SRI VENKATESWARA UNIVERSITY: TIRUPATI S.V.U COLLEGE OF SCIENCES DEPARTMENT OF CHEMISTRY

Course

M.Sc. ENVIRONMENTAL CHEMISTRY

Choice Based Credit System (CBCS)

Academic Year 2017 - 18

Vision

Impart quality education & training in the field of chemistry to enable successful careers for the post graduate students in the field of research, education & industry applications of chemical sciences.

Mission

The Department of Chemistry strives:

- To get an ideal balance between knowledge creation and knowledge dissemination in the chemical sciences with a focus to train and mentor students to become responsible scientists and scientifically literate professionals to attain National and International impact.
- To contribute to the improvement of scientific and technological literacy, and the development of critical-thinking and problem-solving skills of all students in order to compete for the world of work and responsible citizenship

PROGRAM EDUCATIONAL OBJECTIVES:

At the end of the program, the student wills be able to:

PEO1	To demonstrate broad knowledge of descriptive chemistry.
PEO2	To impart basic analytical and technical skills to work effectively in various fields of chemistry.
PEO3	To motivate critical thinking and analysis skills to solve complex problems viz., analysis of data, synthetic logistics, spectroscopy, structure and modeling, team based problem solving etc.
PEO4	To demonstrate an ability to conduct experiments in the above sub disciplines with mastery of appropriate techniques and proficiency using core chemical instrumentation and modeling method
PEO5	To develop laboratory competence in relating chemical structure to spectroscopic phenomena.
PEO6	To demonstrate the ability to synthesize, separate and characterize compounds using published reactions, protocols, standard laboratory equipment and modern instrumentation.

PROGRAM OUTCOMES: On completion of M.Sc. Chemistry programme, graduates will be able to –

PO1	Have a firm foundation in the fundamentals and application of current chemical and scientific theories in different areas of chemistry <i>viz.</i> , Analytical, Environmental, Inorganic, Organic and Physical.
PO2	Understands the background of organic reaction mechanisms, complex chemical structures, and instrumental methods of chemical analysis, molecular rearrangements and separation techniques.
PO3	Familiarize with the importance of various elements present in the periodic table, coordination chemistry and structure of molecules, properties of compounds, structural determination of complexes using theories and instruments.
PO4	Understand about the physical aspects of atomic structure, dual behavior, reaction pathways with respect to time, various energy transformations, molecular assembly in nano-level,

	significance of electrochemistry, molecular segregation using their symmetry.
PO5	Create awareness and sense of responsibilities towards environment and apply knowledge to solve the issues related to Environmental pollution.
PO6	Continue to acquire relevant knowledge and skills appropriate to professional activities and demonstrate highest standards of ethical issues in the subject concerned. Ability to identify unethical behavior such as fabrication, falsification or misrepresentation of data and adoptive objective, unbiased and truthful actions in all aspects.
PO7	Be skilled in problem solving, critical thinking and analytical reasoning as applied to scientific problems.
PO8	Clearly communicate the results of scientific work in oral, written and electronic formats.
PO9	Explore new areas of research in both chemistry and allied fields of science and technology.
PO10	Design, analyze and carry out scientific experiments and interpret data to provide solutions to different industrial problems.
PO11	Independently carry out research to solve practical problems and present a substantial technical report.
PO12	Ability to think, acquire knowledge and skills through logical reasoning and to inculcate the habit of self-learning throughout life, through self- paced and self- directed learning aimed at personal development, and adapting to change academic demands of work place through knowledge/ skill development/ reskilling.

PROGRAM SPECIFIC OUTCOMES: At the end of the program, the student will be able to:

PSO1	Scientific Problem solving skills : Deep knowledge of the topic which can develop the problem solving skills using chemical principles.
PSO2	Analytical skills : Develop analytical skills such as synthesizing, separating, characterizing chemical compounds and chemical reactions with the help of sophisticated instruments
PSO3	Research skills : Develop research skills through dissertation/project work in different fields of chemistry such as organic, inorganic, analytical, physical and environmental.
PSO4	Learning skills on life processes : Acquire advanced level of knowledge in natural products as well as biological systems from the chemistry point of view.

SEMESTER-I

Sl.	Cours	Components of		No. of	IA	End	Total
No.	e Code	Study	Title of the Course	Credits	Marks	SEM	
		·				Exam Marks	
1	CHE- 101	Core-Theory	Inorganic Chemistry- I	4	20	80	100
2	CHE- 102	Core-Theory	Organic Chemistry I	4	20	80	100
3	CHE- 103	Core-Theory	Physical Chemistry- I	4	20	80	100
4	CHE- 104	Core-Practical	Inorganic Practical- I	2	-	-	50
5	CHE- 105	Core-Practical	Organic Practical-I	2	-	-	50
6	CHE- 106	Core-Practical	Physical Practical I	2	-	-	50
7	CHE- 107	Compulsory Foundation	General Chemistry-I	2	10	40	50
6	CHE- 108	Elective Foundation	an Values and Professional Ethics – I	4	20	80	100
		Total		24			600

SEMESTER-II

Sl.	Cours	Components of		No. of	IA	End	Total
No.	e Code	Study	Title of the Course	Credits	Marks	SEM	
1100		~ outury		010410	11101115	Exam	
						Marks	
1	CHE-	Core-Theory	Inorganic Chemistry- II	4	20	80	100
	201						
2	CHE-	Core-Theory	Organic Chemistry -II	4	20	80	100
	202						
3	CHE-	Core-Theory	Physical Chemistry- II	4	20	80	100
	203						
4	CHE-	Core-Practical	Inorganic Practical- II	2	-	-	50
	204						
5	CHE-	Core-Practical	Organic Practical-II	2	-	-	50
	205						
6	CHE-	Core-Practical	Physical Practical -II	2	-	-	50
	206						
7	CHE-	Compulsory	General Chemistry-II	2	10	40	50
	207	Foundation					
6	CHE-	Elective	an Values and Professional	4	20	80	100
	208	Foundation	Ethics – II				
		Total		24			600

SEMESTER-III

Course	Components of		No. of	IA	End SEM	Total
Code	Study	Title of the Course	Credits	Marks	Exam	
					Marks	

1	CHE-	Core-Theory	Physical Chemistry III	4	20	80	100
	EC-301						
2	CHE-	Core-Theory	Spectroscopy Applications	4	20	80	100
	EC-302						
3	CHE-	Core-Practical	Water Analysis	4	-	-	100
	EC-303						
4	CHE-	Core-Practical	Instrumental Methods of	4	-	-	100
	EC-304		Analysis-I				
5	CHE-	Generic Elective*	(a) Organic Chemistry III	4	20	80	100
	305	(Related to					
		subject)	Inorganic Spectroscopy &	4	20	80	100
			Thermal Methods of Analysis				
			(c) Green Chemistry				
6	CHE-	Open Elective	(a) Spectral Techniques	4	20	80	100
	306	(For other	or				
		departments)	(b) Chromatographic Techniques				
		Total		24			600

*Among the Generic Elective a student shall choose any two. SEMESTER-IV

	Course	Components of	Tr'a ea C	No. of	IA	End SEM	Total
	Code	Study	Title of the Course	Credits	Marks	Exam Marks	
1	CHE-EC- 401	Core-Theory	Water pollution Monitoring and Environment laws	4	20	80	100
2	CHE-EC- 402	Core-Theory	Air pollution, control Methods- Noise and Thermal pollution	4	20	80	100
3	CHE-EC- 403	Core-Practical	Instrumental Methods of analysis-II	4	-	-	100
4	CHE-EC- 404	Core-Practical/ Project work	Project work	4	-	-	100
5	CHE-405	Generic Elective* (Related to subject)	(a) Energy, Environment and Soils (b) Bioinorganic, Bioorganic & Biophysical	4 4	20 20	80 80	100 100
			(c) Chemistry of Nanomaterials & Functional meterials				
6	CHE-406	Open Elective* (For other departments)	(a)Drug Chemistry or (b) Electroanalytical Techniques	4	20	80	100
		Total		24			600

^{*}Among the Generic Elective a student shall choose any two.

Pre-requisite: Understanding of graduate level chemistry

Course Objectives:

- Comprehend the key features of coordination compounds, Crystal Field Theory, different properties and bonding by spectroscopic techniques
- Study the polymorphic forms of non-transition elements and their synthesis and properties
- Understand the basics of reaction mechanism and the mechanistic concepts of Dissociative (Id) and Associative interchange Mechanism (Ia), Taube's classification, Trans effect and Electron Transfer Reactions
- Familiarize with the methods of synthesis of metal carbonyls and metal nitrosyls, Synergistic effect, EAN and 18-electron rule.

Course	Course Outcomes: At the end of the course, the student will be able											
CO1	To unde	rstand the	key feat	ures of co	ordinatio	n compou	nds, Cryst	al Field Th	eory, ma	gnetic pr	operties	and
	bonding in transition metal complexes.											
CO2	To learn about the polymorphic forms of Carbon, Sulphur and Phosphorus, synthesis and properties of											
	sulphur-nitrogen compounds, boranes, carbides, silicates and to know Wades rules.											
CO3	To explain the reactivity of complexes in terms of Valence bond and Crystal Field theories, Taube's											
	classification, Trans effect and Electron Transfer Reactions.											
CO4	To gain	knowledg	ge on synt	hesis and	structure	s of differ	ent metal	carbonyls,	synergist	ic effect	and 18 e	lectron
	rule.											
			Mappi	ng of cou	irse outco	omes witl	ı the prog	ram outco	mes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	3	-	2	1	1	-	2	-	1
CO2	3	1	2	3	-	2	-	2	1	1	-	1
CO3	3	2	-	3	2		1		2	1	1	1
CO4	3	1	1	3	1	1	-	2	1	-	2	1

CHE 101: INORGANIC CHEISTRY I

UNIT-I: CO-ORDINATION COMPOUNDS

15 Hrs

Introduction to Crystal field Theory, CFSE and its calculation, Paring energy, Splitting of 'd' orbitals in Trigonal bi pyramidal, square planar, square pyramid and pentagonal bipyramidal geometries, Jahn –Teller effect, Application of CFT, OSSE, site Selection in Spinels, Short comings of CFT, Evidence for covalency –Nephelauxetic effect. MOT of co-ordinate bonds –M.O. Diagrams for octahedral, tetrahedral and square planar complexes. Experimental evidences for π - bonding – Crystallography, Infrared spectroscopy and Photoelectron spectroscopy.

UNIT-II: CHEMISTRY OF NON-TRANSITION ELEMENTS 15 Hrs

General characteristics of the non- transition elements special features of individual elements; Synthesis' properties and structure of their Halides and Oxides, Polymorphism of Carbon, Phosphorus and Sulphur, Synthesis, properties and structure of boranes, Carboranes, borazines, Silicates, Carbides, Sulphur-nitrogen compounds. Electron counting in boranes, Wades rules (Poly hedral skeletal electron pair theory), Isopopoly and hetero poly acids.

UNIT-III: REACTION MECHANISMS IN COMPLEXES 15 Hrs

Reactivity of metal complexes. Inert and Labile complexes. Concept of Labile and Inert complexes in terms of Valence bond and Crystal Field theories. Taube's classification of complexes as labile and inert complexes. Dissociative (D) and Dissociative interchange Mechanism (Id) & Associative (A) and Associative interchange Mechanism (Ia). Substitution reactions in octahedral complexes- Acid Hydrolysis -factors affecting Acid Hydrolysis - Base Hydrolysis-conjugate Base Mechanisms - Anation Reactions -Substitution Reactions in Square Planar complexes- Trans effect – Mechanisms of Trans effect: polarization and π -bonding theories. Electron Transfer Reaction-Inner Sphere and outer Sphere Mechanisms- Marcus theory.

Nature of π bonding, Classification of π ligands, π donor ligands and π -acceptor ligands.

Metal Carbonyls: Synthesis of metal carbonyls, Structures of metal carbonyls of the types M(CO)n (M= Cr, Fe, Ni; n=4-6), M₂(CO)n (M=Co, Fe, Mn; n=8-10), M₃(CO)₁₂ (M=Fe, Ru and Os), M₄(CO)₁₂ (M=Co, Rh, Ir). IR Spectraof metal carbonyls (i) Detection of bridging and terminal CO ligand, (ii) Synergistic effect, EAN and 18-electron rule. Electron counting methods (i) Oxidation state method and (ii) Neutral Atom method.

Metal Nitrosyls: Synthesis of metal Nitrosyls, bonding, Electron donation by nitric oxide, Models for NO bonding (i) Covalent model and (ii) Ionic models, Structures of metal nitrosyls (1) $[Fe_4S_3(NO)]$ (2) $[Fe_2(NO)_2I_2]$ (3) $[(\phi_3P)_2Ir(CO)Cl(NO)]^+$ (4) $[(\phi_3P)_2Ru(NO)_2Cl]$, Detection of bridging NO ligand, Applications of metal nitrosyls.

Books Suggested

- 1. F.A.Cotton and G. Wilkinson, Advanced In-organic chemistry VI Edition, 1999. John wiley & sons. Inc., New York.
- 2. James E. Huheey, Inorganic chemistry- Principles of structure and reactivity, VI Edition 1993. Harper Collins College Publishers, New York.
- 3. J.D. Lee: Concise Inorganic Chemistry (Blackwell)
- 4. Gary Wolfsburg: Inorganic Chemistry (5th Ed. (Viva Books)
- 5. W.L. Jolly: Modern Inorganic Chemistry (McGraw-Hill)
- 6. B.N Figgis: Introduction to Ligand Fields (John-Willey)
- 7. S.F.A. Kettle: Coordination compounds.
- 8. Coordination Chemistry. Bassalo & Jahnson.

Pre-req	uisite: U	nderstand	ing of gra	aduate lev	el Organ	ic Chemis	stry					
Course	Course Objectives:											
	Classify molecules based on stereochemical aspects study on optical and geometrical isomerism by the application											
of Cahn-Ingold-Prelog rules.												
• Familiarize with different types of substitution reactions, able to predict products, including stereochemistry in												
	aliphatic and aromatic nucleophilic substitution reactions, effect of neighboring group participation											
	lerstand t	-			-				•		-	
_	rams, trai	nsition st	ates and	intermed	iates, me	thods of	determin	ing mech	ianisms,	isotope e	effects in	reactive
	mediates		isolotio		es satablic		d armth oa	is of motor	سما مسمطیر	ata tamaan	oida	
	y about o							is of natu	rai produ	cis-terpen	ioias.	
Course	Juttonic	.s. At the	cha or th	e course,	ine stude	iii wiii 0C	aoic					
	CO1	To de	tect stere	ochemica	1 structur	es of the t	nolecules	stereose	lective ar	nd stereoc	ontrolled	
•	.01	reacti		ochemica	1 Siluctur	es of the f	Holecules	, siereose	iective ai	ia siereoc	onnonea	
	102			a starana	hamistm	of the pro	duota wit	h the offe	at of nois	ghbouring	orolla.	
•	CO2				•					on reaction		
		-	anism and				types of t	iromatic t	aosiitati	on reaction	no, men	
	CO3	To kn	ow the co	oncept of	isotope e	ffects, pot	tential end	ergy diagi	ams and	transition	states in	
			ent intern		•			<i>c, c</i>				
	CO4	To fa	miliarize :	with stere	eospecific	synthesis	of natur	ally occur	ring terne	enoids and	d degrada	tion
	.04		cts of ter		оврести	synthesis	or nature	iny occur	ing terpe	onords un	a degrada	
		1		•	irse outc	omes wit	h the pro	gram ou	tcomes			
	DO1	DO2				1			1	DO10	DO11	DO12
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	3	1	-	1	2	1	-	2	-
CO2	3	2	2	3		1	-	1	2	1	1	2
CO3	3	1	2	3	1	1	1	2		1	-	-
CO4	3	2	2	3	2	2	-	2	-	1	-	2

L-3,T-1,P-2

4Credits

CHE102: Organic Chemistry I

UNIT-I: Stereochemistry

CHE-102

Sereoisomerism-Stereoisomers Classification – Configuration and conformation.

