
	CO-5	Cori	rect hin	nself to) impro	ove pre	sentatio	n skills.						
3	MAPPING													
	Course Outcomes		e Program Outcomes											
			1	2	3	4	5	6	7	8	9	10		
	1		3	1			3		3			1		
	2		1				3							
	3		3						3					
	4								3			1		
	5								3			3		

EE PSE 209	COMPREHENSIVE VIVA										
	Instruction :	Credits : 2	Assessment : 100								
1											
	The comprehensive viva examiner and two interr principal from among p concerned whereas, the i	shall be conducted by a committee of nal examiners. The external examiner banel of examiners recommended by internal examiners shall be nominated	consisting of one external shall be appointed by the the chairman, BOS (PG) by the HOD concerned.								

2	Course	Course Outcomes (COs): students are able to										
	CO-1Prepare comprehensively to answer questions from all the courses of two semesters.CO-2Attain Oral Presentation skills by answering questions in precise and concise manner.											es of two
	CO-3	Gain d	confid	lence a	nd inte	er-pers	onal skil	ls.				
3	MAPPIN	IG										
	Cour	se					Program	Outcom	es			
	Outcoi	mes	1	2	3	4	5	6	7	8	9	10
	1		3									
									3			
	3									3		

EE PSE 209			PROJECT WORK									
	Instructi	on : 3hr / week	Credits : 4	Assessment : 20 + 20 + 60								
1	The Eval 1. Conti 2. An oj 3. End- voce)	The Evaluation of the project work are to be carried out in the following way: . Continuous Evaluation through guide. 2. An open pre-submission seminar by the student. 3. End-semester University Examination (An open seminar followed by a Viva- voce)										
	Course (Dutcomes (COs): student	ts are able to									
	CO-1	Prepare comprehensive	e report based on literatu	port based on literature survey.								
	CO-2	Select a suitable probl life problems faced by	em relevant to power synthesis the society	stems with an attention to real								

	CO-3	Find	d soluti	on eith	er thrc	ough sir	mulatio	n or thro	ough pr	ractical w	vork.	
	CO-4 Present the results from the work comprehensively through presentation.											on.
	CO-5	Pres jour	resent his/her work in a conference or publish the work in a peer reviewed purnal									
3	MAPPIN	MAPPING										
	Cours	se nes	Program Outcomes									
	Outcomes		1	2	3	4	5	6	7	8	9	10
	1		3		3				3	3	3	1
	2		3	3	3	3	3	3		2	3	1
	3		3	3	3	3	3	2			3	2
			1						3		2	
	5		3			3			3		3	3