SRI VENKATESWARA UNIVERSITY:: TIRUPATI SVU COLLEGE OF SCIENCES

DEPARTMENT OF CHEMISTRY ORGANIC CHEMISTRY

Syllabus for M.Sc. CHEMISTRY
Choice Based Credit System (CBCS)
Amended as per NEP-2020
(w.e.f. the Academic Year 2021-2022)

Vision

Impart quality education & training in the field of chemistry to enable successful careers for the post graduate students in the field of research, education & industry applications of chemical sciences.

Mission

The Department of Chemistry strives:

- To get an ideal balance between knowledge creation and knowledge dissemination in the chemical sciences with a focus to train and mentor students to become responsible scientists and scientifically literate professionals to attain National and International impact.
- To contribute to the improvement of scientific and technological literacy, and the development of critical-thinking and problem-solving skills of all students in order to compete for the world of work and responsible citizenship

PROGRAM EDUCATIONAL OBJECTIVES:

At the end of the program, the student wills be able to:

PEO1	To demonstrate broad knowledge of descriptive chemistry.
PEO2	To impart basic analytical and technical skills to work effectively in various fields of chemistry.
PEO3	To motivate critical thinking and analysis skills to solve complex problems viz., analysis of data, synthetic logistics, spectroscopy, structure and modeling, team based problem solving etc.
PEO4	To demonstrate an ability to conduct experiments in the above sub disciplines with mastery of appropriate techniques and proficiency using core chemical instrumentation and modeling method
PEO5	To develop laboratory competence in relating chemical structure to spectroscopic phenomena.
PEO6	To demonstrate the ability to synthesize, separate and characterize compounds using published reactions, protocols, standard laboratory equipment and modern instrumentation.

PROGRAM OUTCOMES: On completion of M.Sc. Chemistry programme, graduates will be able to –

PO1	Have a firm foundation in the fundamentals and application of current chemical and
	scientific theories in different areas of chemistry viz., Analytical, Environmental,
	Inorganic, Organic and Physical.
PO2	Understands the background of organic reaction mechanisms, complex chemical
	structures, and instrumental methods of chemical analysis, molecular rearrangements
	and separation techniques.
PO3	Familiarize with the importance of various elements present in the periodic table,
	coordination chemistry and structure of molecules, properties of compounds,
	structural determination of complexes using theories and instruments.
PO4	Understand about the physical aspects of atomic structure, dual behavior, reaction
	pathways with respect to time, various energy transformations, molecular assembly
	in nano-level, significance of electrochemistry, molecular segregation using their
	symmetry.

PO5	Create awareness and sense of responsibilities towards environment and apply
	knowledge to solve the issues related to Environmental pollution.
PO6	Continue to acquire relevant knowledge and skills appropriate to professional
	activities and demonstrate highest standards of ethical issues in the subject
	concerned. Ability to identify unethical behavior such as fabrication, falsification or
	misrepresentation of data and adoptive objective, unbiased and truthful actions in all
	aspects.
PO7	Be skilled in problem solving, critical thinking and analytical reasoning as applied to
	scientific problems.
PO8	Clearly communicate the results of scientific work in oral, written and electronic
	formats.
PO9	Explore new areas of research in both chemistry and allied fields of science and
	technology.
PO10	Design, analyze and carry out scientific experiments and interpret data to provide
	solutions to different industrial problems.
PO11	Independently carry out research to solve practical problems and present a
	substantial technical report.
PO12	Ability to think, acquire knowledge and skills through logical reasoning and to
	inculcate the habit of self-learning throughout life, through self- paced and self-
	directed learning aimed at personal development, and adapting to change academic
	demands of work place through knowledge/ skill development/ reskilling.

PROGRAM SPECIFIC OUTCOMES: At the end of the program, the student will be able to:

PSO1	Scientific Problem solving skills: Deep knowledge of the topic which can develop
	the problem solving skills using chemical principles.
PSO2	Analytical skills: Develop analytical skills such as synthesizing, separating,
	characterizing chemical compounds and chemical reactions with the help of
	sophisticated instruments
PSO3	Research skills: Develop research skills through dissertation/project work in
	different fields of chemistry such as organic, inorganic, analytical, physical and
	environmental.
PSO4	Learning skills on life processes: Acquire advanced level of knowledge in natural
	products as well as biological systems from the chemistry point of view.

SRIVENKATESWARAUNIVERSITY::TIRUPATI DEPARTMENTOF CHEMISTRY

ORGANIC CHEMISTRY TWO YEAR M.Sc. COURSE IN CHEMISTRY (2021-2022)SCHEME

Semester -I

Sl. No.	Course Code	Components of Study	Title of the Course	Credit Hrs/ Week	No. of Credits	IA Marks	SEM End Exam Marks	Total
1	CHE- 101	Core-Theory	Inorganic Chemistry- I	6	4	20	80	100
2	CHE- 102	Core-Theory	Organic Chemistry I	6	4	20	80	100
3	CHE- 103	* Compulsory Foundation	a)Physical Chemistry- I b)Chemistry of Nano materials	6	4	20	80	100
4	CHE- 104	* Elective Foundation	a)General Chemistry- I b)Green Chemistry	6	4	20	80	100
5	CHE- 105	Practicals (Core & Comp.)	a)Inorganic Practical-I b) Physical Chemistry-I	3 3	2 2	-		50 50
6	CHE- 106	Practicals (Core & Elective)	a) OrganicChemistry- I b)General Chemistry-I	3 3	2 2	-		50 50
7	CHE- 107	Audit Course	Values and Professional Ethics – I	0	0	100	-	
		Total		36	24			600

^{*}Among the Compulsory and Elective Foundation a student shall choose anyone. SEMESTER-II

Sl. No.	Course Code	Components of Study	Title of the Course	Credit Hrs/ Week	No. of Credits	IA Marks	SEM End Exam Marks	Total
1	CHE- 201	Core-Theory	Inorganic Chemistry- II	6	4	20	80	100
2	CHE- 202	Core-Theory	Organic Chemistry -II	6	4	20	80	100
3	CHE- 203	* Compulsory Foundation	(a)Physical Chemistry- II (b) Advanced Thermodynamics and Biophysical chemistry	6	4	20	80	100
4	CHE- 204	* Elective Foundation	a)General Chemistry- II b)Chemistry of contemporary society	6	4	20	80	100
5	CHE- 205	Practicals (Core & Comp.)	a)Inorganic Practical-II b) Physical Chemistry-II	3 3	2 2	-	-	50 50
6	CHE- 206	Practicals (Core & Elective)	a)OrganicChemistry- II b)General Chemistry-II	3 3	2 2	-	-	50 50
7	CHE- 207	Audit Course	Human Values and Professional Ethics – I	0	0	100	-	
		Total		36	24			600

^{*}Among the Compulsory and Elective Foundation a student shall choose anyone.

M.Sc. (ORGANIC CHEMISTRY)

SEMESTER-III

Sl. No	Course Code	Components of Study	Title of the Course	Credit Hrs/ Week	No. of Credits	IA Marks	SEM End Exam Marks	Total
1	CHE-OC-301	Core-Theory	Organic Chemistry-III	6	4	20	80	100
2	CHE-OC - 302	Core-Theory	Organic Spectroscopy	6	4	20	80	100
3	CHE-OC-303	*Generic Elective	(a) Inorganic Spectroscopy & Thermal Methods of analysis (b) Physical Chemistry III	6	4	20	80	100
4	CHE-OC-304	Core& Gen. Practical	Organic Estimations	6	4	-	-	100
5	CHE –OC- 305 A	Skill Oriented Course (theory)	Chemotherapy and drug analysis	3	2	10	40	50
	CHE –OC- 305 B	Skill Oriented Course (Practicals)	Multistep preparations	3	2	-	-	50
6	CHE- 306	Open Elective (For other departments)	(a) Spectral Techniques (b) Chromatographic Techniques	6	4	20	80	100
		Total		36	24			600

^{*}Among the Generic Elective a student shall choose any one.