Organic Chemistry I

Molecular Three dimensional representations: Wedge, Fischer, Newman and Saw-horse formulae, their description and interconversions.

Molecular Symmetry & Chirality: Symmetry operations and symmetry elements (Cn & Sn). Criteria for Chirality. Dissymmetrization.

Optical isomerism: Molecular Symmetry and Chirality-Cahn-Ingold-Prelog rules R, S-nomenclature, stereoisomerism resulting from more than one chiral center, meso and pseudoasymmetric compounds - **Axial Chirality** - Stereochemistry of allenes spiranes - biphenyl derivatives and atropisomerism - **Planar chirality** - Ansa compounds and trans - Cycloalkenes - **Helicity**. Helically chiral compounds

Geometrical isomerism - E, Z - nomenclature - Physical and Chemical methods of determining the configuration of geometrical isomers-Stereoisomerism in 3, 4 and 5-membered cyclic compounds.

UNIT-II: Substitution Reactions

i) Aliphatic Nucleophilic Substitutions: The S_N2 , S_N1 , mixed S_N1 and S_N2 , SET mechanisms. Reactivity- effects of substrates, attacking nucleophiles, leaving groups and reaction medium. Common carbocation rearrangements – primary, secondary and tertiary. The neighbouring group participation (NGP) -anchimeric assistance, NGP by σ and π - bonds, phenonium ions, norbornyl and norbornenyl systems, Classical and nonclassical carbocations, NGP by halogens and heteroatoms (O,N,S)

The S_N¹ and S_N2' mechanisms. Nucleophilic substitution at an allylic, and vinylic carbons.

ii. Aromatic Nucleophilic Substitution: The S_NAr , S_N1 , benzyne and $S_{RN}1$ mechanisms. Reactivity - effect of substrate, structure, leaving group and attacking nucleophile. The von Richter, Sommelet - Hauser and Smiles rearrangements.

UNIT-III: Reactive Intermediates

Types of reactions, types of bond cleavage mechanisms, generation, structure, stability and reactivity of carbocations, carbanions, free radicals, carbenes, nitrenes and arynes. Thermodynamic and kinetic requirements, kinetic and thermodynamic control, potential energy diagrams, transition states and intermediates, methods of determining mechanisms, isotope effects.

UNIT-IV: Terpenoids

Classification of terpenoids, occurrence, isolation, general methods of structure determination. Isoprene and special isoprene rule. Structure determination and synthesis of the following representative molecules: Farnesol, Zingeberine, Cadinene and Abietic acid.

Books Suggested:

- 1. Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, John Wiley.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J Sundberg, Plenum.
- 3. Structure and Mechanism in Organic Chemistry C.K. Inglod, Cornell University Press.
- 4. Organic Chemistry, R.T Morrison and R.N. Boyd, Prentice Hall.
- 5. Principles of Organic Synthesis, R.O.C Norman and J. M. Coxon, Blackie Academic.
- 6. Stereochemistry, P.S. Kalsi, Wiley Eastern.
- 7. Text book of Organic Chemistry, M.C. Murry
- 8. Organic Chemistry, Vol I, I.L. Finar, ELBS Eds.

CHE-10)3		Ph	ysical Ch	emistry	I	L-:	5,T-1,P-6		40	Credits	
Pre-req	Pre-requisite: Basic knowledge about Physical Chemistry											
Course	Course Objectives:											
• Acqu	• Acquire knowledge in Quantum Chemistry, postulates of Quantum Mechanics., Applications of Schrodinger wave											
equa	equation and Born-Oppenheimer approximation											
Stud	• Study on Chemical Dynamics and theories in unimolecular, chain and fast reactions and determination of reaction											
rates	rates.											
• Fami	iliarize w	vith conc	epts of 7	Γhermody	namics a	and statis	stical the	rmodynar	nics, Gib	bs- Duh	em equat	ion and
Sack	ur-Tetrad	le equatio	n									
• Knov	w about	Thermo	dynamic	and Kin	etic con	cept of	Electroch	emistry	and con	ductance,	conduct	ivity of
	rolytes											
Course	Outcome	es At the	end of the	course, t	he studen	it will be a	able to					
CO1	To kno	w the con	cepts suc	h as Oper	ator algel	ora, Eigen	values a	nd Eigen	functions	, Degener	acy, Schr	odinger
	wave e	quation a	nd the pos	stulates of	f Quantun	n Mechan	ics.					
CO2	To lear	n about th	neories of	reaction	rates, Lin	demann, l	Lindeman	ın-Hinshe	l wood, a	nd RRKN	A theories	3.
CO3	To kno	w about 7	Thermody	namic co	ncepts an	d entropy	change in	n reversib	le proces	s and irre	versible p	rocess.
					-	nodynami	_		1		1	,
CO4			_			-			and the o	lerivation	of Debye	-Huckle
			Verificati					1			•	
			Mappi	ing of cou	ırse outc	omes wit	h the pro	gram ou	tcomes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	3	2	1	-	2	1	2	1	1
CO2	3	1	2	3	1	1	1	-	2	1	-	1
CO3	3	2	1	3	2			3		1	2	2
CO4	3	2	2	3	-	1	1	-	1	2	-	2
			CHE	102. Db	sical Che			l		l		

CHE-103: Physical Chemistry I

UNIT-I: Quantum Chemistry-I

(A)Introduction to Exact Quantum Mechanical Results

Operator algebra, Eigen values and Eigen functions, Operators for momentum and energy, Degeneracy, Linear combination of Eigen functions of an operator, well behaved wave functions, Normalized and orthogonal functions, The schrodinger wave equation and the postulates of Quantum Mechanics, (B) **Applications of Schrodinger wave equation:** Particle in one dimensional and three dimensional box, harmonic oscillator, rigid rotor, hydrogen atom and its applications. Hydrogen like wave function, hydrogen like orbitals and their representation, polar plots, contour plots and boundary diagram. (C)**Approximate Methods:** The variation Theorem, Linear variation principle, perturbation Theory (first Order and non-degenerate), Application of variation Method and perturbation theory to the helium atom, The Born-Oppenheimer approximation.

UNIT-II: Chemical Dynamics

- (A)**Theories of reaction rates:** Collision theory, steric factor. Theory of Absolute Reaction Rates-Reaction coordinate, activated complex and the transition state. Thermodynamic formiulation of reacton rates.
- (B) **Unimolecular reactions:** Lindemann, Lindemann-Hinshel wood, and RRKM theories. Termolecular reactions. Complex reactions-Rate expressions for opposing, parallel and consecutive reaction (all first order type) (C) **Chain reactions:** Dynamic chain, hydrogen-bromine reaction, pyrolysis of acetaldehyde, decomposition of ethane, photochemical reactions- H₂-Br₂, H₂-Cl₂ reactions, Autocatalysis, H₂-O₂ reaction explosion limits. (D) **Fast Reactions:** Flow system Temperature and pressure Jump Methods Relaxation Techniques.

UNIT - III: Thermodynamics

(A) **Brief review of Thermodynamic concepts:** Enthalpy, entropy, free energy. Concept of Entropy –Entropy as a state function –Entropy change in reversible process and irreversible process – Temperature – Entropy diagrams – Entropy change and phase change – Entropy of mixing – Entropy and disorder. (B) **Statistical thermodynamics:** Partial molar properties: their significance and determination of partial molar properties, fugacity and its determination. Concept of distribution, thermodynamic probability and most probable Distribution, Ensemble averaging, postulates of ensemble averaging, canonical, grand canonical and micro- canonical ensembles, partition functions, translational, rotational, vibrational and electronic partition functions, Gibbs- Duhem equation, calculation of thermodynamic properties in terms of partition functions, Entropy of monatomic gases (Sackur-Tetrade equation)

UNIT-IV: Electrochemistry I

(A) Thermodynamic and Kinetic concept of Electrochemistry

Thermodynamic and Kinetic Derivation of Nernst Equation, Chemical and Concentration Cells with and without Transference, Liquid Junction Potential, Derivation of the Expression for Liquid Junction Potentials-its determination and elimination, Applications of EMF Measurements: (i)Solubility product, (ii)pH Determination, (iii) Potentiometric Titrations.; (B)Conductivity: Theory of Electrolytic Conductance, Derivation of Debye-Huckle Equation and its Verification, Debye-Falkenhagen Effect, and Wein Effect, kohlrausch law. Calculation of Solubility of Sparingly soluble Salt from Conductance Measurements.

Conductometric Titrations: Titration of Strong Acid Vs Strong Base (HCl vs NaoH); Titration of Weak Acid Vs Strong Base (AcoH vs NaoH); Titration of mixture of Strong and Weak Acids vs Strong Base; Precipitation Titrations.

Books Suggested

- 1. Physical Chemistry, P. W. Atkins (ELBS)
- 2. Quantum Chemistry, Ira N. Levine (Prentice Hall)
- 3. Atomic Structure and Chemical bond, Manas Chandra.
- 4. Chemical Kinetics, K.J. Laidler (Mc Graw Hill)
- 5. Kinetics and Mechanism of Chemical Transformations, J. Rajaraman and J. Kuriacose (Mcmilan)
- 6. Thermodynamics for chemists, S. Glasstone
- 7. Chemical thermodynamics, I.M. Klotz
- 8. Statistical Thermodynamics, M. Dole
- 9. Modern Electrochemistry, Vol. I & II, J.O. M. Bockris and A.K.N. Reddy (plen
- 10. An Introduction to Electrochemistry (3rded.), S. Glasstone (Affiliated East-West).

CHE 10	4			Core pra	ctical I: Chemistry		L-:	5,T-1,P-0		2	Credits	
Pre-reg	uisite: Ur	nderstand				nic Chem	istry prac	tical.				
	MICRO (
	Basic labo	•				•						
•	Quantitati	ve estima	ation of in	organic c	ompound	ls through	volumet	ric technic	ques.			
Course	Outcome	s: At the	end of th	e course,	the stude	nt will be	able					
CO1	To demo	nstrate m	nastery of	basic sen	ni-micro d	qualitative	analysis	of simple	salts and	interpret	s analytic	al data
	and will	make sci	entific cla	ims that a	are suppo	rted by the	e observa	tions.		-	•	
						•						
CO2	To famili	arize wit	th techniq	ues of titi	ation and	calculation	on of erro	ors				
CO3												
CO4												
			Mappi	ing of cou	ırse outc	omes witl	h the pro	gram ou	comes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	2	-	1	1	-	1	2	-
CO2	3	2	2	3	1	1	-	1	2	1	1	2
CO3												
CO4												

CHE 104: Core practical I: Inorganic Chemistry

Semi Micro Qualitative Analysis

I. Qualitative Analysis of a mixture containing four cations including two less common cations (viz., W, Mo, Se, Te, V, Ce, Th, Zr, Li and U).

C	HE 105			Core pr	actical I	:		L-5,T-1,	P-0		2 Cre	dits	
			(Organic (CheImist	ry							
Pre-rec	quisite: U	nderstand	ing of gra	aduate lev	el Organi	ic Chemist	ry practi	cal.					
Course	Objectiv	es:											
• Iden	tification	of single	organic c	omponen	t by syste	matic qua	litative a	nalysis					
• Sing	gle step pr	eparation	S										
Course	Outcome	es: At the	end of th	e course,	the stude	nt will be	able						
CO1	To famil	liarize the	systema	tic proced	dures of a	analysis of	organic	compone	ents, conf	formation	al tests fo	r various	
	To familiarize the systematic procedures of analysis of organic components, conformational tests for various functional groups.												
CO2	To unde	erstand t	he mech	anisms a	nd famil	liarize wi	th meth	odologies	to prep	are biolo	ogically	important	
	molecule	es.											
CO3													
CO4													
			Mapp	ing of cou	ırse outc	omes with	the pro	gram out	tcomes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	2	3	1	2	2	1	2	-	2	-	
CO2	3	2	2	3	2	2	-	1	1	2	-	2	
CO3													
CO4													

CHE: 105: PRACTICAL – II: ORGANIC CHEMISTRY

Identification of single organic component by systematic qualitative analysis.

Aromatic acids

Phenols

Neutral compounds

Esters

Carbonyl compounds etc.

- b) Single step preparations.

 1. Preparation of aspirin

 - 2. Preparation of p-nitroacetanilide
 - 3. Preparation of p-bromoacetanilide
 - 4. Hydrolysis

Cl	HE 106]	-	actical I: CheImist			L-5,T-1,	P-0		2 Cre	dits
Pre-req	uisite: U	nderstand	ling of gra	aduate lev	el Physic	al Chemi	stry pract	ical.	•			
	Objective		al solution	ı temnera	ture eute	etic comr	osition a	nd temper	ature of h	inary sys	tem	
Bett	Timmation	i or critici	ur sorution	тетрега	iture, eute	etie comp	osition a	id temper	arare or c	mary sys	tem.	
Course	Outcome	es: At the	end of th	e course,	the stude	nt will be	able					
CO1	To study	the deter	mination	of critica	l solution	temperat	ure, eutec	tic compo	osition, di	stribution	oefficie	ent,
	adsorption	on of diffe	erent									
CO2	To calib	rate the st	atistical d	lata								
CO3												
CO4												
			Mappi	ing of cou	ırse outc	omes wit	h the pro	gram out	comes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	-	2	2	1	-	2	1	1
CO2	3	2	2	2	1	2	-	1	1	2	-	2
CO3												
CO4												

CHE: 106: PRACTICAL – III: Physical Chemistry

Syllabus

- Calibration of volumetric apparatus and statistical analysis of the data.
- Determination of critical solution temperature of phenol-water system and study the effect of electrolyte on CST.
- Determination of Eutectic composition and temperature of binary system
- Determination of distribution coefficient of benzoic acid between water and benzene.
- Study the adsorption of acetic acid on charcoal and analysis of the data on the basis of Langmuir and Freundlich adsorption isotherms.
- Determination of rate constant of acid hydrolysis of an ester and investigate the effect of catalyst concentration, reactant concentration and temperature.

					•			, ,						
Pre-re	Pre-requisite: Understanding of graduate level Chemistry													
Course	e Objectiv	es:												
• Gain	knowledg	e on prec	ision and	accuracy	, Limit o	f detection	n, Limit	of determ	nination,	Sensitivit	ty and sel	ectivity,		
	tical evalu													
	liarize wit		les and co	oncepts o	of flame e	emission s	pectrosc	opy and a	ntomic ab	sorption	spectrosc	opy and		
their	application	1S .												
Course	e Outcom	es: At the	end of th	e course,	the stude	nt will be	able							
CO1	To know	about me	an and m	edian val	ues, stand	lard devia	tion and	coefficien	t of varia	tion.				
CO2	To acqui	re knowle	edge on pi	rinciple a	nd instrun	nentation	of AAS a	ınd differe	ence betw	een flame	e AAS an	d		
	furnace A		0 1	•										
CO3														
CO4														
	1		Mappi	ing of cou	irse outc	omes with	the pro	gram out	comes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
G01	2	2	1	2	1	2.		2.		1	1	2		
CO1	3	2	1	3	1	2	-	_	-	1	1	_		
CO2	3	2	2	3	1	-	2	1	-	2	-	2		
CO3														
CO4														
					CITETA	7. Conoro		4 T						

L-5,T-1,P-0

2 Credits

CHE107: General Chemistry I

UNIT-I: TREATMENT OF ANALYTICAL DATA

15 Hrs

Precision and accuracy —mean and median values —Standard deviation — coefficient of variation, Types of errors: Determinate and indeterminate errors, confidence limits, significant figures, computations, minimization of errors, statistical evaluation of data —T-test ,F- test , and X^2 —test. Correlation coefficient and coefficient of determination; Limit of detection (LOQ); Limit of determination(LOD) Sensitivity and selectivity of an analytical method.

UNIT-II: FLAME EMISSION AND ATOMIC ABSORPTION SPECTROSCOPY 15 Hrs

General Chemistry I

- (a) Flame Emission Spectroscopy: Principles, chemical reactions in flames, Interferences, evaluation methods, flame photometer and experimental technique, procedure for determinations, limitations and disadvantages. Applications
- (b)Atomic Absorption Spectroscopy: Flame AAS: Principle, Instrumentation Sources of radiation (HCL and EDL), Different types of burners, Interferences- Physical, Chemical, spectral and back ground correction, and methods of minimization
- GF AAS: Principle and technique –Comparison between Flame AAS and furnace AAS, Applications of AAS, Comparison between Atomic Absorption & Flame Photometry.

Books Suggested

CHE-107

- 1. H.W. Willard, LL. Merritt and J.A. Dean: Instrumental Methods of Analysis
- 2. Vogel's Text book of Quantitative Inorganic Analysis.
- 3. Analytical Chemistry
- 4. Instrumental Methods of Analysis H. Kaur

CHE 108	Human Values and Professional Ethics-I	L-3,T-1,P-2	4 Credits								
D											

Pre-requisite: Understanding of graduate level Human Values and professional ethics

Course Objectives:

- Analyze values in various ethical professions
- Understand moral concepts, character and conduct multiple
- · Concept of ethical values with respect to individual and society
- ethical interests at stake in areal-world situation or practice and assess own ethical values with respect to social context and problems

Course Outcomes: At the end of the course, the student will be able to

CO1	To know about the needs and importance of professional ethics.
CO2	To analyze nature of Values, basic Moral Concepts character and Conduct.
CO3	To gain knowledge on individual and society ethical values, ahimsa, satya and brahmacharya.
CO4	To understand values of Bhagavd Gita, various religions, religious tolerence, Gandhian ethics.

			Mappi	ng of cou	irse outc	omes wit	h the pro	gram out	comes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	1	3	2	1	1	2	3	-	1	2
CO2	3	-	2	3	1	2		2	3	2	-	2
CO3	3	1		3	2		1				1	3
CO4	3	1	2	3		2	2	2	2	2	-	3

CHE 107: ELECTIVE FOUNDATION (HUMAN VALUES AND PROFESSIONAL ETHICS - I)

Chapter I: Definition and Nature of Ethics – Is relation to Religion, Politics, Business, Law, Medicine and Environment. Need and Importance of Professional Ethics – Goals – Ethical Values in Various Professions.

Chapter II: Nature of Values – Good and Bad, Ends and Means, Actual and Potential Values, Objective and Subjective Values, Analysis of Basic Moral Concepts – Right, Ought, Duty, Obligation, Justice, Responsibility and Freedom, Good Behavior and Respect for Elders, Character and Conduct.

Chapter III: Individual and Society: Ahimsa (Non-Violence), Satya (Truth), Brahmacharya (Celibacy), Asteya (Non Possesion) and Aparigraha (Non-stealing). Purusharthas (Cardinal virtues) - Dharma (Righteousness), Artha (Wealth), Kama (Fulfillment Bodily Desires), Moksha (Liberation), Crime and Theories of Punishment – (a) Reformative, Retributive and Deterrent, (b) Views on Manu and Yajnavalkya

Chapter IV: Bhagavd Gita – (a) Niskama Karma, (b) Buddhism – The Four Nobel Truths – Arya astanga marga, (c) Jainism - Mahavratas and Anuvratas. Values Embedded in Various Religions, Religious Tolerence, Gandhian Ethics.

Books for study:

- 1. Johns S Mackenjie: A Manual of ethics
- 2. "The Ethics of Management" by Larue Tone Hosmer, Richard D. Irwin Inc.
- 3. "Ethics in Management" by S.A. Shelekar, Himalaya Publishing House.
- 4. Harold H. Titus: Ethics for Today
- 5. Maitra, S.K: Hindu Ethics
- 6. William Lilly: Introduction to Ethics
- 7. Manu: Manava Dharma Sastra or the Institute of Manu: Comprising the Indian System of Duties: Religious and Civil (ed) G.C. Haughton.
- 8. Sasruta Samhita: Tr. Kaviraj Kunjanlal, Kunjanlal Brishagratha, Chowkamba Sanskrit Series, Vol I,II and III, Varanasi, Vol I PP, 16-20, 21-32 and 74-77 only.
- 9. Charaka Samhita: Tr. Dr. Ram Karan Sarma and Vaidya Bhagavan Dash, Chowkambha Sanskrit Series Office. Varanasi I, II, III Vol I PP 183-191.
- 10. Ethics, Theory and Contemporary Issues. Barbara Mackinnon, Wadsworth/Thomson Learning, 2001.

- 11. Analyzing Moral Issues, Judith A. Boss, Mayfield Publishing Company, 1999.
- 12. I.C. Sharma Ethical Philosophy of India. Nagin& Co Julundhar.

CHE -	201		Inorga	nic Chemi	stry II			L-5, T-1	, P-0	4	Credits	
Pre-req	quisite: U	nderstand	ing of gra	duate leve	l chemis	try				· ·		
Co	ourse Ob	jectives:										
	Understar synthesis.	_	etic prope	rties of tr	ansition	metal co	omplexes	and variou	is reactio	ons on lig	ands with	respect to
•	Gain knov	wledge or	electron	ic spectra o	of compl	ex moleci	ules of oc	tahedral and	d tetrahed	lral geome	try	
•	Understar	nd magne	etic prope	rties viz.,	diamag	netism ar	nd parama	agnetism a	nd other	related p	roperties o	f complex
:	molecules	S										
•	Familiariz	ze with di	fferent ca	talytic read	ctions of	complex	molecule	s and factor	s effectin	g the reac	tions.	
Course				e course, tl								
CO1	To famil	liarize wi	th the gen	eral metho	ds of co	mplex pre	parations	and proper	ties, natu	re of bond	ing and str	uctural
	features	of metal	complexe	s.								
CO2	To know	about R	ussel-Sau	nders coup	oling, spl	itting of e	energy lev	els in octah	edral fiel	d and diffe	erentiate be	etween
	Orgel di	agrams aı	nd Tanabe	e-Sugano d	liagrams							
CO3	To unde	rstand ab	out the lav	ws of Hund	ds, Curie	and Weis	ss, magne	tism and m	agnetic sı	ısceptibili	ty determin	ation by
			ly method									
CO4	To gain	knowledg	ge on Indu	iced reacti	ons, Free	e radical r	eactions,	Thermal de	composit	ion reaction	ons, Chain 1	reactions.
			Maj	pping of c	ourse ou	itcomes v	vith the p	rogram ou	tcomes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	-	2	1	2	-	2	-	1
CO2	3	1	1	3	1	2	-	2	-	1	-	1
CO3	3	-	2	3	-	2	1	-	2	1	1	-
CO4	3	1	1	3	1	2	-	1	-	1	-	1

CHE 201: INORGANIC CHEISTRY II

UNIT - I: TRANSITION METAL II - COMPLEXES П

15 Hrs

Transition metal π – complexes with unsaturated organic molecules – alkenes, alkynes, diene, dienyl and Cyclopentadienyl complexes and arene complexes-general methods of preparation, properties, nature of bonding and structural features – Important reactions relating to Nucleophilic and Electrophilic attack on ligands and to organic synthesis.

UNIT - II: ELECTRONIC SPECTRA OF COMPLEXES

Russel-Saunders coupling – Spectroscopic term symbols- Derivation of term symbols of p² and d² configuration, Hole Formulation, Energy ordering of terms (Hund's Rules), Splitting of energy levels and spectroscopic states in Octahedral field, Selection rules - Break - down of selection rules, Orgel diagrams, Definition and utility-Orgel Diagrams for d1 to d9 configurations in Octahedral and tetrahedral fields. Interpretation of electronic spectra of high spin octahedral and tetra hedral complexes of Ti(III), V(III), Cr(III), Mn(II), Mn(II), Fe(III), Co(III), Co(III), Ni(II) and Cu(II) complexes, Calculation of Dq and B¹ parameters for Cr(III) and Ni(II) complexes. Tanabe – Sugano diagrams, Differences between Orgel diagrams and Tanabe – Sugano diagrams, Tanabe – Sugano diagrams of d² to d⁶ and d⁸ configurations. Charge transfer spectra- LMCT and MLCT.

UNIT - III: MAGNETIC PROPERTIES OF TRANSITION METAL COMPLEXES 15 Hrs

Diamagnetism and paramagnetism-orbital and spin contributions, spin-orbit coupling, Hunds third rule and Energies of J levels - Curie law and Curie - Weiss law- Ferromagnetism and antiferromagnetism - Temperature independent magnetism Magnetic susceptibility and its determination by Gouy's and Faraday methods. Calculation of magnetic moment from magnetic susceptibility, spin-only formula, Orbital contribution to magnetic moment (Oh and Td Complexes) -Paramagnetism and crystalline fields - Ti (III), V (III), VO²⁺, Cr (III), Mn (II), Fe (III), Co(II), Ni (II) and Cu (II). Magnetic Exchange in copper acetate and other dimmers – spin cross over in complexes.

UNIT -IV: CATALYSIS

Homogeneous catalysis, Metal ion catalyzed reactions - Redox potentials and processes - Mechanism of redox processes involving ligands - Factors affecting redox potentials - other types of metal catalyzed reactions - Reactions involving Ag (I), Cu (II) and Os (VIII) - Reactions of Oxyanions - Factors affecting rate (General discussion only) - Induced reactions - Free radical reactions – Thermal decomposition of peroxy disulphate – Fe(III) –S₂O₈ reactions – chain reactions – H-Br reactions, H₂O₂ – S₂O₈reactions.

Books Suggested

Inorganic Chemistry principles of Structure and Reactivity 6th Edition. James E. Huheey.

- 2. Organometallic Chemistry: R.C. Mehrotra and Singh.
- 3. R. S. Drago: Structural methods in Inorganic Chemistry.
- 4. H. H. Willard, L. L. Merritt, Jr., J. A. Dean and F. A. Settle, Jr.: Instrumental Methods of Analysis (CBS Publishers).
- 5. R. L. Carlin: Magnetic Chemistry. R. L. Datta and A. Syamal: Elements of Magnetic Chemistry.

CHE-202	Organic Chemistry II	L-3, T-1, P-2	4 Credits

Pre-requisite: Understanding of Organic Chemistry

Course Objectives:

- Able to recognize, classify, explain, and apply fundamental organic reactions such as E₂, E₁, E_{1CB}.
- Familiar with molecular rearrangements involving electron deficient carbon, nitrogen and oxygen atoms and electron rich carbon atom.
- Provide Hantzsch-Widmann nomenclature for the three and four membered heterocycles. Be able to predict synthetic routes and chemical reactions of these heterocycles.
- Be familiar with occurrence, isolation, structural elucidation and synthesis of natural products- alkaloids

Course Outcomes: At the end of the course, the student will be able CO1 To familiarize the mechanisms of E ₁ , E ₂ and E _{1CB} reactions, steroselectivity and synpyrolytic														
CO1	To fan	niliarize t	he mech	anisms o	f E ₁ , E ₂	and E _{1CB}	reaction	s, sterose	lectivity	and s	ynpyroly	tic		
	elimina	Eliminations and use of isotopes, chemical trapping and crossover experiments. To learn the rearrangements involving electron deficient carbon, nitrogen and oxygen atoms and electron												
CO2	To lea	rn the rea	arrangem	ents invo	lving elec	ctron defi	cient carb	on, nitro	gen and	oxygen at	oms and	electron		
	rich car	bon atom	and fam	iliarize w	ith the lin	nitations a	and applic	ations of	reactions					
CO3	To lear	n the synt	thesis of t	hree and	four men	bered he	terocycles	s, mechan	ism of rir	ng openin	g reaction	ns and		
	the effe	ct of elec	tron dona	ting and	withdraw	ing substi	tuents in	selectivity	of ring o	opening re	eactions.			
CO4	To und	erstand th	e structui	al elucida	ation and	synthesis	of alkalo	ids using	specific r	eagents.				
			3.7			•,	1 41							
			Mappi	ing of col	irse outc	omes wit	n tne pro	gram out	comes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	2	2	3	-	2	1	1	2	-	1		
CO2	3	3	2	2	3	2	2	-	1	-	1	1		
CO3	3	3	2	2	3	2	2	1	1	1	2			
CO4	3	3	2	2	3	-	2	-	1	1	-	1		

CHE- 202 : ORGANIC CHEMISTRY II

UNIT-I: Reaction mechanism-I

15 Hrs

Electrophilic addition to carbon carbon double bond: Stereoselective addition to carbon carbon double bond; anti addition-Bromination and epoxidation followed by ring opening. Syn addition of OsO₄ and KMnO₄.