SEMESTER-IV

Sl. No	Course Code	Components of Study	Title of the Course	Credit Hrs/ Week	No. of Credits	IA Marks	SEM End Exam Marks	Total
1	CHE-OC-401	Core-Theory	Organic Synthesis - I	6	4	20	80	100
2	CHE-OC-402	Core-Theory	Organic Synthesis - II	6	4	20	80	100
3	CHE-OC-403	Generic Elective* (Related to subject)	(a) Heterocycles and natural Products (b) Bioinorganic, Bioorganic & Biophysical Chemistry	6	4	20	80	100
4	CHE-OC-404	Core& Gen. Practical	Spectral Identification	6	4	-	-	100
5	CHE-OC-405	Core-Practicals/ Project work	Project work	6	4	-	-	100
6	CHE-406	Open Elective (For other departments)	(a)Drug Chemistry or (b) Electroanalytical Techniques	6	4	20	80	100
	4. 6.	Total		36	24			600

^{*}Among the Generic Elective a student shall choose any one.

CHE-	101		INORGANIC CHEISTRY I L-5,T-1,P-0 4Credits derstanding of graduate level chemistry												
Pre-re	equisite:	Unders	tanding	of grad	uate lev	el chem	istry			•					
Co	urse Ob	jective	s:												
• Co	mpreher	d the k	ey featu	res of c	oordina	tion con	npounds,	Crystal	Field T	heory, di	ifferent p	roperties			
and	and bonding by spectroscopic techniques														
• Stu	• Study the polymorphic forms of non-transition elements and their synthesis and properties														
• Un	• Understand the basics of reaction mechanism and the mechanistic concepts of Dissociative (Id) and														
As	Associative interchange Mechanism (Ia), Taube's classification, Trans effect and Electron Transfer														
Re	Reactions														
• Fai	Familiarize with the methods of synthesis of metal carbonyls and metal nitrosyls, Synergistic effect,														
EA	EAN and 18-electron rule														
Cours	e Outco	mes: A	t the end	of the	course,	the stude	ent will b	e able							
CO1	To und	erstand	the key	features	of coor	dination	1 compou	ınds, Cry	stal Fie	ld Theor	y, magne	tic			
	propert	ies and	bonding	g in trans	sition m	etal con	nplexes.								
CO2	To lear	n about	the poly	ymorphi	c forms	of Carb	on, Sulp	hur and F	hospho	rus, synt	hesis and				
	propert	ies of su	ulphur-n	itrogen	compou	ınds, boı	ranes, car	rbides, si	licates a	and to kn	ow Wade	es rules.			
CO3	To exp	lain the	reactivi	ty of co	mnleves	in term	s of Vale	ence bond	l and C	rystal Fie	old theori	ec			
	-			•	-			fer React		rystar r te	na theorn	C 5,			
CO4								rent meta		nvls svn	ergistic e	ffect			
	and 18		_	synthes	is and s	nactares	of unite	Tent met	ıı caroo	11 1 1 3 , 3 9 11	ergistic e	licet			
	and 10														
	1							program							
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	2	1	3	-	1	-	1	-	2	-	1			
CO2	3	1	-	3	-	2	2	2	2	1	-	2			
CO3	3	2	- 1	3	2	-	-	1	1	1	2	1			
CO4	3	1	1	3	-	2	2	2	1	-	1	1			

CHE 101: INORGANIC CHEISTRY I

UNIT-I: CO-ORDINATION COMPOUNDS

15 Hrs

Introduction to Crystal field Theory, CFSE and its calculation, Paring energy, Splitting of 'd' orbitals in Trigonal bi pyramidal, square planar, square pyramid and pentagonal bipyramidal geometries, Jahn –Teller effect, Application of CFT, OSSE, site Selection in Spinels, Short comings of CFT, Evidence for covalency – Nephelauxetic effect. MOT of co-ordinate bonds –M.O. Diagrams for octahedral, tetrahedral and square planar complexes. Experimental evidences for π - bonding – Crystallography, Infrared spectroscopy and Photoelectron spectroscopy.

UNIT-II: CHEMISTRY OF NON-TRANSITION ELEMENTS 15 Hrs

General characteristics of the non-transition elements special features of individual elements; Synthesis' properties and structure of their Halides and Oxides, Polymorphism of Carbon, Phosphorus and Sulphur, Synthesis, properties and structure of boranes, Carboranes, borazines, Silicates, Carbides, Sulphur-nitrogen compounds. Electron counting in boranes, Wades rules (Poly hedral skeletal electron pair theory), Isopopoly and hetero poly acids.

UNIT-III: REACTION MECHANISMS IN COMPLEXES 15 Hrs

Reactivity of metal complexes. Inert and Labile complexes. Concept of Labile and Inert complexes in terms of Valence bond and Crystal Field theories. Taube's classification of complexes as labile and inert complexes. Dissociative (D) and Dissociative interchange Mechanism (Id) & Associative (A) and Associative interchange Mechanism (Ia). Substitution reactions in octahedral complexes- Acid Hydrolysis -factors affecting Acid Hydrolysis - Base Hydrolysis-conjugate Base Mechanisms - Anation Reactions -Substitution Reactions in Square Planar complexes- Trans effect — Mechanisms of Trans effect: polarization and π -bonding theories. Electron Transfer Reaction-Inner Sphere and outer Sphere Mechanisms- Marcus theory.

UNIT-IV: METAL πCOMPLEXES-I

15 Hrs

Nature of π bonding, Classification of π ligands, π donor ligands and π -acceptor ligands.

Metal Carbonyls: Synthesis of metal carbonyls, Structures of metal carbonyls of the types M(CO)n (M= Cr, Fe, Ni; n=4-6), $M_2(CO)n$ (M=Co, Fe, Mn; n=8-10), $M_3(CO)_{12}$ (M=Fe, Ru and Os), $M_4(CO)_{12}$ (M=Co, Rh, Ir). IR Spectraof metal carbonyls (i) Detection of bridging and terminal CO ligand, (ii) Synergistic effect, EAN and 18-electron rule. Electron counting methods (i) Oxidation state method and (ii) Neutral Atom method.

Metal Nitrosyls: Synthesis of metal Nitrosyls, bonding, Electron donation by nitric oxide, Models for NO bonding (i) Covalent model and (ii) Ionic models, Structures of metal nitrosyls (1) [Fe₄S₃(NO)] (2)[Fe₂(NO)₂I₂] (3) $[(\phi_3P)_2Ir(CO)Cl(NO)]^+$ (4) $[(\phi_3P)_2Ru(NO)_2Cl]$, Detection of bridging NO ligand, Applications of metal nitrosyls.

- 1. F.A.Cotton and G. Wilkinson, Advanced In-organic chemistry VI Edition, 1999. John wiley & sons. Inc., New York.
- 2. James E. Huheey, Inorganic chemistry- Principles of structure and reactivity, VI Edition 1993. Harper Collins College Publishers, New York.
- 3. J.D. Lee: Concise Inorganic Chemistry (Blackwell)
- 4. Gary Wolfsburg: Inorganic Chemistry (5th Ed. (Viva Books)
- 5. W.L. Jolly: Modern Inorganic Chemistry (McGraw-Hill)
- 6. B.N Figgis: Introduction to Ligand Fields (John-Willey)
- 7. S.F.A. Kettle: Coordination compounds.
- 8. Coordination Chemistry. Bassalo & Jahnson.