Elimination reactions Elimination reactions E_2 , E_1 , E_{1CB} mechanisms. Orientation and stereoselectivity in E_2 eliminations. Pyrolytic syn elimination and α -elimination, elimination Vs substitution. Facors influencing the elimination reactions

Determination of reaction mechanism: Determination of reaction mechanism: Energy profiles of addition and elimination reactions, transition states, product isolation and structure of intermediates, use of isotopes, chemical trapping, crossover experiments. Use of IR and NMR in the investigation of reaction mechanism.

UNIT-II: Molecular Rearrangements:

15 Hrs

Rearrangements to electron deficient Carbon atom:

Pinacol-Pinacolone, Wagner-Meerwein, Dienone-Phenol and Demjonove Rearrngements

Rearrangements to electron deficient Nitrogen atom:

Hofmann, Curtius, Schimidt and Beckmann Rearrangements.

Rearrangements to electron deficient Oxygen atom: Baeyer-Villiger and Dakins Rearrangements

Rearrangements to electron rich Carbon atom: Favorski and Neber Rearrangements

Aromatic and Sigmatropic Rearrangements: Fries and Claisen Rearrangements

UNIT III: Three and four membered heterocycles:

15 Hrs

Systematic nomenclature (Hantzsch-Widmann system) and Replacement nomenclature for monocyclic heterocycles (Three and four membered rings). Synthesis and chemical reactions of aziridines, oxiranes, thiiranes, azetidines, oxetanes, and thietanes.

UNIT-IV: Alkaloids 15 Hrs

Occurrence, isolation, general methods of structure elucidation and physiological action, degradation, classification based on nitrogen heterocyclic ring, structure elucidation and synthesis of the following: Atropine, Papaverine and Quinine.

Books Suggested:

- 1. Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, John Wiley.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J Sundberg, Plenum.
- 3. Structure and Mechanism in Organic Chemistry C.K. Inglod, Cornell University Press.
- 4. Organic Chemistry, R.T Morrison and R.N. Boyd, Prentice Hall.
- 5. Modern Organic Reactions, H.O. House, Benjamin.
- 6. Principles of Organic Synthesis, R.O.C Norman and J. M. Coxon, Blackie Academic.
- 7. Stereochemistry, P.S. Kalsi, Wiley Eastern.
- 8. Text book of Organic Chemistry, M.C. Murry
- 9. Text book of Organic Chemistry, Fessendon and Fessendon.
- 10. Text book of Organic Chemistry, T.W. Solomon,
- 11. Organic Chemistry, Vol II, I.L. Finar, ELBS Eds.
- 12. Heterocyclic chemistry T.L Gilchrist, Longman Scientific Technical
- 13. An Introduction to the Heterocyclic compounds, R M Acheson, John Wiley.

CHE -	203		Ph	ysical ch	emistry l	I	L-	5,T-1,P-6		4	Credits	
Pre-re	quisite: B	asic know	ledge abo	out Physic	al Chemi	stry			_			
Cours	e Objectiv	es:										
• Lea	ırn Angula	r moment	tum and N	/lolecular	Orbital T	heory and	d applicat	tion of Hu	ckel theo	ry to orga	nic mole	cules.
• Kn	ow about c	oncepts i	n Surface	Chemistr	y, concep	ot of elect	ric double	e layer mo	odel and l	Micelles.		
• Get	knowledg	e on sym	metry and	l group th	eory their	r use in sp	pectrosco	py, Mullik	cen char	acter tabl	es.	
	derstand Ir							ectrolysis	and pola	rography.		
Cours	e Outcomes At the end of the course, the student will be able											
CO1	1 To know about Pauli Exclusion principle and Slater determinant, atomic orbitals, Simple molecular orbitals and											
	Huckel th	neory of c	conjugated	l systems	•					•		
CO2	To learn	Gibbs ads	sorption is	sotherm,	BET equa	tion and	correlate	limitation	s, critical	micellar	concentra	ntion
	(CMC) a	nd factors	s affecting	g the CMO	C of surfa	ctants.						
CO3	To identi	fy Relation	on betwee	n order o	f a finite g	group and	l its sub-g	group, con	jugacy, S	ymmetry	point gro	oup (MLS,
	N	IHS and I	MSS) and	orthogor	ality theo	orem.						
CO4	To acqui	re know	ledge on	DC-Pola	rography,	, AC-Pol	arograph	y, Contro	lled Pote	ntial Ele	ctrolysis,	to derive
	equation	for Tafel	plots, hal	f-wave po	otentials f	or reversi	ible syste	m.				
		M	apping	of cour	se outco	omes wi	ith the j	progran	n outco	mes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	3	-	2	1	1	-	1	1	1
CO2	3	2	2	3	2	2	2	-	2	-	2	-
CO3	3	2	2	3	-	-	1	1	-	1	1	1
CO4	3	2	-	2	2	1	1	-	2	1	1	1

CHE-AC-203 Physical Chemistry III

UNIT-I: Quantum Chemistry-II

15 Hrs

- (A) Angular momentum: Angular momentum, Rotations and angular momentum, Eigen functions and Eigen values of angular momentum, Ladder operator, addition of angular momenta, spin, antisymmetry and pauli Exclusion principle. Slater determinant.;
- (B) Molecular Orbital TheoryAtomic Orbitals, Simple Molecular Orbitals, Hybrid Atomic Orbitals, Shapes and energies of Molecular Orbital, Systems of Organic Molecules (Ex: Methane, Ethylene, Acetylene). Huckel theory of conjugated systems, Π-bond order and charge density calculations, application of Huckel theory to ethylene, butadiene and benzene.

UNIT-II: Surface Chemistry

15 Hrs

Surface tension, capillary action, pressure difference across curved surface, (Laplace equation), vapour pressure of droplets (Kelvin equation), Gibbs adsorption isotherm, BET adsorption isotherm, derivation of BET equation, limitations of BET equation, estimation of surface area from BET equation, Surface films on liquids. Concept of electric double layer model-Helmholtz perrin, Gouy- Chapman and stern models (no derivation)

Micells: Surface active agents, classification of surface active agents micellisation, hydrophobic interaction, critical micellar concentration (CMC), factors affecting the CMC of surfactants, thermodynamics of micellisation, emulsions, reverse micelles.

UNIT-III: SYMMETRY AND GROUP THEORY

15 Hrs

Definition of a group, rules that are set for a group, sub-group, order of a group, Relation between order of a finite group and its sub-group, conjugacy relation and class of a group, symmetry elements and symmetry operation. Symmetry point group (MLS, MHS and MSS), Schoenflies symbols - Representation of groups by matrices (representation for C_n , C_{nv} , D_{nh} etc. groups to be worked out explicitly), character of a representation, group multiplication tables, reducible - irreducible representations The great orthogonality theorem (without proof) - character tables ($H_2O_1NH_3$) and their use in spectroscopy, Mulliken character tables.

UNIT-IV: ELECTROCHEMISTRY-II

15 Hrs

Irreversible Electrode phenomenon: Reversibility and irreversibility, Dissolution and deposition potentials, Decomposition voltage, overvoltage, diffusion overvoltage, charge transfer overvoltage, concentration overvoltage-hydrogen and oxygen overvoltages, Tafel plots, Exchange current density and Transfer coefficient, Butler-Volmer equation for one electron transfer processes.

Polarography: Theory, classification, principle, Instrumentation of Polarography, DME, HMDE diffusion current, Ilkovic equation, DC-Polarography, AC-Polarography, Controlled Potential Electrolysis, Millicoulometry, Equation for half-wave potentials, for reversible system when oxidant alone, reductant alone and both are present.

Books Suggested

- 1. P.W. Atkins: Physical Chemistry (ELBS).
- 2. Ira N. Levine: Quantum Chemistry (Prentice Hall).
- 3. R. Mcweeny: Coulson's Valence (ELBS).
- 4. J.O.M. Bockris and A.K.N. Reddy, Modern Electrochemistry, vol.I & II (Plenum).
- 5. S. Glasstone; An Introduction to Electrochemistry (3rd ed.)(Affiliated East-West).
- 6. V. Moroi: Micelles, theoretical and applied aspects (Plenum).
- 7. Maron and prutton: principles of physical Chemistry.
- 8. Silbey, Alberty, Bawendi. Physical Chemistry. Jhon-Wiley & Sons. 4th edition-2006.
- 9. D.N. Bajpai: Advanced physical Chemistry: S. Chand & Company, 1998.

CHE 2	04			Core pra	actical I:		L	-5,T-1,P-	0	2	Credits			
			In	organic	Chemisti	ry								
Pre-rec	quisite: U	nderstan	ding of g	raduate le	evel Inorg	anic Che	mistry pra	actical.						
SEMI	MICRO (QUALIT	TATIVE	ANALY	SIS									
	Treparation of metal complexes													
Course	Outcom	Outcomes: At the end of the course, the student will be able												
CO1	CO 1: To separate and determine the two component mixtures.													
CO2	CO 2: To acquire knowledge in the preparation of metal complexes													
CO3														
CO4														
			Марр	oing of co	ourse out	comes w	ith the pi	ogram o	utcomes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	2	3	2	1	-	2	-	3	3	1		
CO2	3	2	2	3	-	1	2	-	2	3	3	1		
CO3														
CO4														

CHE 204: Core practical I: Inorganic Chemistry

I. Quantitative Analysis:

Separation and determination of two component mixtures:

- (i) Separation of Al(III) and Determination of Fe (III)
- (ii) Separation of Cu(II) and Determination of Zn (II)
- (iii) Separation of Ca(II) and Determination of Mg (II)
- (iv) Separation of Cu(II) and Determination of Ni (II)
- (v) Determination of Ferrocyanide and Ferricyanide

II. Preparation of Metal Complexes:

- (i) Tetra(ammine) copper (II) sulphate.
- (ii) Mercury tetra(thiocyanato) cobaltate(II).
- (iii) Hexa(ammine) Nickel (II) chloride.
- (iv) Tris(acetylacetonato) Manganese (III) chloride.
- (v) Tris (ethylenediammine) Nickel (II) thiosulpha

CI	Objectives: iliarize with two component mixture separation and identification. aration of derivatives and purification by different methods												
			•	Organic (CheImist	ry							
Pre-req	Pre-requisite: Understanding of graduate level Organic Chemistry practical.												
Course	Objective	es:											
• Fam	iliarize wi	th two co	mponent	mixture s	separation	n and iden	tification	l .					
• prep	preparation of derivatives and purification by different methods												
Course	Course Outcomes: At the end of the course, the student will be able												
CO1	CO1 To familiarize with binary mixture separation and to gain hands-on-experience in purification of the												
CO2	To get knowledge about the chemical behavior of different components and mechanisms.												
CO3													
CO4													
			Mappi	ing of cou	ırse outc	omes witl	h the pro	gram ou	tcomes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	2	3	2	-	1	2	-	1	1	1	
CO2	3	2	2	3	-	2		1	2	1	-	2	
CO3		-											
CO4													

CHE: 205: PRACTICAL - II: ORGANIC CHEMISTRY

Separation and Identification of two component organic mixture by systematic qualitative analysis.

Binary mixture of

Acid + Neutral

Phenol + Neutral

Base + Neutral

Acid + Ether insoluble component

Phenol + Ether insoluble component

Base + Ether insoluble component

CI	HE 206			Core pr	actical II	:		L-5,T-1,	P-0		2 Cr	edits	
]	Physical (CheImist	ry							
Pre-req	Pre-requisite: Understanding of graduate level Physical Chemistry practical.												
Course	Objectiv	es:											
• Fam	iliarize w	th condu	ctometric	, potentio	metric an	d redox n	nethods o	f analysis					
• Colo	Colorometric and pHmetric methods of analysis												
Course	Course Outcomes: At the end of the course, the student will be able												
CO1	To study the determination of cell constant and verification of Onsagar equation, strength of strong												
CO2	To get knowledge on the applications of conductometry, potentiometry, coulometry and pH metry.												
CO3													
CO4													
			Mappi	ing of cou	ırse outc	omes wit	h the pro	gram out	comes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	2	3	3	1	1	2	-	1	1	1	
CO2	3	2	2	3	2	1	1	-	2	1	-	2	
CO3													
CO4													

CHE: 106: PRACTICAL – III: Physical Chemistry

Syllabus

1. Conductometry:

- (a) Getermination of cell constant
- (b) Verification of Onsagar equation
- (c) Determination of dissociation constant of a weak acid
- (d) Titration of a strong acid with a strong base
- (e) Titration of a weak acid with a strong base

2. Potentiometry:

- (a) Titration of a strong acid with a strong base
- (b) Titration of a weak acid with a strong base
- (c) Redox titration
- 3. Coulometry: Estimation of Manganese
- 4. pH metry: Strong acid, Strong base titrations.

CHE-	207		Gei	neral Cho	emistry I	I	L-	5,T-1,P-0		2	Credits			
Pre-req	Pre-requisite: Understanding of graduate level Chemistry													
Course	Course Objectives:													
	Gain knowledge on the principles of different electro analytical methods.													
Familiarize with chromatographic techniques.														
Course Outcomes: At the end of the course, the student will be able														
CO1	CO1 To acquire knowledge on ion selective electrodes, solid membrane electrodes and glass electrodes and													
CO2	To learn general principles and classifications of chromatographic separations and applications of TLC, GLC													
CO3														
CO4														
	<u> </u>		Manni	na of oor			h 4ha mua	gram out	taamaa					
			Mappi	ing of cot	irse outco	omes wit	n the pro	gram out	comes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	2	3	1	2	=	2	2	-	1	1		
CO2	3	-	2	3	1	2	1	2	-	2	1	1		
CO3														
CO4					204 4 6									

CHE 204-A: General Chemistry II

UNIT-I: ELECTRO ANALYTICAL METHODS

Theory of potentiometry, calculation electrode potential at the equivalence. Finding of equivalence volume, derivative and linear titration plots. Ion-sensitive electrodes –types of ion sensitive electrodes –metal based cation and anion sensitive electrodes, solid membrane electrodes, glass electrodes. Liquid ion-exchange electrodes, gas sensing membrane electrodes, Amperometric titrations - Anodic stripping voltammetry, chronoamperometry, chronopotentiometry, Cyclic Voltammetry, Differential Pulse Polarography, linear sweep voltammetry, square wave voltammetry.

UNIT-II: CHROMATOGRAPHY

CHE 207

General principles and classifications of chromatographic separations

Thin layer chromatography: Classification, principle, experimental technique, sample application, development of plate, retardation factor.

Gas liquid chromatography: Gas liquid chromatography - instrumentation (columns and detectors), retention time and retention volume. Chromatographic behaviour of solutes, column efficiency and resolution, column processes and band broadening, time of analysis and resolution, Van-Deemter equation.

High performance liquid chromatography: Theory and instrumentation-column performance, gradient elution, delivery system, sample introduction, separation columns, detectors and applications of HPLC.

Books Suggested

- 1. H.W. Willard, LL. Merrit and J.A.Dean: Instrumental Methods of Analysis. Affiliated East-West).
- 2. G.H. Jeffery J. Bassett, J. Mendham and R.C. Denny. Vogel"s Text Book of Quantitative Chemical Analysis (ELBS).
- 3. D.A. Skoog and D.M. West: Principles of Instrumental Analysis (Holt, Rinehart and Wilson).
- 4. J.G. Dick: Analytical Chemistry (McGraw Hill).
- 5. D. Midgley and K. Torrance: potentiometric Water Analysis (John Wiley).

CHE	208	Н	luman Va	lues and	profession	onal ethic	6- L-	3,T-1,P-2	;	4	Credits	
					I							
Pre-rec	quisite: U	nderstand	ling of Hu	ıman Val	ues and p	rofessiona	lethics					
Course	Objectiv	es:										
• Gair	n knowled	ge on val	lue educat	tion, fami	ly values	and adjust	ability					
• Dev	elop ethic	s towards	s medical,	health ca	re profes	sionals and	l ethical	issues in	genetic ei	ngineerin	g	
• Uno	derstand t	he impor	tance of	social eth	ics towar	ds organ	trade, hu	ıman traf	fic king l	numan rig	ghts viola	tion and
soci	Understand the importance of social ethics towards organ trade, human traffic king human rights violation and social disparities.											
• Kno	Know about environmental ethics, ecological crises, pollution and protection of environment											
Course	Course Outcomes: At the end of the course, the student will be able to											
CO1	To understand the concepts of human values, responsibilities of family values and status of women in family and society.											
CO2	To acq		-	different	medical e	ethics the v	riews of	charaka a	nd sushru	ta on mo	ral respon	sibilities
CO3	To gair	n knowled	dge on soo	cial ethics	and unde	erstand the	characte	eristics of	ethical p	roblems in	n manage	ment.
CO4	To fam	iliarize e	nvironme	ntal ethics	s, ethical 1	theory and	ecologi	cal crisis.				
			Mapp	ing of co	urse outc	omes with	the pro	gram ou	tcomes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	3	1	2	1	-	3	1	1	1
CO2	3	1	1	3	-	2	-	3	3	1	1	1
CO3	3	2	2	3	2	2	2	2	2	3	-	1
CO4	3	1	1	3	1	2	-	-	2	3	1	1

CHE 207: ELECTIVE FOUNDATION (HUMAN VALUES AND PROFESSIONAL ETHICS-II)

Chapter I: Value Education – Definition – Relevance to present day – Concept of human values - Self introspection – Self-esteem. Family values-Components, Structure and responsibilities of family Neutralization of anger – Adjustability – Threats of family life – Status of women in family and society – Caring for needy and elderly – Time allotment for sharing ideas and concerns.

Chapter II: Medical ethics – Views of Charaka, Sushruta and Hippocratus on moral responsibility of medical practitioners. Code of ethics for medical and healthcare professionals. Euthanasia, Ethical obligation to animals, Ethical issues in relation to health care professionals and patients. Social justice in health care, human cloning, problem of abortion. Ethical issues in genetic engineering and Ethical issues raised by new biological technology or knowledge.

Chapter III: Social ethics – Organ trade, Human trafficking, Human rights violation and social disparities, Feminist ethics, Surrogacy/pregnancy. Ethics of media – Impact of Newspapers, Television, Movies and Internet, Business ethics – Ethical standards of business – Immoral and illegal practices and their solutions. Characteristics of ethical problems in management, ethical theories, causes of unethical behavior, Ethical abuses and work ethics.

Chapter IV: Environmental ethics – Ethical theory, man and nature - Ecological crisis, Pest control, Pollution and waste, Climate change, Energy and pollution, Justice and environmental health.

Books for study:

- 1. Johns S Mackenjie: A Manual of ethics
- 2. "The Ethics of Management" by Larue Tone Hosmer, Richard D. Irwin Inc.
- 3. Management Ethics Integrity at work by Joseph A. Petrick and John F. Quinn, Response Books, New Delhi.
- 4. "Ethics in Management" by S.A. Shelekar, Himalaya Publishing House.
- 5. Harold H. Titus: Ethics for Today
- 6. Maitra, S.K: Hindu Ethics
- 7. William Lilly: Introduction to Ethics
- 8. Sinha: A Manual of Ethics
- 9. Manu: Manava Dharma Sastra or the Institute of Manu: Comprising the Indian System of Duties: Religious and Civil (ed) G.C. Haughton.
- 10. Sasruta Samhita: Tr. KavirajKunjanlal, KunjanlalBrishagratha, Chowkamba Sanskrit Series, Vol I,II and III, Varanasi, Vol I PP, 16-20, 21-32 and 74-77 only.

- 11. Charaka Samhita: Tr. Dr. Ram Karan Sarma and Vaidya Bhagavan Dash, Chowkambha Sanskrit Series Office. Varanasi I, II, III Vol I PP 183-191.
- 12. Ethics, Theory and Contemporary Issues. Barbara Mackinnon, Wadsworth/Thomson Learning, 2001.
- 13. Text Book for Intermediate First Year Ethics and Human Values, Board of Intermediate Eduction Telugu Academy, Hyderabad.
- 14. I.C. Sharma Ethical Philosophy of India. Nagin& Co Julundhar.

CHE-E	C-301		Ph	ysical Ch	nemistry	III	L-:	5,T-1,P-0		4	Credits	
Pre-re	quisite: Ui	nderstand	ing of gra	aduate lev	el Physic	al Chemi	stry					
LeaAppFanGet	e Objectivern applicate of the control of the contr	ions of G of X-ray ith the ap	Diffractions	on and Ele of Micro	ectron Dif	ffraction o	on solid st	tate chemi	istry copy and			
Course	e Outcome	es: At the	end of th	e course,	the stude	nt will be	able to					
CO1												
CO2	To learn the Bragg conditions-Miller Indices- Laue method, Bragg method, Debye Scherrer method of X-ray structural analysis of crystals.											
CO3				odel, star nal Ramaı			rotation s	pectrosco	py, PQR	branches,	selection	rules
CO4	To study concept of						lution the	ory, Hilde	brand so	lubility pa	arameter,	
			Mapp	ing of cou	ırse outc	omes wit	h the pro	gram out	tcomes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	-	2	1	-	2	-	2	2
CO2	3	2	2	3	2	2		1	2	2	1	1
CO3	3	2	2	3	2	2	2	1	1	-	-	2
CO4	3	2	2	3	-	2	-	-	2	2	2	2

CHE-EC-303B CORE-THEORY PHYSICAL CHEMISTRY III

UNIT-I Applications of Group Theory

15 Hrs

Construction of reducible and irreducible representations, Determination of Character Co-ordinate of C₂V point group based on 3N Co-ordinates. Standard reduction formula, Determination of normal modes of vibrations of SO₂, NH₃, POCl₃, PtCl₄²⁻ 'H₂O₂ molecules. Mutual exclusion Principle, Direct Product, Accidental Degeneracy and Fermi resonance Group Theory and Spectroscopy: IR Spectral activity of NH₃ molecule, selection rules, symmetry Criteria for optical activity, symmetry restrictions on dipole moments, symmetry and stereo isomerism. Prediction of IR and Raman Spectral activity of H₂O and CO₂.

UNIT-II: X-ray Diffraction:

15 Hrs

- (A) Solid State Chemistry Dislocation of Solids, Schottky and Frenkeldefects, insulaters, a,d semiconductors, Band theory of solids, solid state reactions.
- **(B)** Bragg conditions-Miller Indices- Laue method, Bragg method, Debye Scherrer method of X-ray structural analysis of crystals. Index reflections, identification of unit cells from systematic absences in diffraction pattern- structure of simple lattices and X-ray intensities- structure factor and its relation to intensity and electron density- Description of procedure for X-ray structure analysis (NaCl and KCl)
- **(C)** Electron Diffraction: Scattering intensity Vs scattering angle, Wierlequation, and its importance. Measurement techniques, Elucidation of structures of simple gas phase molecules, Low energy electron diffraction (LEED) for the study of surfaces.

UNIT-III: SPECTROSCOPHY

15 Hrs

Microwave spectroscopy: classification of molecules, rigid rotator model, effect of isotopic substitution on the transition frequencies, intensities- stark effect.

Infrared spectroscopy: Linear harmonic oscillator, zero point energy, anharmonity, Mores potential energy diagram, fundamental and overtone transitions, hot bands and combinations bands. Vibration-rotation spectroscopy, PQR branches, selection rules, factors affecting the band positions and intensities for IR region. **Raman spectroscopy:** Classical and quantum theories of Raman effect, pure rotational, pure vibrational Raman spectroscopy, selection rules, mutual exclusion principle, resonance Raman spectroscopy and coherent antistokes Raman spectroscopy. Vibrational- rotational Raman spectroscopy.

UNIT-IV: POLYMER SOLUTIONS

15 Hrs

Thermodynamics of polymer dissolution, effect of molecular weight on solubility, solubility of crystalline and amorphous polymer, heat of dissolution, regular solution theory, Hildebrand solubility parameter, Flory-Huggins theory of polymer solutions, conformational entropy, osmotic pressure and viscosity of polymer solutions. Molecular weight determination by light scattering, ultra-centrifugation and sedimentation equilibrium method. Liquid Crystals- synthesis and applications

Books Suggested

- 1. F.A. Cotton: Introduction to Group theory for chemists.
- 2. Geroge Davidson Elsevier: Introductory Group Theory for Chemists.
- 3. Gurdeep Raj, Ajay Bhagi&Vinod Jain: Group Theory and Symmetry in Chemistry
- 4. Instrumental methods of analysis M.H. Willard, Meritt Jr. and J.A. Dean
- 5. Principles of instrumental analysis Skoog and West
- 6. F. W. Billmeyer, Jr.: Text Book of Polymer Science. Wiley Interscience.
- 7. V. R. Gowariker, N. V. Viswanathan, Jayadev Sreedhar.: polymer Science. New Age international Publishers.

СНЕ-ЕС	C 302	O	rganic S	pectrosc	opy and A	pplicati	ons	L-5,T-1	,P-0	4	Credits	
Pre-rec	quisite:	Understa	anding of	Organic	Spectrosco	opy and	Applicat	tions				
Famthe rUndStud	moleculerstand ly on the	with the es. IR spectre applicat	ometry a	nd applic	cations to a	scertain n ascerta	the fundaining th	lamental g	ications of groups by o	bserving a	bsorption he molec	bands
	Understand the working principle and fragmentation rules of different molecules in Mass spectroscopy Course Outcomes: At the end of the course, the student will be able to											
CO1	comp	ounds.							enes, aroma		eroaroma	ntic
CO3					types of poor the data			ns presen	t in a molec	cule so as t	o ascertai	in the
CO4	To ac	quire kno	owledge	about spe	ecific fragn	nentation	rules o	f different	molecules	which are	unique.	
	1		Ma	pping of	course ou	tcomes v	with the	program	outcomes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	2	2	2	1	-	2	2	1
CO2	3	2	2	3	2	2	-	2	1	2	2	1
CO3	3	2	2	3	2	2	2	-	1	2	2	2
CO4	3	2	2	3	2	2	-	2	-	2	2	2

CHE-EC 302: CORE THEORY: ORGANIC SPECTROSCOPY AND APPLICATIONS

UNIT-I: ULTRAVIOLET AND VISIBLE SPECTROSCOPY:

15Hrs

Various electronic transitions (185-800 nm), effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, conjugated polyenes. Fisher-Woodward rules for conjugated dienes and carbonyl compounds, ultraviolet spectra of aromatic and heterocyclic compounds. Steric effect in biphenyls.

UNIT - II: INFRARED SPECTROSCOPY

15Hrs

Instrumentation and sample handling. Characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ether, phenols and amines. Detailed study of vibrational frequencies of carbonyl compounds (ketones, aldehydes, esters, amides, acids, anhydrides, lactones, lactams and conjugated carbonyl compounds). Effect of hydrogen bonding and solvent effect on vibrational frequencies, overtones, combination bands and fermi resonance, FT-IR

UNIT -III: NMR SPECTROSCOPY:

15Hrs

¹H NMR spectroscopy: Magnetic properties of nuclei, Principles of NMR. Instrumentation, CW and pulsed FT instrumentation, equivalent and nonequivalent protons, enantiotopic and diastereotopic protons, Chemical shifts, factors affecting the chemical shifts, electronegativity and anisotropy, shielding and deshielding effects, Signal integration, Spin-spin coupling: vicinal, germinal and long range, Coupling constants and factors affecting coupling constants.

Applications of ¹H NMR spectroscopy: Reaction mechanisms (cyclic bromonium ion, electrophilic and nucleophilic substitutions, carbocations and carbanions), E, Z isomers, conformation of cyclohexane and decalins, keto-enol tautomerism, hydrogen bonding, proton exchange processes (alcohols, amines and carboxylic acids), C-N rotation. Stereochemistry, hindered rotation, Karplus curve variation of coupling constant with dihedral angle. Simplification of complex spectra, nuclear magnetic double resonance, contact shift reagents, nuclear Overhauser effect (NOE).

¹³C NMR spectroscopy: General considerations, chemical shift (aliphatic, olefinic, alkyne, aromatic, heteroaromatic and carbonyl carbon), coupling constants. Two dimensional NMR spectroscopy-COSY.

UNIT-IV: MASS SPECTROMETRY

15Hrs

Introduction, ion production, type of ionization, EI, CI, FD, and FAB-factors affecting fragmentation, ion analysis, ion abundance. Mass spectral fragmentation of organic compounds, common functional groups, molecular-ion peak, metastable peak, Mc. Lafferty rearrangement. Nitrogen rule, isotope labeling. High resolution mass spectrometry, Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.

Books suggested:

- 1. Organic spectroscopy, W. Kemp 5th Ed, ELBS
- 2. Spectroscopy of organic compounds, RM Silversteen and others, 5th Ed,John Wiley
- 3. Spectroscopy of organic compounds, P.S. Kalsi, Wiley, 1993.
- 4. NMR in chemistry-A multi nuclear introduction, William Kemp, Mc Millan, 1986.
- 5. Spectroscopic methods in Organic chemistry, DH Williams & I Flemmi.