L-3.T-1.P-2

4Credits

Organic Chemistry I

CHE	-102		Organ	ic Cnem	iistry 1		L-	3,1-1,P	-2	41	Creatts	
Pre-requisite: Understanding of graduate level Organic Chemistry												
Cours	e Objec	tives:										
	ssify m								on op	tical an	d geon	netrical
isomerism by the application of Cahn-Ingold-Prelog rules. • Familiarize with different types of substitution reactions, able to predict products, including												
• Familiarize with different types of substitution reactions, able to predict products, including stereochemistry in aliphatic and aromatic nucleophilic substitution reactions, effect of neighboring group participation												
 Understand thermodynamic and kinetic requirements, kinetic and thermodynamic control, 												
	ential e											
	hanisms	· .										
	dy abou	t occur	rence, is	solation	, structu	ıre estal	blishmei	nt and s	synthesi	s of nat	tural pr	oducts-
	enoids.											
Cours	e Outco	mes: A	t the end	d of the	course,	the stud	ent will	be able				
	201	To d	etect ste	reocher	nical str	uctures	of the m	nolecule	s sterec	selectiv	e and	
			ocontro				01 0110 11	10100410	s, s.c.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	• and	
	CO2					nistry of	the prod	ducts wi	th the e	ffect of	neighbo	uring
										romatic		
				-			effect of	•	-			
C	CO3	To k	now the	concep	t of isot	ope effe	ects, pote	ential en	ergy dia	agrams a	and	
		trans	sition sta	ites in d	ifferent	interme	diates			C		
C	CO4	To fa	amiliariz	ze with	stereosp	ecific sy	ynthesis	of natur	ally occ	curring t	erpenoi	ds and
			adation								-	
		Ma	apping	of cours	se outco	mes wit	th the p	rogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2		1	2	2		1	1		1		
CO1	3	2	1	3	2	- 1	1	1	-	1	- 1	-
CO2	3	2	1	3	-	1	2		- 1	2	1	1
CO ₄	3	1	2 2	3	2	1	1	2	1	1	1	1
CO4	5	2		3	2	1	1	1	-	1	1	1

CHE102: Organic Chemistry I

UNIT-I: Stereochemistry

CHE-102

Sereoisomerism-Stereoisomers Classification – Configuration and conformation.

Molecular Three dimensional representations: Wedge, Fischer, Newman and Saw-horse formulae, their description and interconversions.

Molecular Symmetry & Chirality: Symmetry operations and symmetry elements (Cn & Sn). Criteria for Chirality. Dissymmetrization.

Optical isomerism: Molecular Symmetry and Chirality-Cahn-Ingold-Prelog rules R, S-nomenclature, stereoisomerism resulting from more than one chiral center, meso and pseudoasymmetric compounds - **Axial Chirality** - Stereochemistry of allenes spiranes - biphenyl derivatives and atropisomerism - **Planar chirality** - Ansa compounds and trans - Cycloalkenes - **Helicity**. Helically chiral compounds

Geometrical isomerism - E, Z - nomenclature - Physical and Chemical methods of determining the configuration of geometrical isomers-Stereoisomerism in 3, 4 and 5-membered cyclic compounds.

UNIT-II: Substitution Reactions

i) Aliphatic Nucleophilic substitutions: The S_N2 , S_N1 , mixed S_N1 and S_N2 , SET mechanisms. Reactivity- effects of substrates, attacking nucleophiles, leaving groups and reaction medium.Common carbocation rearrangements – primary, secondary and tertiary. The neighbouring group participation (NGP) -anchimeric assistance, NGP by σ and π - bonds, phenonium ions, norbornyl and norbornenyl systems, Classical and nonclassical carbocations, NGP by halogens and heteroatoms (O,N,S)

The S_N^i and S_N^2 mechanisms. Nucleophilic substitution at an allylic, and vinylic carbons.

ii. Aromatic Nucleophilic Substitution: The S_NAr , S_N1 , benzyne and $S_{RN}1$ mechanisms. Reactivity - effect of substrate, structure, leaving group and attacking nucleophile. The von Richter, Sommelet - Hauser and Smiles rearrangements.

UNIT-III: Reactive intermediates

Types of reactions, types of bond cleavage mechanisms, generation, structure, stability and reactivity of carbocations, carbanions, free radicals, carbenes, nitrenes and arynes. Thermodynamic and kinetic requirements, kinetic and thermodynamic control, potential energy diagrams, transition states and intermediates, methods of determining mechanisms, isotope effects.

UNIT-IV: Terpenoids

Classification of terpenoids, occurrence, isolation, general methods of structure determination. Isoprene and special isoprene rule. Structure determination and synthesis of the following representative molecules: Farnesol, Zingeberine, Cadinene and Abietic acid.

- 1. Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, John Wiley.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J Sundberg, Plenum.
- 3. Structure and Mechanism in Organic Chemistry C.K. Inglod, Cornell University Press.
- 4. Organic Chemistry, R.T Morrison and R.N. Boyd, Prentice Hall.
- 5. Principles of Organic Synthesis, R.O.C Norman and J. M. Coxon, Blackie Academic.
- 6. Stereochemistry, P.S. Kalsi, Wiley Eastern.
- 7. Text book of Organic Chemistry, M.C. Murry
- 8. Organic Chemistry, Vol I, I.L. Finar, ELBS Eds.

CHE-1	03		Phy	sical Cl	nemistr	y I	L-	5,T-1,P	-6	40	Credits		
Pre-re	Pre-requisite: Basic knowledge about Physical Chemistry												
	Course Objectives:												
	require knowledge in Quantum enemons, postulates of Quantum Mechanics., Applications of												
	Schrodinger wave equation and Born-Oppenheimer approximation												
	Study on Chemical Dynamics and theories in unimolecular, chain and fast reactions and												
	determination of reaction rates.												
						mics an	d statist	tical the	rmodyn	amics,	Gibbs- 1	Duhem	
_	• Familiarize with concepts of Thermodynamics and statistical thermodynamics, Gibbs- Duhem equation and Sackur-Tetrade equation												
	• Know about Thermodynamic and Kinetic concept of Electrochemistry and conductance,												
	conductivity of electrolytes												
Course	e Outco	mes At	the end	of the c	ourse, tl	he stude	nt will b	oe able t	0				
CO1	To kn	ow the c	concepts	such as	Operat	or algeb	ra, Eige	n value	s and Ei	gen fun	ctions,		
	Deger	eracy, S	Schrodir	iger wav	e equat	ion and	the post	ulates o	f Quant	um Med	chanics.		
~~~	_ 1											_	
CO2				es of rea	ction rat	tes, Lind	demann,	Linden	nann-Hi	nshel w	ood, and	1	
	RRKN	A theori	es.										
CO3	To kn	ow abou	ıt Thern	nodynan	nic conc	epts and	d entrop	y chang	e in rev	ersible p	rocess a	and	
	irreve	rsible pr	ocess, C	3ibbs- D	uhem e	quation,	, calcula	tion of 1	hermod	ynamic	properti	ies.	
CO4								of Nen	nst Equa	ition and	d the de	rivation	
	of Del	ye-Huc	kle Equ	ation an	d its Ve	rificatio	n						
		Ma	apping (	of cours	se outco	mes wit	th the p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	-	1	3	2	1		1	2		1	1	
CO2	3	1	2	3	1		1		1	1	-	1	
CO3	3	-	1	3	2	1	-	1		-	2	-	
CO4	3	1	2	3	-	1	1	-	2	1	-	1	

**CHE-103: Physical Chemistry I** 

#### **UNIT-I: Quantum Chemistry-I**

#### (A)Introduction to Exact Quantum Mechanical Results

Operator algebra, Eigen values and Eigen functions, Operators for momentum and energy, Degeneracy, Linear combination of Eigen functions of an operator, well behaved wave functions, Normalized and orthogonal functions, The schrodinger wave equation and the postulates of Quantum Mechanics, (B) **Applications of Schrodinger wave equation:** Particle in one dimensional and three dimensional box, harmonic oscillator, rigid rotor, hydrogen atom and its applications. Hydrogen like wave function, hydrogen like orbitals and their representation, polar plots, contour plots and boundary diagram. (C)**Approximate Methods:** The variation Theorem, Linear variation principle, perturbation Theory (first Order and non-degenerate), Application of variation Method and perturbation theory to the helium atom, The Born-Oppenheimer approximation.

#### **UNIT-II: Chemical Dynamics**

(A)**Theories of reaction rates:** Collision theory, steric factor. Theory of Absolute Reaction Rates-Reaction coordinate, activated complex and the transition state. Thermodynamic formiulation of reacton rates.

(B) Unimolecular reactions: Lindemann, Lindemann-Hinshel wood, and RRKM theories. Termolecular reactions. Complex reactions-Rate expressions for opposing, parallel and consecutive reaction (all first order type) (C) Chain reactions: Dynamic chain, hydrogen-bromine reaction, pyrolysis of acetaldehyde, decomposition of ethane, photochemical reactions- H₂-Br₂, H₂-Cl₂ reactions, Autocatalysis, H₂-O₂ reaction explosion limits. (D) Fast Reactions: Flow system – Temperature and pressure Jump Methods – Relaxation Techniques.

# **UNIT – III: Thermodynamics**

(A) **Brief review of Thermodynamic concepts:** Enthalpy, entropy, free energy. Concept of Entropy – Entropy as a state function –Entropy change in reversible process and irreversible process – Temperature – Entropy diagrams – Entropy change and phase change – Entropy of mixing – Entropy and disorder. (B) **Statistical thermodynamics:** Partial molar properties: their significance and determination of partial molar properties, fugacity and its determination. Concept of distribution, thermodynamic probability and most probable Distribution, Ensemble averaging, postulates of ensemble averaging, canonical, grand canonical and micro- canonical ensembles, partition functions, translational, rotational, vibrational and electronic partition functions, Gibbs- Duhem equation, calculation of thermodynamic properties in terms of partition functions, Entropy of monatomic gases (Sackur-Tetrade equation)

# **UNIT-IV**: Electrochemistry I

# (A) Thermodynamic and Kinetic concept of Electrochemistry

Thermodynamic and Kinetic Derivation of Nernst Equation, Chemical and Concentration Cells with and without Transference, Liquid Junction Potential, Derivation of the Expression for Liquid Junction Potentials-its determination and elimination, Applications of EMF Measurements: (i)Solubility product, (ii)pH Determination, (iii) Potentiometric Titrations.; (B)Conductivity: Theory of Electrolytic Conductance, Derivation of Debye-Huckle Equation and its Verification, Debye- Falkenhagen Effect, and Wein Effect, kohlrausch law. Calculation of Solubility of Sparingly soluble Salt from Conductance Measurements.

Conductometric Titrations: Titration of Strong Acid Vs Strong Base (HCl vs NaoH); Titration of Weak Acid Vs Strong Base (AcoH vs NaoH); Titration of mixture of Strong and Weak Acids vs Strong Base; Precipitation Titrations.

- 1. physical chemistry, P. W. Atkins (ELBS)
- 2. Quantum Chemistry, Ira N. Levine (Prentice Hall)
- 3. Atomic Structure and Chemical bond, Manas Chandra.
- 4. Chemical Kinetics, K.J. Laidler (Mc Graw Hill)
- 5. Kinetics and Mechanism of Chemical Transformations, J. Rajaraman and J. Kuriacose (Mcmilan)
- 6. Thermodynamics for chemists, S. Glasstone
- 7. Chemical thermodynamics, I.M. Klotz
- 8. Statistical Thermodynamics, M. Dole
- 9. Modern Electrochemistry, Vol. I & II, J.O. M. Bockris and A.K.N. Reddy (plen
- 10. An Introduction to Electrochemistry (3rded.), S. Glasstone (Affiliated East-West).

CHE-1	104 (A) General Chemistry I L-5,T-1,P-0 4Credits												
Pre-r	Pre-requisite: Understanding of graduate level Chemistry												
	Course Objectives:												
	Gain knowledge on precision and accuracy, Limit of detection, Limit of determination,												
	Sensitivity and selectivity, statistical evaluation of data												
	Familiarize with principles and concepts of flame emission spectroscopy and atomic absorption												
_	spectroscopy and their applications.												
	• To know about ecosystem, nutrient cycle and dessert ecosystem and forest ecosystem and aquatic												
	ecosystem.  Gain knowledge on air pollution, water pollution, soil pollution, marine pollution, noise pollution												
		-	-		iter polli	ution, so	oil pollu	tion, ma	rine po	llution, i	noise po	llution	
	solid was												
Cour	Course Outcomes: At the end of the course, the student will be able												
CO1	To knov	v about	mean a	nd medi	an value	es, stand	lard dev	iation ar	nd coeff	icient of	f variati	on.	
CO2	To acqu		_	-	-	l instrun	nentatio	n of AA	S and d	ifferenc	e betwe	en	
	flame A												
CO ₃	To know	v about	the prin	ciple an	d conce	ept of ec	osystem	and the	ir funct	ioning			
CO4	To have	on ida	2 00 001		tol poll:	ution on	d anzin	nm anta	1 impaa	t aggagg	mant		
CO4	10 nave	an idea	a on env	ironinei	nai pon	ution an	d enviro	ommemia	ппрас	i assessi	nent.		
		Ma	apping o	of cours	e outco	mes wit	th the p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	2	3	1	-	1	-	-	2	1	1	
CO2	3	2	-	3	1	-	2	1	-	1	1	-	
CO3	3	3	2	3	2	1		1	2	1	1	2	
CO4	3	2	1	2	3	1	1	1	-	2	1	1	

CHE104-A: General Chemistry I

#### UNIT-I: TREATMENT OF ANALYTICAL DATA

#### 15 Hrs

Precision and accuracy —mean and median values —Standard deviation — coefficient of variation, Types of errors: Determinate and indeterminate errors, confidence limits, significant figures, computations, minimization of errors, statistical evaluation of data —T-test ,F- test , and  $X^2$  —test. Correlation coefficient and coefficient of determination; Limit of detection (LOQ); Limit of determination(LOD) Sensitivity and selectivity of an analytical method.