CHE EC	C 303 & 3		nvironmo	Core praental Che		Practical		L-5,T-1,P	-0	4	Credits	
Pre-req	quisite: U	nderstand	ding of Er	vironmer	ntal Chem	nistry- Pra	nctical.					
Course	Objectiv	ves:										
•	Familia	rize with	water ana	lysis								
•	•	f soil anal	•									
•			rumentatio				oy potenti	ometry				
•			cations by									
Course	Outcom	es: At the	e end of th	e course,	the stude	ent will be	able					
CO1	To get a	n idea ab	out water	analysis.								
CO2	To understand the basic principles of soil analysis.											
CO3	To fami	liarize wi	th instrun	nentation	of potenti	iometric t	echniques	S.				
CO4	To gain	knowledg	ge on flan	ne photon	netry and	its applic	ations.					
			Mapp	ing of co	urse outc	omes wit	th the pro	gram ou	tcomes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	-	2	2		2	2	-	2
CO2	3	2	2	3	3	2	3	2	-	2	2	2
CO3	3	2	3	2	3	-	-	2	-	1	-	2
CO4	3	2	2	3	3	2	2	-	2	2	2	2

CHE- EC-303: Core-Practical PRACTICAL-I

WATER & SOIL ANALYSIS

Water Analysis

- a. Alkalinity
- b. Acidity
- c. Temporary, Permanent and total hardness
- d. Sulphate
- e. Phosphorus
- f. Nitrites
- g. Cholorides
- h. D.O, BOD and COD
- i. Insecticides

Soil Analysis:

Determination Of:

- a) pH
- **b)** Conductivity
- c) Ca
- d) Mg
- e) Heavy metals like Cr, Pb, Cd, Zn.

CHE EC-304: Core-Practical PRACTICAL-II – INSTRUMENTAL METHODS OF ANALYSIS

1) Potentiometry:

a)Mixture of Acids

b)Mixture of Halides

2) Flame Photometry: Determination of Na, K, and Li.

CHE-EC	-305A		Or	ganic Ch	emistry l	III	I	-3,T-1,P	-2	40	Credits	
Pre-req	uisite: U1	nderstand	ing of Or	ganic Cho	emistry		1					
FamiStudyUndeApplprod	liarize wing the method to ications of the control	ith the ap hods of p pocity, pr of differe	reparation rochirality ent oxidiz	of different and app y, auxillared and	lications ory and rea	of organo gent-cont agents ir	metallic r rolled me organic	nesis, Mec eagents. thods in a synthesis	ısymmetr	ric synthes	sis.	•
CO1	To familiarize with the specific functions of the reagents particularly diazomethane, N-bromosuccinimide, Ziegler Natta catalyst, 1,3-dithianes and Merrifield resin in the synthesis of a variety of complex molecules.											
CO2	To gain knowledge in the synthesis of different organometallic reagents and also stereo and regio specificity and selectivity of reactions with organometallic reagents											
CO3	To und	erstand d	iastereose	lectivity,	stereosele	ectivity an	nd substra	ite contro	lled auxil	lary contr	olled read	ctions
CO4								dation in			nds and a	also the
			Mappi	ing of cou	ırse outc	omes wit	h the pro	gram out	tcomes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	2	2	1	2	1	2	2	-
CO2	3	2	2	3	2	2	-	2	1	1	2	1
CO3	3	2	2	3	2	2	2	-	2	-	1	1
CO4	3	2	2	3	2	2	2	2	-	2	2	-

CHE-EC-305A Core-Theory Organic Chemistry III

UNIT I: REAGENTS IN ORGANIC SYNTHESIS

15 Hrs

Anhydrous Use of the following reagents in organic synthesis: AlCl₃, Boran trifluoride, N-Bromosuccinimide, Diazomethane, Dicyclohexylcarbodiimide, Lead tetraacetate, Zieglar-Natta catalysts, DDQ, Dithianes, Merrifield resin.

UNIT-II: ORGANOMETALLIC REAGENTS

15 Hrs

Synthesis and applications of Grignard reagents, Organolithium, Zinc, Copper, Mercury, Palladium and Rhodium compounds in Organic Synthesis, Homogeneous catalytic hydrogenation and hydroformylation reactions

UNIT III: ASYMMETRIC SYNTHESIS

15 Hrs

Topocity - Prochirality- Substrate selectivity - Diastereoselectivity and enantioselectivity-Substrate controlled methods-use of chiral substrates - examples

Auxiliary controlled methods-Use of chiral auxiliaries-Chiral enolates-alkylation of chiral imines – Stereoselective Diels-Alder reaction

Reagent controlled methods-Use of chiral reagents-Asymmetric oxidation-Sharpless epoxidation-Asymmetric reduction-Use of lithium aluminium hydride and borate reagents.

UNIT IV: METHODS OF ORGANIC SYNTHESIS

15 Hrs

- i). Oxidations: (a) Alcohols to carbonyls-Chromium (iv) oxidants-Dimethylsulfoxide oxidation, periodate xidation, Oppenauer oxidation, oxidation with manganese dioxide, oxidation with silver carbonate (b) Alkenes to epoxides peroxide induced epoxidations. (c) Alkenes to diols-oxidation with potassium permanaganate, osmium tetraoxide, Prevost reaction (d) Ketones to esters-Bayer-Villiger oxidation (e) Oxidative bond cleavage-cleavage of alkenes by transition metals. (f) Oxidation of alkyl or alkenyl fragments-selenium dioxide and chromium trioxide oxidations.
- **ii).** Reductions: Reduction with lithium aluminium hydride, sodium borohydride, alkoxides, bis-methoxy ethoxy aluminium hydride, Boran aluminium hydride and derivatives-catalytic, hydrogenation-dissolving metal reductions, Non-Metallic reducing agents including enzymatic and microbial reductions.

Suggested Books

- 1. Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, John Wiley.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J. Sundberg, Plenum.
- 3. Structure and Mechanism in Organic Chemistry, C.K. Inglod, Cornell University Press.
- 4. Organic Chemistry, R.T Morrison and R.N. Boyd, Prentice Hall.
- 5. Name reactions and reagents in organic synthesis, B.P. Muway and M.G Ellord, John Wiley.
- 6. Principles of Organic Synthesis, R.O.C Norman and J.M Coxon, Blackie Academic & Professional.
- 7. Reaction Mechanism in Organic Chemistry, P.S. Kalsi, New Age International.
- 8. Principles of organometallic chemistry, P. Powell, ELBS.
- 9. Organo transition metal chemistry-Applications to organic synthesis, S.G. Davis, Pergmon.
- 10. Stereochemistry to Organic Compounds, D. Nasipuri, New Age International.
- 11. Stereochemistry, P.S. Kalsi, Wiley Eastern.

CHE-l	EC- 305B					Thermal	L-	5,T-1,P-0		40	Credits			
		M	ethods of	Analysis	S									
Pre-rec	uisite: U	nderstand	ing of Ba	sic Inorga	anic Spec	troscopy	and Ther	mal Metho	ods of An	alysis				
Course	Objectiv	es:												
			nal metho	ds of ana	lysis and	principles	and app	lications t	o inorgan	ic materia	als			
	iarize witl													
						rfine coup								
						and photo		spectrosco	ру.					
Course						nt will be								
CO1	To kno	w about]	ΓG and D	TA and a	pplication	ns of diffe	rent scan	ning calor	imetry.					
CO2	To gain knowledge on Doppler shift and chemical shift, basic principles and applications of NQR													
	spectroscopy. To loan zone field splitting and Vromen's decorate at relevation processes instrumentation and applications.													
CO3	To learn zero field splitting and Kramer's degeneracy, relaxation processes, instrumentation and applications													
	of ESR. To know about photoelectric effect and Koopmans theorem and impart the applications of X-ray and UV													
CO4		-			t and Ko	opmans t	heorem a	ınd impar	t the app	lications	of X-ray	and UV		
	photoele	ctron	spectrosc	opy.										
			Mapp	ing of cou	urse outc	omes wit	h the pro	gram ou	comes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	2	3		2	1		1	2	2	1		
002	2	2	2	2	2	2		2		2	2			
CO2	3	2	2	3	2	2	-	2	-	2	2	-		
CO3	3	2	2	3	2	2	1	1	2	2	1	-		
CO4	3	2	2	3	2	-	-	1	1	-	2	1		

CHE-EC- 301: Inorganic Spectroscopy and Thermal Methods of Analysis

UNIT -I: THERMAL METHODS OF ANALYSIS

15 Hrs

Thermo gravimetry –Principle, Factors affecting the results, instrumentation. Application with special reference to CuSO₄5H₂O, CaC₂O₄ 2H₂O. Different thermal analysis – principle, instrumentation, difference between TG and DTA, applications with special reference to the clays and minerals. Different scanning calorimetry –principle, and applications to inorganic materials like chlorates and perchlorates, ammonium nitrate.

UNIT -II: MOSSBAUER SPECTROSCOPY and NQR

15 Hrs

Mossbauer spectroscopy: Basic principles, Recoil energy, Doppler shift, Chemical shift, Quadrapole effects, Magnetic effects. Instrumentation, spectral parameters and spectrum display.

Aapplication of the technique to the studies of (1) bonding and structures of Fe^{2+} and Fe^{3+} compounds, (2) Sn^{2+} and Sn^{4+} compounds.

NQR spectroscopy: Basic principles of NQR spectroscopy, quadrupole nuclei, quadrupole moments, electric field gradient, coupling constant and applications.

UNIT -III: ELECTRON SPIN RESONANCE SPECTROSCOPY

15 Hrs

Basic Principles, Hyper fine splitting, Factors affecting the 'g' value. Isotropic and anisotropic hyperfine coupling constants, Hamiltonian and spin densities. Zero field splitting and Kramer's degeneracy, Relaxation process and line widths. Instrumentation and Applications. The EPR spectrum of bis(salicylidimine)-copper(II) complex, study of inorganic free radicals, biological applications of Electron Spin Resonance (Study of free radicals and Iron-sulfur proteins)

UNIT -IV: PHOTO ELECTRON SPECTROSCOPY

15 Hrs

Photoelectric effect, Koopmans's theorem, ionization energy.

X-ray photoelectron spectroscopy (ESCA): Principle, Binding energies, Chemical shift, Applications of XPES to Qualitative analysis, to surface studies and structural analysis. Ultraviolet photoelectron spectroscopy- Principle, application of UPES in studying the molecular orbitals of O_2 and N_2 molecules. Block diagram of photoelectron spectrophotometer. Sources of radiation, detectors. Auger spectra – Principle, Applications of Auger spectra to surface studies and use of Auger spectra as a finger print tool.

Books Suggested

- 1. F.A. Cotton and G. Wilkinson, Advanced In-organic chemistry VI Edition, 1999. John wiley & sons. Inc., New York.
- 2. J.E. Huheey, E.A. Keiter and R.L. Keiter: Inorganic Chemsitry, Principles of Structure and Reactivity (4th Ed.) (Addison-Wesley)
- 3. Gary Wulfsberg: Inorganic Chemistry (5th Ed. (Viva Books)
- 4. J.D. Lee: Concise Inorganic Chemistry (Blackwell)
- 5. W.L. Jolly: Modern Inorganic Chemsitry (McGraw-Hill)
- 6. R.L. Carlin: Magneto-chemsitry (Springer-Verlag)
- 7. R.L. Dutta and A. Syamal: Elements of Magnetochemsitry (Affiliate East-West).
- 8. K. Hussain Reddy Text book of Bioinorganic chemistry

CHE-l	EC- 306 A	SI	oectral To	echnique	S		L	-5,T-1,P-	0	40	Credits			
Pre-re	quisite: U	nderstand	ding of Ba	sic Spect	ral Techr	iques								
Course	Objectiv	es:												
• Famil	liarize wit	h the inst	rumentati	on of UV	and visi	ble spectr	roscopy, a	applicatio	ns of iden	tifying th	e structur	es of the		
• Unde	rstand IR	spectrom	etry and a	pplication	ns to asce	rtain the	fundameı	ntal group	s by obse	rving abso	orption ba	nds		
	on the ap													
• Unde	rstand the	working	principle	and fragr	nentation	rules of o	different	molecules	in Mass s	spectrosco	ру			
Course	Outcom	es:At the	e end of th	ne course,	the stude	ent will be	e able							
CO1	To know the basic principles of spectroscopy													
CO2	To familiarize with the analysis of various functional groups by using different spectroscopic techniques.													
CO3	To Understand the applications of AAS.													
CO4	To gain	knowledg	ge about	Mass spe	ectral frag	mentatio	n of orga	nic compo	ounds and	common	functiona	l groups		
			Mapp	ing of co	urse outc	omes wit	th the pr	ogram ou	itcomes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	1	1	3	-	2	3	2	1	-	1	1		
CO2	3	2	2	3	2	2	3	2	-	1	-	2		
CO3	3	2	-	2	2	-	2		1		1	-		
CO4	3	2	2	3	-	2	1	1	-	1	-	2		

CHE: EC: 306(A): (OPEN ELECTIVE) SPECTRAL TECHNIQUES

UNIT - I: ULTRAVIOLET AND VISIBLE SPECTROSCOPY

15 Hrs

Various electronic transitions (185-800nm.), Beer-Lambert Law, effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, Fieser-Woodward rules for conjugated dienes and carbonyl compounds

UNIT - II: INFRARED SPECTROSCOPY

15 Hrs

Instrumentation and sample handling, characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ethers, phenols, amines, ketones, aldehydes, esters, amides, acids and anhydrides. Effect of hydrogen bonding.

UNIT – III: ATOMIC ABSORPTION SPECTROSCOPY: FLAME AAS:

15 Hrs

Principle, Instrumentation – Sources of radiation (HCL and EDL), Different types of burners, Interferences- Physical, Chemical, spectral and back ground correction, and methods of minimization

GF AAS: Principle and technique –Comparison between Flame AAS and furnace AAS, Applications of AAS, Comparison between Atomic Absorption & Flame Photometry.

UNIT-IV: MASS SPECTROMETRY

15 Hrs

Principle, instrumentation, different methods of ionization, EI, CI, FD and FAB, Mass spectra-molecular ion, base peak, meta-stable peak, nitrogen rule and Mc Lafferty rearrangement. Mass spectral fragmentation of organic compounds and common functional groups. Normal and branched alkanes, alkenes, cycloalkanes, benzene and its derivatives, alcohols and phenols, ethers, aldehydes and ketones, carboxylic acids and their derivatives , amines and nitro compounds. Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.

Books Suggested:

- 1. Organic spectroscopy, W.Kemp 5th Ed, ELBS .2.
- 2. Spectroscopy of organic compounds, RM Silversteen and others 5th Ed, John Wiley 1991
- 3. Spectroscopy of organic compounds, PS Kalsi, Wiley, 1993
- 4. NMR in chemistry A Multi nuclear introduction, William Kemp, Mc Millan 1986
- 5. Spectroscopic methods in Organic Chemistry, DH Williams & I Flemmi TMH . 2005

CHE EC	306 B		Chroma	tographi	c Techni	ques	L-:	5,T-1,P-0		40	Credits			
Pre-req	uisite: U1	nderstand	ing of Ch	romatogr	aphic Tec	chniques	•							
Course	Objective	es:												
•	Familiariz	e with C	lassificati	on of Chr	romatogra	phic metl	nods							
	Understan													
	Study on 1							graphy (H	PLC)					
•	Understan	d the wo	rking prir	ciple of g	gas chrom	atograph	у.							
Course	Outcome	s: At the	end of th	e course,	the stude	nt will be	able							
CO1	To know	the station	onary and	mobile p	hases in o	chromatog	graphic te	chniques.						
CO2	To famil	To familiarize applications of different chromatographic methods												
CO3	To Unde	To Understand the principle of chromatographic techniques												
CO4	To gain l	nowledg	ge on the 1	normal ph	ase and r	everse ph	ase							
			Mappi	ing of cou	ırse outc	omes wit	h the pro	gram out	tcomes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	-	1	3	-	2	3	2	1	-	1	1		
CO2	3	2	2	3	2	2	3	2		1	-	2		
CO3	3	2	-	2	2	1	2	-	2	-	1	1		
CO4	3	2	2	3	-	2	1	2	-	1	-	2		

CHE: EC: 306(B): (OPEN ELECTIVE) CHROMATOGRAPHIC TECHNIQUES

Unit –**I:** Introduction - Classification of Chromatographic methods – Column chromatography-Adsorption phenomenon: Nature of adsorbents-Solvent systems-Differential migration-Separation of mixture of o-/p-nitro anilines (A demonstration experiment).