# UNIT-II: FLAME EMISSION AND ATOMIC ABSORPTION SPECTROSCOPY 15 Hrs

- (a) **Flame Emission Spectroscopy**: Principles, chemical reactions in flames, Interferences, evaluation methods, flame photometer and experimental technique, procedure for determinations, limitations and disadvantages. Applications
- (b)**Atomic Absorption Spectroscopy: Flame AAS:** Principle, Instrumentation Sources of radiation (HCL and EDL), Different types of burners, Interferences- Physical, Chemical, spectral and back ground correction, and methods of minimization
- GF AAS: Principle and technique –Comparison between Flame AAS and furnace AAS, Applications of AAS, Comparison between Atomic Absorption & Flame Photometry.

#### **UNIT-III: ECOSYSTEMS**

# 15 Hrs

Concept of an ecosystem (Abiotic and biotic environment), structure and function of an ecosystem Producers, Consumers and decomposers. Energy flow in the ecosystem, (Nutrient cycle in the ecosystem) Ecological succession Food Chain, food webs and ecological pyramids. Introduction, types, characteristic features, structure and function of the following ecosystems, Forest ecosystem, Grassl and ecosystem, Desert ecosystems aquatic ecosystems [ponds, streams, lakes, rivers, ocean estuaries].

#### **UNIT-IV: ENVIRONMENTAL POLLUTION**

15 Hrs

Definition a) Air pollution b) Water pollution c) Soil pollution d) Marine pollution e) Noise pollution f) Thermal pollution g) Nuclear pollution Solid waste management: Causes, effects and control measures of urban and industrial wastes. Environmental impact assessment.

- 1. H.W. Willard, LL. Merritt and J.A. Dean: Instrumental Methods of Analysis
- 2. Vogel's Text book of Quantitative Inorganic Analysis.
- 3. Analytical Chemistry
- 4. Instrumental Methods of Analysis H. Kaur

CHE	.U4B		restanding of graduate level Chemistry  the the significance of green chemistry and assessment of the impact. The second biocatalyst in oxidation, reduction and hydrolytic reactions and solvent free reactions and modern reaction techniques. The the use of ionic liquids as green solvents.  At the end of the course, the student will be able												
Pre-re	quisite:	Unders	standing	of grad	uate lev	el Chem	nistry		•						
Cours	e Objec	tives:													
• To 1	amiliari	ze with	the sign	ificance	e of gree	en chem	istry and	d assessi	ment of	the imp	act.				
• To §	gain kno	wledge	on bioc	atalyst i	in oxida	tion, red	luction a	and hydr	olytic r	eactions					
• To 1	nave an	idea on	solvent	free rea	ctions a	nd mode	ern reac	tion tech	nniques.						
• To 1	amiliari	ze with													
Cours	e Outco	mes: A	t the end of the course, the student will be able												
C	01	To g	get knowledge on green reaction conditions and their impact on environment.												
C	O2	To k	know about use of different biocatalysts as environmentally friendly reagents.												
C	O3		know about use of different biocatalysts as environmentally friendly reagents.  acquire knowledge on the use of modern techniques like ultrasound, rowave etc.												
	0.4				1	C: 1		1: 00							
C	<b>O</b> 4	lon	ave an 1	dea on t	ne use c	of ionic	iquias i	n differe	ent react	tions.					
		Ma	apping	of cours	se outco	mes wit	th the p	rogram	outcon	nes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1			
										0	1	2			
CO1	3	2	1	-	2	1	1	_	1	-	1	1			
CO2	3	1	1	3	1	-	1	1	-	1	-	1			
CO3	3	3	2	3	2	1		2	-	1	1	1			
CO4	3	2	1	2	3	1	1	1	1	-	1	1			

I _3 T_1 P_2

1Credite

Conoral Chamistry I

**CHE 104B: General Chemistry I** 

#### UNIT-I

CHE 104D

**Fundamentals and significance of Green Chemistry:** Discussion of the current state of chemistry and the environment and the definition of green chemistry. Assessment of the impact of chemistry in the environment and definition of risk hazard. An introduction to the tools of green chemistry and its fundamental principles.

**Principles of Green Chemistry:** Prevention of waste / by-products, Hazardous products-Designing of safer chemicals- Selection of appropriate solvents and starting materials- Use of protecting groups and catalysis- Designing of biodegradable products.

#### **UNIT-II**

Catalysis for Green Chemistry: Use of biocatalysts- Biochemical Oxidation, Biochemical Reduction, Enzyme Catalyzed Hydrolytic Process, Modified biocatalysis- transition metal catalysis- Reformatsky reaction, Wurtz reaction, Pinacol coupling, Simmons-Smith reaction, Mukaiyama reaction, Heak reaction, Ullmann's coupling.

#### **UNIT-III**

**Solvent Free Reactions:** Solvent free techniques- Reactions on solid mineral supports, Phase Transfer Catalysis- C-alkylation, N-alkylation, S-alkylation, Darzen's reaction, Wittig reaction. Ultrasound assisted green synthesis- Oxidation, Reduction, Hydroboration, Bouveault reaction, Strecker reaction, Microwave assisted green synthesis- Biginelli reaction, Aza-Michael reaction, Suzuki reaction, Stille reaction, Sonogashira reaction.

#### **UNIT-IV**

**Ionic liquids:** Definition- Types of Ionic Liquids-Synthesis of Ionic Liquids- Selection of ionic liquids- physical properties- Application in organic synthesis- alkylation, allylation, oxidation, reduction, polymerization, hydrogenation, hydroformylation, alkoxycarbonylation, carbon-carbon bond forming reactions, alkene metathesis.

# **Books suggested:**

- 1. New Trends in Green Chemistry by V.K. Ahluwalia, M. Kidwai.
- 2. Green Chemistry: Environment Friendly Alternatives by Rashmi Sanghi, M M Srivastava
- 3. Green Solvents for Organic Synthesis by V.K. Ahluwalia, Rajender S. Varma
- 4. Green Analytical Chemistry by Mihkel Koel and Mihkel Kaljurand

CHE 1	05 A &		Inc			ctical I: sical Ch	emistry		5,T-1,P	-0	4	Credits				
Pre-re	quisite:								Physical	Chemis	stry prac	ctical.				
Course	e Objec	tives	:													
• Bas	ic labora	atory	tec	hniques	of titra	tion and	l analysi	S.								
• Qua	ntitative	esti	ma	tion of i	norgani	c compo	ounds th	rough v	olumetr	ic techn	iques.					
• Cali	bration	of vo	luı	netric a	pparatus	s and sta	tistical	analysis	of the c	lata.	•					
	erminati			-	-			•								
	e Outco															
(	C <b>O</b> 1		Го	o demonstrate mastery of basic semi-micro qualitative analysis of simple salts												
		la	ınd	nd interprets analytical data and will make scientific claims that are supported												
				y the observations.												
	C <b>O</b> 2			the observations.  o familiarize with techniques of titration and calculation of errors.												
	.02						<u> </u>									
	C <b>O3</b>		Го	study th	e detern	nination	of critic	cal solut	ion tem	perature	e, eutect	ic comp	osition,			
		(	list	ribution	coeffic	ient, ads	sorption	of diffe	rent s	systems.						
(	C <b>O</b> 4		Го	calibrate	the sta	tistical o	data									
			Ma	apping o	of cours	se outco	mes wit	th the p	rogram	outcon	nes					
	PO1	PO	2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1			
		- 0														
CO1	3	2														
CO2	3	2	2 2 - 2 1 1 - 2 2 1													
CO3	3	2		1	2	2	1	-	2	1	1	2	1			
CO4	3	2		2	1	2	1	-	2	2	1	1	1			

CHE 105 A & B: Core practical I: Inorganic & Physical Chemistry

#### Semi Micro Qualitative Analysis

Qualitative Analysis of a mixture containing four cations including two less common cations (viz., W, Mo, Se, Te, V, Ce, Th, Zr, Li and U).

- 1. Determination of critical solution temperature, eutectic composition and temperature of binary system.
- 2. Calibration of volumetric apparatus and statistical analysis of the data.
- 3. Determination of critical solution temperature of phenol-water system and study the effect of electrolyte on CST.
- 4. Determination of Eutectic composition and temperature of binary system
- 5. Determination of distribution coefficient of benzoic acid between water and benzene.
- 6. Study the adsorption of acetic acid on charcoal and analysis of the data on the basis of Langmuir and Freundlich adsorption isotherms.
- 7. Determination of rate constant of acid hydrolysis of an ester and investigate the effect of catalyst concentration, reactant concentration and temperature.

CHE	106A &				actical neral C	I: hemistr		L-5,T-1	,P-0		4 Cre	dits			
Pre-re	quisite:	Unders	standing	of grad	uate lev	el Orgai	nic & G	eneral C	Chemistr	y practi	cal.				
<ul><li>Ider</li><li>Prep</li></ul>	oaration	on of sir of deriv	atives a			by syste	ematic q	_l ualitativ	ve analy	sis					
• Cali	bration	of spec													
Cours	e Outco		At the end of the course, the student will be able												
	CO1		familiarize the systematic procedures of analysis of organic components.												
	C <b>O2</b>	To k	•												
	CO3		understa logically				l familia	rize wit	h metho	odologie	s to pre	pare			
	C <b>O</b> 4	Pur	ification	of com	pounds	by diffe	rent pro	ocess							
		M	apping	of cours	se outco	mes wit	h the p	rogram	outcon	nes					
	PO1	PO2	Mapping of course outcomes with the program outcomes    D2   PO3   PO4   PO5   PO6   PO7   PO8   PO9   PO1   PO1												
CO1	3	2	3 3 1 2 - 1 - 1 1 -												
CO2	3	2	2	3	-	2	-	1	1	-	1	2			
CO3	2	2	2	1	2	1	2	1	-	1	-	2			
CO4	1	2	2	1	1	1	1	-	1	1	1	2			

CHE: 106 B: PRACTICAL - II: ORGANIC CHEMISTRY

# **Single step preparations**

- 1. Preparation of aspirin
- 2. Preparation of p-nitroacetanilide
- 3. Preparation of p-bromoacetanilide

Сн	E 107	Hu	man Va			essional	L-s	3,T-1,P-	2	4	l Credit	<b>S</b>		
				Ethi	ics-I									
Pre-re	quisite:	Unders	standing	of grad	uate lev	el Huma	ın Valu	es and p	rofessio	nal ethic	cs			
	e Object													
	alyze val													
	derstand													
	ncept of													
	cal inter					uation of	r praction	ce and a	ssess o	wn ethic	al value	es with		
			ontext and problems											
Cours	e Outco	mes: A	At the end of the course, the student will be able to											
	101		At the end of the course, the student will be able to know about the needs and importance of professional ethics.											
	CO1													
C	CO2	To a	nalyze n	ature of	Values	, basic N	Aoral C	oncepts	charact	er and C	onduct.			
C	CO3	_		_	on indiv	idual an	d societ	y ethica	l values	, ahimsa	ı, satya a	and		
			machary											
	CO4				s of Bha	agavd G	ita, vari	ous relig	gions, re	eligious	tolerenc	e,		
		Gano	dhian etl	nics.										
		Ma	apping o	of cours	se outco	mes wit	h the p	rogram	outcon	nes				
	PO1	PO2	Mapping of course outcomes with the program outcomes  2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											
CO1	3	1	- 3 2 - 1 2 3 1 1 2											
CO2	3	2	2	3	1	1	1	2	3	-	-	2		
CO3	3	1	2	3	2	-	1	-	-	1	1	3		
CO4	3	1	1	3	-	1	2	2	2	2	-	3		

Human Values and Professional I 3 T 1 D 2

1 Crodite

#### CHE 107: ELECTIVE FOUNDATION (HUMAN VALUES AND PROFESSIONAL ETHICS – I)

**Chapter I:** Definition and Nature of Ethics – Is relation to Religion, Politics, Business, Law, Medicine and Environment. Need and Importance of Professional Ethics – Goals – Ethical Values in Various Professions.

**Chapter II:** Nature of Values – Good and Bad, Ends and Means, Actual and Potential Values, Objective and Subjective Values, Analysis of Basic Moral Concepts – Right, Ought, Duty, Obligation, Justice, Responsibility and Freedom, Good Behavior and Respect for Elders, Character and Conduct.

Chapter III: Individual and Society: Ahimsa (Non-Violence), Satya (Truth), Brahmacharya (Celibacy), Asteya (Non Possesion) and Aparigraha (Non-stealing). Purusharthas (Cardinal virtues) - Dharma (Righteousness), Artha (Wealth), Kama (Fulfillment Bodily Desires), Moksha (Liberation), Crime and Theories of Punishment – (a) Reformative, Retributive and Deterrent, (b) Views on Manu and Yajnavalkya

**Chapter IV:** Bhagavd Gita – (a) Niskama Karma, (b) Buddhism – The Four Nobel Truths – Arya astanga marga, (c) Jainism - Mahavratas and Anuvratas. Values Embedded in Various Religions, Religious Tolerence, Gandhian Ethics.

## **Books for study:**

CHE 107

- 1. Johns S Mackenjie: A Manual of ethics
- 2. "The Ethics of Management" by Larue Tone Hosmer, Richard D. Irwin Inc.

- 3. "Ethics in Management" by S.A. Shelekar, Himalaya Publishing House.
- 4. Harold H. Titus: Ethics for Today
- 5. Maitra, S.K: Hindu Ethics
- 6. William Lilly: Introduction to Ethics
- 7. Manu: Manava Dharma Sastra or the Institute of Manu: Comprising the Indian System of Duties: Religious and Civil (ed) G.C. Haughton.
- 8. Sasruta Samhita: Tr. Kaviraj Kunjanlal, Kunjanlal Brishagratha, Chowkamba Sanskrit Series, Vol I,II and III, Varanasi, Vol I PP, 16-20, 21-32 and 74-77 only.
- 9. Charaka Samhita: Tr. Dr. Ram Karan Sarma and Vaidya Bhagavan Dash, Chowkambha Sanskrit Series Office. Varanasi I, II, III Vol I PP 183-191.
- 10. Ethics, Theory and Contemporary Issues. Barbara Mackinnon, Wadsworth/Thomson Learning, 2001.
- 11. Analyzing Moral Issues, Judith A. Boss, Mayfield Publishing Company, 1999.
- 12. I.C. Sharma Ethical Philosophy of India. Nagin& Co Julundhar.

CHE -	201		Inorga	anic Che	emistry	· II		L-5, T-	1, P-0	4	Credits		
Pre-re	quisite:	Unders	tanding	of gradu	ate lev	el chemi	istry			•			
	ourse O	•											
			_	_	of tra	nsition 1	metal co	mplexes	and va	rious rea	ections of	ı ligands	
7	with resp	pect to s	ynthesis	S.									
• (	Gain kn	owledg	e on e	lectronic	specti	ra of co	omplex	molecule	es of o	ctahedra	1 and te	trahedral	
٤	geometr	y											
			_			, diama	agnetism	and pa	ıramagr	netism a	nd other	related	
1	propertie	es of co	mplex n	olecules	}								
• ]	Familiarize with different catalytic reactions of complex molecules and factors effecting the												
	reactions.  e Outcomes: At the end of the course, the student will be able												
												_	
CO1				_				eparation	s and p	roperties	, nature c	of	
				features									
CO2					-		_	energy le		octahedra	al field a	nd	
								ano diagra					
CO3								iss, magn	etism a	nd magn	etic susce	eptibility	
			, ,	s and F									
CO4					reactio	ns, Free	radical	reactions	, Therm	al decon	nposition		
	reaction		n reaction										
								program					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	2	3	-	2	1	-	2	1	-	1	
CO2	3	2	-	3	1	2	1	-	1	2	1	1	
CO ₄	3	1	2	3	-	2	1 -	1	1	1	1	1	
CO4	3	1	1	3	-	7	-	1	1	1	1	-	

#### **CHE 201: INORGANIC CHEISTRY II**

#### UNIT – I: TRANSITION METAL II – COMPLEXES II

**15 Hrs** 

Transition metal  $\pi$  – complexes with unsaturated organic molecules – alkenes, alkynes, diene, dienyl and Cyclopentadienyl complexes and arene complexes-general methods of preparation, properties, nature of bonding and structural features – Important reactions relating to Nucleophilic and Electrophilic attack on ligands and to organic synthesis.

#### UNIT – II: ELECTRONIC SPECTRA OF COMPLEXES

15 Hrs

Russel-Saunders coupling – Spectroscopic term symbols- Derivation of term symbols of p² and d² configuration, Hole Formulation, Energy ordering of terms (Hund's Rules), Splitting of energy levels and spectroscopic states in Octahedral field, Selection rules – Break – down of selection rules, Orgel diagrams, Definition and utility–Orgel Diagrams for d¹ to d9 configurations in Octahedral and tetrahedral fields. Interpretation of electronic spectra of high spin octahedral and tetra hedral complexes of Ti(III), V(III), Cr(III), Mn(III), Mn(II), Fe(II), Fe(III), Co(III), Co(II), Ni(II) and Cu(II) complexes, Calculation of Dq and B¹ parameters for Cr(III) and Ni(II) complexes. Tanabe – Sugano diagrams, Differences between Orgel diagrams and Tanabe – Sugano diagrams, Tanabe – Sugano diagrams of d² to d6 and d8 configurations. Charge transfer spectra- LMCT and MLCT.