Unit –II: Thin-Layer Chromatography (TLC)-Coating materials and preparation of TLC plates- Solvents for development-Detection of compounds in TLC- R_f values in TLC-Applications of TLC in chemistry-Preparative TLC – Demonstration experiment in TLC.

Unit –III: High-Performance Liquid Chromatography (HPLC) - Application of HPLC- HPLC instrument-Stationary phases in HPLC-Normal and reversed phase HPLC: A comparison- Normal phase HPLC: Principle-Retention times in Normal and reversed phase HPLC- Reversed phase HPLC: Principle.

Unit –IV: Gas-Liquid Chromatography- Instruments for Gas-Liquid Chromatography- Gas-Chromatographic Columns and the Stationary Phase- Application of Gas-Liquid Chromatography- Gas-Solid Chromatography.

Reference Books:

- 1. Analytical chemistry: G L David Krupadanam, D.Vijaya prsad, K.Varaprasad Rao, KLN Reddy, C.Sudhakar.
- 2. Analytical chemistry: Skoog West Holler.
- 3. Modern Analytical Chemistry : David Harvey DePauw University.
- 4. J.G.Dick. Analytical Chemistry, McGrraw Hill, New Delhi, (1973).

CHE-	EC- 401		Energy,	Environ	ment and	Soil	L-5	5,T-1,P-0		40	Credits			
Pre-req	quisite: U	nderstand	ing of En	ergy, Env	ironment	t and Soil								
Course	Objectiv	es:												
	iarize witl													
	power an									ion and gr	reenhouse	effect.		
	tion of co							try, bioca	talysis					
• Soil p	ollution, s	olid wast	e manage	ment and	disposab	le method	ls.							
	Course Outcomes: At the end of the course, the student will be able to													
Course	Outcome	es:At the	end of th	e course,	the stude	nt will be	able to							
CO1	Know about nuclear fission and fusion, uses of solar energy in space heating and water heating, hydropower													
	know about nuclear fission and fusion, uses of solar energy in space heating and water heating, hydropower and water heating, hydropower and production of ethanol from indirect solar energy.													
CO2	Learn ph	ysical an	d chemica	al propert	ies of wat	ter and wa	iter comp	lexation is	n natural	and waste	e water ar	nd to		
	understa	nd about	global wa	rming, oz	zone depl	etion, gree	en house	effect and	acid rain	ıs.				
CO3	Acquire	knowleds	e on com	position	of inorgai	nic and or	ganic con	taminants	s in soil. s	soil corros	sion and i	ndustrial		
			een chemi		or morg		guille con		, III 5011, c	.011 001101				
CO4					of solid w	aste colle	ction and	its dispos	sal.					
Mapping of course outcomes with the program outcomes														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3 3 3 3 2 1 2 2 2 - 3												
COI	_	5				_	1	_	_	_		3		

CHE EC-401: CORE THEORY: ENERGY, ENVIRONMENT AND SOILS

2

UNIT-I: Sources of Energy

CO₃

CO4

15 Hrs

3

3

Fossil fuels- Nuclear fission and fusion- Solar energy-use of solar energy in space heating and water heating- production of electricity using solar energy- solar trough collectors- power tower- solar pond- solar energy for driving vehicles- power from indirect solar energy – Hydropower- wind power- Biomass energy- production of ethanol from biomass- production of methane from biomass- photosynthesis- photo electro chemistry- Geothermal energy.

UNIT-II: Water Resources and Air

3

3

3

3

3

3

15 Hrs

2

2

1

Hydrological cycle- physical and chemical properties of water-complexation in natural and waste water,-Anomalous properties-water pollutants-Types-Sources- Heavy metals- metalloids- organic –Inorganic –Biological and Radio active-Types of reactions in various water bodies including marine environment- Eutrophication- Ground water- Potable water standards. Treatment for portable water.

Air: Chemical reactions in the atmosphere – Aerosols types- Production and distribution – Aerosols and Radiation – structure and composition of atmosphere- temperature inversion – Global warning- Ozone depletion – Green house effect, "CFC"s- Acid rain.

UNIT-III: Soil and Green Chemistry

15 Hrs

Soil: Composition of soil- lithosphere- inorganic and organic contaminants in the soil- Biodegradation- Nondegrdable waste and its effect on the environment- Bioremediation –of surface soils- Fate and transport of contaminants on soil system-Bioindicators- Soil parameters- soil destruction- Erosion- Soil conservation – Nitrogen pathways and NPK in soil.

Green Chemistry: Goals of Green chemistry- Significance and basic components of Green chemistry research - industrial applications of Green chemistry-products from natural materials- Green fuels and E-Green propellants- Zeolites-Biocatalysts.

UNIT IV: Soil pollution:

15 Hrs

Introduction – soil pollution by industrial wastes. soil pollution by urban wastes, Radioactive pollutants and Agricultural waste- chemical and metallic pollutants-Biological agents – mining - Detrimental effects of soil pollutants – Effects of industrial pollutants- Effects of sewage and domestic wastes- Effects of heavy metals- Effects of radioactive pollutants- Effects of modern agro- technology – Diseases caused by soil pollution – solid waste management – sources and classification -public Health Aspects – methods of collection- Disposal methods – potential methods of disposal.

Books Suggested:

- Daniel D. Chiras (1994), Environmental Science, 4th Ed.
 Environmental Chemistry by W. Moore and J.Moore
- 3. Environmental chemistry by J.O.M. Bockariss
- 4. Environm, ental by BK SHArma
- 5. Environmental chemistry by SS Dara
- 6. Environmental chemistry by Mahajan
- 7. Environmental chemistry by a.K.De

(Mandatory Core)

CHE-EC	C 402		Water	Pollution	n Monitor	ing and		L-5,T-1,	P-0	4	Credits		
					ironment	_		,,					
Pre-rec	quisite:	Understa	anding of	Water po	ollution mo	onitoring	and envi	ironment	laws.				
Cour	se Obje	ectives:											
•	Basic co	oncepts o	f differen	t water p	ollutants								
•	Differer	nt princip	les of wa	ter treatn	nent.								
					in environ		rotection	1					
•	Environmental management and environmental laws												
Course Outcomes: At the end of the course, the student will be able to													
CO1	1 Acquire knowledge on disease causing agents in water.												
CO2	Learn a	about the	removal	of suspe	nded and d	lissolved	solids pr	esent in v	vaste wate	r.			
CO3	Unders	tand diff	erent use	s of micr	o-organisn	ns in env	ironment	al protec	tion.				
CO4	Know	different	world lif	e acts suc	ch as fores	t convers	ion act, v	vater con	trol polluti	on act and	air preve	ention and	
	control	act.											
			Maj	pping of	course ou	tcomes v	vith the j	program	outcomes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	3	2	1	1	2	-	-	2	3	
CO2	3	3	3	2	2	-	-	2	2	2	-	3	
CO3	3	3	3	3	2	2	1	2	2	2	2	3	
CO4	3	3	3	3	_	2	_	2	3	_	2	3	

CHE EC-402: CORE THEORY: WATER POLLUTION MONITORING AND ENVIRONMENT LAWS

UNIT-I: Water pollution

15 Hrs

Basic aspects of water-general principles of water (physical and chemical)-criteria of water quality. Types of water pollutants: sewage and domestic wastes-industrial wastes-agriculture discharges- toxic metals-oxygen demanding wastes-disease causing agents-oils- detergents and phosphates. Sampling: Basics of Sampling, sampling procedure, statistics, sampling and physical state, crushing and grinding, hazards waste of sampling, pre-concentration methods

UNIT-II: Waste water treatment:

15 Hrs

Basic process of water treatment- primary treatment pretreatment – sedimentation – Flotation- secondary (Biological) Treatment – Active sludge process – Trickling filters – sludge Treatment and disposal – Advanced waste water Treatment – Removal of suspended solids – Removal of dissolved solids – Nitrogen removal – phosphorous removal – Advanced Biological systems – chemical oxidation .

UNIT III: Biotechnology and its application in Environmental protection 15 Hrs

Introduction- Bio-informatics- Bio-Technology and pollution control,-Bioremediation- Biological de-odourisation-Biological purification of contaminated air-microorganisms and energy of mankind-use of microorganisms role in petroleum augmentation and recovery.

UNIT IV: Environmental Management and Important Environmental Laws: 15 Hrs

Environmental Management: Introduction-objectives-components-environmental impact assessment (EIA)-historical background-elements of EIA process-participants in EIA processes-contents of EIS-design of EIA.

Important Environmental Laws: the world life act-the forest conservation act-the water and control pollution act-air prevention& control act—the environment act-environmental quality management standard-ISO 14000 series.

Books Suggested

- 1. Environmental Chemistry by W. Moore and J.Moore
- 2. Environmental chemistry by J.O.M. Bokriss
- 3. Environmental by BK Sharma
- 4. Environmental chemistry by SS Dara
- 5. Environmental chemistry by Mahajan
- 6. Environmental chemistry by a.K.De
- 7. Lodge (1994) Methods of air sampling and analysis. Publications, Jaipur
- 8. Kudesia, V.P. (1985) Water Pollution, Pragati Prakashan
- 9. Elements of biotechnology by PK Gupta and Rastogi

CHE EC	403			Practic	al I		L-:	5,T-1,P-0		4	Credits			
Pre-requ	uisite: Eı	vironm	ental Che	emistry P	ractical l	['		•					
Course	Objectiv	es:												
•	Conduct	ometric n	nethods o	f analysis										
•	Colorim	etric metl	nods of ar	nalysis										
•	Interpret	ation of c	lata from	IR, HPLO	C, GC, A	AS								
•			purity and											
Course	Outcome	s: At the	end of th	e course,	the stude	nt will be	able							
CO1	To know the basic principles of conductometry and analysis of acids and halides.													
CO2	Colorometric estimation of iron and manganese.													
CO3	To have an idea about working principles of IR, AAS, Spectrofluorimetry, Gas chromatography and HPLC.													
CO4	Tofamili	arize witl	interpre	tation of	lata									
			Mann				h 4h aa							
			Mappi	ing of cou	irse outc	omes wit	n the pro	gram out	comes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	3	2	3	2	2	2	-	2	1	2		
CO2	3	3	3	3	2	3	2	-	2	2	2	3		
CO3	3	3	3	3	3	2	-	2	2	2	-	3		
CO4	3	3	2	2	3	2	2	2	-	2	1	3		

CHE EC-404: PRACTICAL-I- INSREUMENTAL METHODSOF ANALYSIS-II

- 1) Conductometry:
- a) Mixture of Acids
- b) Mixture of Halides
- 2) Colorimetry:
- a) Estimation of Iron
- b) Manganese
- c) Phosphate
- d) Titration of copper Vs EDTA

DEMONSTRATION EXPERIMENTS

- 1 IR Interpretation of IR spectrum of alcohols, ketones, aldehydes and other standard materials
- 2 AAS: Demonstration of AAS Determination of Zn, Cd, Pb, Mn, Fe and Ni in effluents using AAS.
- 3 Spectrofluorimetry estimation of quinine and fluoroscene
- 4 Ion selective electrodes estimation of F, S² and CN in effluents using ion selective electrode meter.
- 5 Polarography and Anode stripping voltametry
 - (A)Polarography and Anode stripping voltametry behavior of Cd, Zn, Pb in a mixture.
 - (B)Determination of Pb and Cd in samples using Anode stripping voltametr
- 6 Gas chromatography- Determination of pesticides
- 7 HPLC- Determination of pesticides
- 8 pH metry
 - (A)Determination of alkalinity in a colored effluent using pH metric end point.
 - (B)Determination of purity of commercial HCl, H₂SO₄, H₃PO₄ and CH₃COOH using pH metric end point.

CHE E	C 404		Pract	ical II:P	roject W	ork	L-	5,T-1,P-0		4	Credits			
Pre-rec	uisite: P	roject W	ork											
IdenCarrInter	y out the pretation	of proble problem	independe	ently	·	ations and	l preparat	tion of dis	sertation					
		es: At the					1 1							
CO1	To iden	tify resear	ch proble	m, propo	se the hyp	othesis a	nd to coll	ect literati	ure.					
CO2	To perfe	To perform research designs & experiments												
CO3	To tabu	late resear	ch results	}										
CO4	To conc	lude resea	arch outco	mes in th	e form of	dissertat	on.							
	•		Mapp	ing of co	urse outc	omes wit	h the pro	gram out	tcomes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	3	3	3	-	3	2	2	1	2	3		
CO2	3	3	3	3	2	3	-	1	2	2	-	3		
CO3	3	3	3	3	3	2	3	-	2	-	3	3		
CO4	3	3	3	3	2	3	3	2	3	-	2	3		

CHE EC- 405: PRACTIAL II/ PROJECT WORK

CHE-E	C-405A	Air		*	l Method Pollution	ls-Noise a	nd I	3,T-1,P	-2	4	Credits			
Pre-re	quisite: Un	derstand					-Noise a	nd Therm	al Polluti	on				
Course	e Objective	es:												
• Stu	dy on prope	erties of	air polluta	ınts, air p	ollution s	ampling n	neasurem	ents and a	analysis.					
	niliarize wi								gas analy	sis.				
	ow about po													
• Get	an idea on	noise an	d thermal	pollution	ns and the	ir effect o	n human	health.						
Course	rse Outcomes: At the end of the course, the student will be able to													
CO1														
	sulphur dioxide, carbon monoxide, nitrogen dioxide, oxidants, ozone, hydro carbons and particulate matter.													
CO2	Learn about different control methods and adsorption of solids and liquids, gas analysis eluents viz., nitrogen													
	oxides, carbon monoxide and hydrocarbons. Understand pollution caused by vehicle emission, different industries, cement plants, steel mills and													
CO3				sed by v	ehicle er	nission, d	lifferent	industrie	s, cemen	t plants,	steel mi	lls and		
	petroleun													
CO4	Know ab	out noise	and then	mal powe	r project	pollutions	and their	r effect on	human l	ealth.				
			Mappi	ing of cou	irse outc	omes with	the pro	gram out	tcomes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	3	3	2	-	1	2	-	1	-	3		
CO2	3	3	3	2	2	- 1	2	2	2	1	2	3		
CO3	3	3	3	3	2	2	2	2	2	1	-	3		
CO4	3	3	3	3	-	2	1	2	3	-	2	3		

CHE: EC-405 A: (GENERIC ELECTIVE): AIR POLLUTION, CONTROL METHODS-NOISE AND THERMAL POLLUTION

UNIT-I: Air Pollution 15 Hrs

Classification and properties of air pollutants-emission sources-major emissions from global sources-importance of anthropogenic sources-behavior and fate of air pollutants photochemical smog and its effects on health-vegetation-material damage in India.