#### UNIT – III: MAGNETIC PROPERTIES OF TRANSITION METAL COMPLEXES 15 Hrs

Diamagnetism and paramagnetism-orbital and spin contributions, spin-orbit coupling, Hunds third rule and Energies of J levels – Curie law and Curie – Weiss law- Ferromagnetism and antiferromagnetism – Temperature independent magnetism Magnetic susceptibility and its determination by Gouy's and Faraday methods. Calculation of magnetic moment from magnetic susceptibility, spin-only formula, Orbital contribution to magnetic moment (Oh and Td Complexes) –Paramagnetism and crystalline fields – Ti (III), V (III), VO²⁺, Cr (III), Mn (II), Fe (III), Co(II), Ni (II) and Cu (II). Magnetic Exchange in copper acetate and other dimmers – spin cross over in complexes.

UNIT -IV: CATALYSIS 15 Hrs

Homogeneous catalysis, Metal ion catalyzed reactions – Redox potentials and processes – Mechanism of redox processes involving ligands – Factors affecting redox potentials - other types of metal catalyzed reactions – Reactions involving Ag (I), Cu (II) and Os (VIII) – Reactions of Oxyanions – Factors affecting rate (General discussion only) – Induced reactions – Free radical reactions – Thermal decomposition of peroxy disulphate – Fe(III) – $S_2O_8$  reactions – chain reactions – H-Br reactions,  $H_2O_2$  – $S_2O_8$  reactions.

- 1. Inorganic Chemistry principles of Structure and Reactivity 6th Edition. James E. Huheey.
- 2. Organometallic Chemistry: R.C. Mehrotra and Singh.
- 3. R. S. Drago: Structural methods in Inorganic Chemistry.
- 4. H. H. Willard, L. L. Merritt, Jr., J. A. Dean and F. A. Settle, Jr.: Instrumental Methods of Analysis (CBS Publishers).
- 5. R. L. Carlin: Magnetic Chemistry. R. L. Datta and A. Syamal: Elements of Magnetic Chemistry.

CHE	-202		Orga	nic Che	emistry	II	L-	3, T-1, l	P-2	4	Credits	<u> </u>			
Pre-re	quisite:	Unders	standing	of Orga	nic Che	mistry			<u> </u>						
Course	e Objec	tives:													
• Abl	e to rec	ognize,	classify	, explai	n, and a	apply fu	ndamen	ıtal orga	nic read	ctions su	uch as F	E2, E1,			
E1C															
							ing elec	etron de	ficient	carbon,	nitroge	en and			
	_		electron												
								and four			terocycl	les. Be			
								hese het							
		miliar with occurrence, isolation, structural elucidation and synthesis of natural products- oids													
	loids	oids													
		Outcomes: At the end of the course, the student will be able													
CO1		Fo familiarize the mechanisms of $E_1$ , $E_2$ and $E_{1CB}$ reactions, steroselectivity and synpyrolytic eliminations and use of isotopes, chemical trapping and crossover													
		-	eliminat	tions ar	ıd use	of isoto	opes, cl	nemical	trappin	g and	crossov	er			
		ments.													
CO2	To le	arn the	rearran	gement	s involv	ing elec	ctron de	eficient	carbon,	nitroge	n and	oxygen			
	atoms	and ele	ctron ri	ch carbo	on atom	and far	niliarize	e with th	ie limita	ations ar	ıd appli	cations			
	of rea	ctions.													
CO3	To lea	arn the	synthes	is of th	ree and	four m	embere	d hetero	cycles,	mechar	nism of	ring			
			•					ng and v	•			_			
	_	_	ring ope					C		J					
CO4						on and s	synthesi	s of alka	aloids us	sing spe	cific rea	gents.			
	1	Ma	apping (	of cours	e outco	mes wit	th the p	rogram	outcon	nes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
	FUI	F O 2	103	F <del>U 4</del>	103	100	FU/	100	F 09	1010	FUII	FU12			
CO1	3	2	2	3	-	2	1	-	1	1	1	-			
CO2	3	2	2	3	2	2		1	1	-	1	1			
CO3	3	2	2	3	2	2	1	1	-	1	-	1			
CO4	3	2	2	3	-	2	_	1	-	1	1	1			

**CHE-202: ORGANIC CHEMISTRY II** 

#### **UNIT-I: Reaction mechanism-I**

15 Hrs

Electrophilic addition to carbon carbon double bond: Stereoselective addition to carbon carbon double bond; anti addition- Bromination and epoxidation followed by ring opening. Syn addition of OsO₄ and KMnO₄.

Elimination reactions Elimination reactions  $E_2$ ,  $E_1$ ,  $E_{1CB}$  mechanisms. Orientation and stereoselectivity in  $E_2$  eliminations. Pyrolytic syn elimination and  $\alpha$ -elimination, elimination Vs substitution. Facors influencing the elimination reactions

Determination of reaction mechanism: Determination of reaction mechanism: Energy profiles of addition and elimination reactions, transition states, product isolation and structure of intermediates, use of isotopes, chemical trapping, crossover experiments. Use of IR and NMR in the investigation of reaction mechanism.

# **UNIT-II:** Molecular Rearrangements:

**15 Hrs** 

Rearrangements to electron deficient Carbon atom:

Pinacol-Pinacolone, Wagner-Meerwein, Dienone-Phenol and Demjonove Rearrngements

Rearrangements to electron deficient Nitrogen atom:

Hofmann, Curtius, Schimidt and Beckmann Rearrangements.

Rearrangements to electron deficient Oxygen atom: Baeyer-Villiger and Dakins Rearrangements

Rearrangements to electron rich Carbon atom: Favorski and Neber Rearrangements

Aromatic and Sigmatropic Rearrangements: Fries and Claisen Rearrangements

# **UNIT III: Three and four membered heterocycles:**

15 Hrs

Systematic nomenclature (Hantzsch-Widmann system) and Replacement nomenclature for monocyclic heterocycles (Three and four membered rings). Synthesis and chemical reactions of aziridines, oxiranes, thiiranes, azetidines, oxetanes, and thietanes.

UNIT-IV: Alkaloids 15 Hrs

Occurrence, isolation, general methods of structure elucidation and physiological action, degradation, classification based on nitrogen heterocyclic ring, structure elucidation and synthesis of the following: Atropine, Papaverine and Quinine.

- 1. Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, John Wiley.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J Sundberg, Plenum.
- 3. Structure and Mechanism in Organic Chemistry C.K. Inglod, Cornell University Press.
- 4. Organic Chemistry, R.T Morrison and R.N. Boyd, Prentice Hall.
- 5. Modern Organic Reactions, H.O. House, Benjamin.
- 6. Principles of Organic Synthesis, R.O.C Norman and J. M. Coxon, Blackie Academic.
- 7. Stereochemistry, P.S. Kalsi, Wiley Eastern.
- 8. Text book of Organic Chemistry, M.C. Murry
- 9. Text book of Organic Chemistry, Fessendon and Fessendon.
- 10. Text book of Organic Chemistry, T.W. Solomon,
- 11. Organic Chemistry, Vol II, I.L. Finar, ELBS Eds.
- 12. Heterocyclic chemistry T.L Gilchrist, Longman Scientific Technical
- 13. An Introduction to the Heterocyclic compounds, R M Acheson, John Wiley.

CHE	-203		Phy	sical ch	emistry	' II	L-	5,T-1,P	-6	40	Credits				
Pre-re	equisite:	Basic k	nowled	ge abou	t Physic	al Chen	nistry								
Cours	se Objec	tives:													
	_		mentum	and M	olecular	r Orbita	1 Theor	y and a	pplicati	on of H	luckel tl	neory to			
_	ganic mo														
	ow abou	-			-		-		-						
	t knowle	dge on	symme	try and	group t	heory th	neir use	in spec	troscop	y, Mull	iken c	haracter			
	les.	т	'1 1	F1 4	1 1			4 11 1		. 1 1	. 1				
			Irreversible Electrode phenomenon controlled potential electrolysis and y.												
	arograph	Outcomes At the end of the course, the student will be able													
		·													
CO1		To know about Pauli Exclusion principle and Slater determinant, atomic orbitals, Simple													
	molecu	lar orbit	als and	Huckel	theory o	of conjug	gated sy	stems.							
CO2	To learn		-			-				ations, c	ritical n	nicellar			
	concent	ration (	CMC) a	nd facto	rs affec	ting the	CMC o	f surfact	tants.						
CO3	To iden	tify Rel	ation be	tween o	rder of a	a finite g	group ar	nd its su	b-group	, conjug	acy, Syı	mmetry			
	point gr	oup (M	LS, M	IHS and	MSS) a	and orth	ogonalit	y theore	m.						
CO4				_			•					Potential			
	Electro					el plots,					ible sys	tem.			
		M	apping	of cour	se outco	omes wi	ith the p	orogran	1 outco	mes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	2	1	3	ı	2	-	1	1	1	2	-			
CO2	3	2	2 3 2 2 - 1 1 1 - 1												
CO3	3	2	2	3	-		1	-	-	1	1	-			
CO4	3	2	-	2	1	1	-	1	1	1	1	-			

#### **CHE-AC-203 Physical Chemistry III**

#### **UNIT-I: Quantum Chemistry-II**

15 Hrs

- (A) Angular momentum: Angular momentum, Rotations and angular momentum, Eigen functions and Eigen values of angular momentum, Ladder operator, addition of angular momenta, spin, antisymmetry and pauli Exclusion principle. Slater determinant.;