Air pollution sampling and measurement-ambient air sampling-collection of gaseous air pollutants-collection of particulate pollutants-stack sampling-analysis of air pollutants-sulphur dioxide-carbon monoxide-nitrogen dioxide-oxidants-ozone-hydro carbons and particulate matter

UNIT- II: Control methods 15 Hrs

Sources-correction methods-particulate emission control-gravitational settling chambers-cyclone separators-fabric filters-electrostatic precipitator-wet scrubbers-control of gaseous emissions by adsorption of solids and liquids-control methods of sulphur dioxide emission, flue gasesanalysis-control method, nitrogen oxides, carbon monoxide and hydrocarbon-mobile sources.

UNIT-III: Vehicular Air Pollution:

15 Hrs

Genesis of vehicular emissions standard- natural pollution-gasification of vehicles-point sources of air pollution – mechanism of air pollution from automobiles -automobile pollution- Indian scenario population and pollution loads of vehicles-automobile air pollution control-exhaust gas controlling treatment devices-thermal reactor-catalytic converter from automobiles-fuel tank carbonator. Air pollution from Portland cement plants-steel mills and petroleum refineries.

UNIT-IV: Noise and Thermal Polution

15 Hrs

Noise pollution: sources-measurement of noise and indices-effect of meteorological parameters on noise propagation-noise exposure levels and standards –measurement of noise-impact of noise on human health

Thermal pollution: Introduction-definition-sources-harmful effects-toxic compounds in traces-prevention and control of thermal pollution –thermal power projects in India.

Books Suggested:

- 1. Environmental Chemistry by W. Moore and J.Moore
- 2. Environmental chemistry by J.O.M. Bockeriss
- 4. Environmental chemistry by Sharmar and Kaur, Krishna Publishers
- 6. Environmental chemistry by a.K.De
- 8. Henry C perkins (1974) Air Pollution, McGraw-Hill
- 9. Kudesia, V.P. (1985) Water Pollution, Pragati Prakashan.
- 10. Environmental Engineering by CS Rao
- 11. Environmental by BK Sharma
- 12. Environmental chemistry by SS Dara

CHE-E	C-405 B	Bio	inorgani	, .	anic, Bio	physical	L-:	5,T-1,P-0		4 Credits							
				Chemis													
Pre-re	quisite: U	nderstand	ing of Bi	oinorgani	c, Bioorg	anic, Bio _l	ohysical (Chemistry	,								
Course	e Objectiv	es:															
	shlighten n		plexes as	oxygen c	arriers an	d electror	transfer	in biolog	y.								
• Me	etal ion tra	nsport and	d storage	in biologi	cal syster	ns and im	portance	of trace r	netals in b	oiology.							
• Lea	ırn physiol	ogical fur	nctions of	carbohyo	lrates, lip	ids, enzyr	nes classi	fication,	stereospe	cificity.							
• The	e basic con	cepts of b	oiophysica	al chemist	ry in biod	chemical 1	reactions,	exergoni	c and end	ergonic re	eactions.						
Course	Course Outcomes: At the end of the course, the student will be able to																
Cours																	
CO1	CO1 Gain knowledge on metallo proteins in electron transfer processes.																
CO2																	
CO3	Achieve environn		lop highly	y stereose	lective sy	nthesis of	f organic	compoun	ds and dr	ugs by ad	opting						
CO4			odynamic	s of biop	olymer re	actions a	nd to corr	elate free	energy an	nd biopol	ymer para	meters.					
			Manni	ing of co	irse outc	omes wit	h the nro	aram ou	tcomes								
			Mahh	ing of cot	ii se oute	omes wit	ii the pro	gramou	comes								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12					
CO1	3	3	3	2	3	3	3	2		2		3					
CO2	3	3	3	3	3	2	3	-	-	-	3	3					
CO3	3	3	3	3	3	3	-	2	-	2	-	3					
CO4	3	3	3	3	3	3	2	2	-	3	3	3					

CHE EC-405(B): (GENERIC ELECTIVE): BIOINORGANIC, BIOPHYSICAL CHEMISTRY

UNIT-I: **BIO-INORGANIC CHEMISTRY-I**

15 Hrs

Metal complexes as oxygen carriers –Heme proteins –Hemoglobin and myoglobin –Non heme proteins –hemerythrin and hemocyanin – model synthetic complexes of iron, cobalt and copper.Co-enzymes Vitamin B₁₂ carboxy peptidase and superoxidedismutase.

Electron Transfer in Biology: Structure and functions of metalloproteins in electron transfer processes –catalase –peroxidose –cytochromes and iron –sulphur proteins –synthetic models.

UNIT – II: BIOINORGANIC CHEMISTRY- II: Metal ion transport and storage in biological systems, Metal ions in Biology, Molecular mechanism of ion transport across membranes: ionophores, photosynthesis.

Hydrolytic metalloenzymes: Carbonic anyhdrase, carboxy peptidase, calcium in control processes, calcium and muscle contraction, calcium and secretion, calcium in blood clotting mechanisms. Therapeutic uses of enzymes.

Importance of trace metals in biology: Metal ions as chelating agents in medicine, trace metal ions and metal and non-metal deficiency. Biological nitrogen fixation, in-vivo and in-vitro nitrogen fixation.

UNIT-III: BIOORGANIC CHEMISTRY

Carbohydrates: Structure and biological functions of mucopolysaccharides, glycoproteins, and glycolipids- Role of sugars in biological recognition-Blood group substances

Lipids: Essential fatty acids-structure and function of triglycerols, Glycerophospholipids, cholesterol, bile acids prostaglandins- composition and functioning of lipoproteins

Enzymes: Nomenclature and classification, properties, factors affecting enzyme catalysis, enzyme inhibition- reversible and irreversible inhibition. Uses of enzymes in food drink industry and clinical laboratories.

UNIT-IV: BIOPHYSICAL CHEMISTRY:

Standard free energy change in biochemical reactions, exergonic and endergonic reactions, hydrolysis of ATP, thermodynamics of biopolymer solutions, chain configuration of bio polymers, and calculation of average dimensions. Membrane equilibrium, ion transport through cell

membrane. dialosis and its function. Structure and functions of proteins, enzymes, DNA and RNA in living systems, forces involved in bio polymer interactions, electrostatic forces, hydrophobic forces, molecular expansion, and dispersion forces.

Books Suggested

- 1. M.N. Hughes, The Inorganic chemistry of Biological Processes, John wiley and Sons, New York 2nd Edition, 1981.
- 2. A Text book of Biochemistry, A.V.S.S. Rama Rao
- 3. Physical chemistry by Atkenes
- 4. Physical chemistry by Albertz.
- 5. Bio physical chemistry by Van Holde
- 6. Bio Physics by Narayanam
- 7. Organic Chemistry, Vol. 2, I. L. Finar, ELBS.
- 8. Chemistry of Natural Products, P.S. Kalsi, Kalyani Publishers.
- 9. Chemistry of Organic Natural Products, O. P. Agarwal, Vols., 1 & 2, Geol Pubs.
- 10. Natural products Chemistry K.B.G. Torssell, John Wiley, 1983.
- 11. Burger's Medicinal Chemistry, M.E. Wolff, John Wiley
- 12. Medicinal Chemistry, A. Kar, New Age International

CHE EC	C 406A		D	rug Che	mistry		L-3	3,T-1,P-2		40	Credits		
Pre-req	quisite: U1	nderstand	ing of Dr	ug Chem	istry				l				
Cou	rse Obje	ctives:											
•	To learn a	bout the	natural pr	oducts as	leads for	new drug	gs						
•	Determina	ation of c	ardiovasc	ular drug	S								
•	To study A	Autacoids	8										
•	Interpreta	tion of A	ntipyretic	S									
Course	Outcome	s: At the	end of th	e course,	the stude	nt will be	able to						
CO1	Know about natural products.												
CO2	Know Interpretation of cardiovascular drugs.												
CO3	Know th	e Analyzi	ing about	prostagla	ndins.								
CO4	Know th	e Definiti	on, Class	ification,	Nomencl	ature, Str	ucture and	d Synthes	is of anti-	inflamma	atory drug	gs.	
	•		Mappi	ing of cou	irse outc	omes wit	h the pro	gram out	tcomes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	3	3	-	1	2	-	1	2	3	
CO2	2	3	3	3	1	2	-	2	2	2	1	3	
CO3	3	3	2	3	-	3	2	2		3	-	3	
CO4	3	1	3	1	3	2	2	-	2	2	2	3	

CHE: EC: 406 (A): (OPEN ELECTIVE): DRUG CHEMISTRY

UNIT - I: NATURAL PRODUCTS AS LEADS FOR NEW DRUGS

Occurrence, Structure and therapeutic uses of Drugs acting on Central Nervous System

Morphine alkaloids (morphine, codeine, thebaine, heroin, pethidine)

Cannabinoids (9-cannabinol, Tetrahydrocannabinol)

Neuromuscular Blocking Agents (Curare, Decamethonium)

Vinca Alkaloids (Vincristin and Vinblastin), Taxol and Taxotere, podophyllotoxin, Etoposide,

Teniposide.

UNIT - II: CARDIOVASCULAR DRUGS

Definition, Classification, Nomenclature, Structure and Synthesis.

Cardiac glycosides (ex: Digoxin, Digitoxin);

Antihypertensive drugs (ex: Methyl dopa, Clonidene hydrochloride);

Antiarrhythmic agents (ex: Quinidine sulfate);

Antisympathetic drugs (ex: Propranolol hydrochloride, Verapamil hydrochloride);

Vasopressor drugs (ex: Prenylamine, Buphenine).

UNIT - III: AUTACOIDS

Definition, Occurrence, Isolation, Nomenclature, Classification, Synthesis, Biosynthesis and Stereochemical structures of Prostaglandins. Structural elucidation of PGE_1 , PGE_2 ; Synthesis and biosynthesis of PGE_2 , $PGF_{2\alpha}$.

Structure and Biosynthesis of Thromboxane A2 and Prostacyclin (synthesis not expected).

UNIT – IV: ANTI-INFLAMMATORY DRUGS

Definition, Classification, Nomenclature, Structure and Synthesis of Paracetamol, Aspirin (Antipyretic), Salol, Cinchophen, Antipyrene, Phenylbutazone, Indomethacin, Tolmetin, Ibuprofen, Diclofenac and Naproxen.

Books suggested:

- 1. Medicinal Chemistry by Ashitosh Kar
- 2. Medicinal Chemistry by D. Sriram, P. Yogeeswari
- 3. Medicinal Chemistry by David A. Williams, Thomas L. Lemke
- 4. Medicinal Chemistry by V. Alagarsamy
- 5. Biochemistry by U. Satyanarayana
- 6. Natural Products Chemistry and Applications by Sujata V. Bhat, B.A. Nagasampagi, S. Meenakshi
- 7. Medicinal Chemistry by V.K. Ahluwalia, Madhu Chopra
- 8. Medicinal Chemistry by Balkishen Razdar
- 9. Advanced Practical Medicinal Chemistry by Ashutosh Kar
- 10. Chemistry of Organic Natural Products by O. P. Agarwal, Vols., 1 & 2, Geol Pubs.
- 11. Chemistry of Natural Products by S. V. Bhat, B.A. Nagasampagi, M. Sivakumar
- 12. Natural Products Chemistry by K.B.G. Torssell, John Wiley, 1983.

Pre-requisite: Understanding of Electroanalytical Techniques														
Course Objectives:														
• ′	10 104114 40040 414 01466110411011 01 010011041141 110411040													
•]	Beternmation of types of currents													
•]	 Principle, instrumentation, reversible and irreversible cyclic voltammograms 													
•]	Interpretation of Ion selective electrodes													
Course Outcomes: At the end of the course, the student will able to														
CO1 Ability to interpret potentiometry and conductometry														
CO2														
CO3	Analysing and compiling the data and results in polarography.													
CO4	CO4 Familiarize Types of ion sensitive electrodes.													
			Maj	pping of	course o	utcomes v	vith the p	orogram o	utcomes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	3	3	3	3	-	2	2	1	-	2	3		
CO2	3	3	2	3	1	2	-	2	2	2	1	3		
CO3	3	3	1	3	2	3	1	2	·	3	2	3		
CO4	3	-	3	1	3	2	1	-	1	2	-	3		

L-5,T-1,P-0

Electroanalytical Techniques

4 Credits

CHE: EC: 406(B): (OPEN ELECTIVE): ELECTRO ANALYTICAL TECHNIQUES

Unit I: Types and Classification of Electro analytical Methods.

- i) **Potentiometry-** Types of electrodes, Hydrogen gas, Calomel, Quin hydrone and glasselectrodes. Determination of pH. Potentiometric titrations.
- **ii)** Conductometry Definition of terms conductivity, specific conductivity, cell constant. Mobility of ions, Conductometric titrations.

Unit II: D.C Polarography: Dropping mercury electrode- Instrumentation-polarogram. Types of Currents: Residual, Migration, Limiting. Two and Three electrode assemblies. Ilkovic equation (derivation not necessary) and its consequences. Types of limiting Currents: Adsorption, Diffusion, Kinetic. Applications of polarography in qualitative and quantitative analysis. Analysis of mixtures. Application to inorganic and organic compounds. Determination of stability constants of complexes.

Unit III: (i) A.C. polarography (ii) Square-wave polarography (iii) Pulse polarography (iv) Differential pulse polarography(V) Cyclic Voltammetry: Principle, instrumentation, reversible and irreversible cyclic voltammograms.

Unit IV: Ion selective electrodes: Ion-sensitive electrodes –types of ion sensitive electrodes –metal based cation and anion sensitive electrodes, solid membrane electrodes. Liquid ion-exchange electrodes, gas sensing membrane electrodes.

Books Suggested

CHE EC 406 B

- 1. H.W. Willard, LL. Merrit and J.A. Dean: Instrumental Methods of Analysis. Affiliated East-West).
- 2. G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denny. Vogel's Text Book of Quantitative Chemical Analysis (ELBS).
- 3. D.A. Skoog and D.M. West: Principles of Instrumental Analysis (Holt, Rinehart and Wilson).
- 4. J.G. Dick: Analytical Chemistry (Mc Graw Hill).