- (B) Molecular Orbital TheoryAtomic Orbitals, Simple Molecular Orbitals, Hybrid Atomic Orbitals, Shapes and energies of Molecular Orbital, Systems of Organic Molecules (Ex: Methane, Ethylene, Acetylene). Huckel theory of conjugated systems, Π-bond order and charge density calculations, application of Huckel theory to ethylene, butadiene and benzene.

#### **UNIT-II: Surface Chemistry**

**15 Hrs** 

Surface tension, capillary action, pressure difference across curved surface, (Laplace equation), vapour pressure of droplets (Kelvin equation), Gibbs adsorption isotherm, BET adsorption isotherm, derivation of BET equation, limitations of BET equation, estimation of surface area from BET equation, Surface films on liquids. Concept of electric double layer model- Helmholtz perrin, Gouy- Chapman and stern models (no derivation)

**Micells:** Surface active agents, classification of surface active agents micellisation, hydrophobic interaction, critical micellar concentration (CMC), factors affecting the CMC of surfactants, thermodynamics of micellisation, emulsions, reverse micelles.

#### **UNIT-III: SYMMETRY AND GROUP THEORY**

15 Hrs

Definition of a group, rules that are set for a group, sub-group, order of a group, Relation between order of a finite group and its sub-group, conjugacy relation and class of a group, symmetry elements and symmetry operation. Symmetry point group (MLS, MHS and MSS), Schoenflies symbols - Representation of groups by matrices (representation for  $C_n$ ,  $C_{nv}$ ,  $D_{nh}$  etc. groups to be worked out explicitly), character of a representation, group multiplication tables, reducible - irreducible representations The great orthogonality theorem (without proof) - character tables (H₂O,NH₃) and their use in spectroscopy, Mulliken character tables.

#### **UNIT-IV: ELECTROCHEMISTRY-II**

15 Hrs

**Irreversible Electrode phenomenon:** Reversibility and irreversibility, Dissolution and deposition potentials, Decomposition voltage, overvoltage, diffusion overvoltage, charge transfer overvoltage, concentration overvoltage-hydrogen and oxygen overvoltages, Tafel plots, Exchange current density and Transfer coefficient, Butler-Volmer equation for one electron transfer processes.

**Polarography:** Theory, classification, principle, Instrumentation of Polarography, DME, HMDE diffusion current, Ilkovic equation, DC-Polarography, AC-Polarography, Controlled Potential Electrolysis, Millicoulometry, Equation for half-wave potentials, for reversible system when oxidant alone, reductant alone and both are present.

- 1. P.W. Atkins: Physical Chemistry (ELBS).
- 2. Ira N. Levine: Quantum Chemistry (Prentice Hall).
- 3. R. Mcweeny: Coulson's Valence (ELBS).
- 4. J.O.M. Bockris and A.K.N. Reddy, Modern Electrochemistry, vol.I & II (Plenum).
- 5. S. Glasstone; An Introduction to Electrochemistry (3rd ed.)(Affiliated East-West).
- 6. V. Moroi: Micelles, theoretical and applied aspects (Plenum).
- 7. Maron and prutton: principles of physical Chemistry.
- 8. Silbey, Alberty, Bawendi. Physical Chemistry. Jhon-Wiley & Sons. 4th edition-2006.
- 9. D.N. Bajpai: Advanced physical Chemistry: S. Chand & Company, 1998.

#### (COMPULSORY FOUNDATION)

CO1         3         2         2         3         1         2         1         -         1         1           CO2         3         -         2         3         -         2         1         -         2         1         1	5	Credits	40	-0	5,T-1,P	L-	II	emistry	eral Ch	Gen		-204 A	CHE	
<ul> <li>Gain knowledge on the principles of different electro analytical methods</li> <li>Familiarize with chromatographic techniques.</li> <li>To study on biodiversity and conservation of biodiversity</li> <li>To know about natural resources and non-renewable resources</li> </ul> Course Outcomes: At the end of the course, the student will be able CO1 To acquire knowledge on ion selective electrodes, solid membrane electrodes and glass electrodes and principles of amperometric titrations. CO2 To learn general principles and classifications of chromatographic separations and applications of TLC, GLC and HPLC. CO3 To know about biodiversity, ecosystem diversity and conservation of biodiversity. CO4 To acquire knowledge on natural resources related to food, water, mineral, energy and Mapping of course outcomes with the program outcomes PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1 PO1 O 1 CO1 3 2 2 3 1 2 1 - 1 1 CO2 3 - 2 3 - 2 1 - 2 1 1				<u> </u>		istry	el Chen	uate lev	of grad	tanding	Unders	quisite:	Pre-re	
<ul> <li>Familiarize with chromatographic techniques.</li> <li>To study on biodiversity and conservation of biodiversity</li> <li>To know about natural resources and non-renewable resources</li> <li>Course Outcomes: At the end of the course, the student will be able</li> <li>CO1 To acquire knowledge on ion selective electrodes, solid membrane electrodes and glass electrodes and principles of amperometric titrations.</li> <li>CO2 To learn general principles and classifications of chromatographic separations and applications of TLC, GLC and HPLC.</li> <li>CO3 To know about biodiversity, ecosystem diversity and conservation of biodiversity.</li> <li>CO4 To acquire knowledge on natural resources related to food, water, mineral, energy and</li> <li>Mapping of course outcomes with the program outcomes</li> <li>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1 PO1 O 1</li> <li>CO1 3 2 2 3 1 2 1 - 1 1</li> <li>CO2 3 - 2 3 - 2 1 - 2 1 1</li> </ul>												•		
<ul> <li>To study on biodiversity and conservation of biodiversity</li> <li>To know about natural resources and non-renewable resources</li> <li>Course Outcomes: At the end of the course, the student will be able</li> <li>CO1 To acquire knowledge on ion selective electrodes, solid membrane electrodes and glass electrodes and principles of amperometric titrations.</li> <li>CO2 To learn general principles and classifications of chromatographic separations and applications of TLC, GLC and HPLC.</li> <li>CO3 To know about biodiversity, ecosystem diversity and conservation of biodiversity.</li> <li>CO4 To acquire knowledge on natural resources related to food, water, mineral, energy and</li> <li>Mapping of course outcomes with the program outcomes</li> <li>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1 PO1 O 1</li> <li>CO1 3 2 2 3 1 2 1 - 1 1</li> <li>CO2 3 - 2 3 - 2 1 - 2 1 1</li> </ul>				nethods	lytical n	ctro ana								
To know about natural resources and non-renewable resources  Course Outcomes: At the end of the course, the student will be able  CO1 To acquire knowledge on ion selective electrodes, solid membrane electrodes and glass electrodes and principles of amperometric titrations.  CO2 To learn general principles and classifications of chromatographic separations and applications of TLC, GLC and HPLC.  CO3 To know about biodiversity, ecosystem diversity and conservation of biodiversity.  CO4 To acquire knowledge on natural resources related to food, water, mineral, energy and  Mapping of course outcomes with the program outcomes  PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1 PO1 CO1 3 2 2 3 1 2 1 - 1 1 1 CO2 3 - 2 1 1 - 1 1 1 CO2 3 - 2 1 1 - 2 1 1 1 CO2 5					7	livercity								
Course Outcomes: At the end of the course, the student will be able  CO1 To acquire knowledge on ion selective electrodes, solid membrane electrodes and glass electrodes and principles of amperometric titrations.  CO2 To learn general principles and classifications of chromatographic separations and applications of TLC, GLC and HPLC.  CO3 To know about biodiversity, ecosystem diversity and conservation of biodiversity.  CO4 To acquire knowledge on natural resources related to food, water, mineral, energy and  Mapping of course outcomes with the program outcomes  PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1 PO1 CO1 3 2 2 3 1 2 1 - 1 1 1 CO2 3 - 2 3 - 2 1 - 2 1 1										•		•		
CO1 To acquire knowledge on ion selective electrodes, solid membrane electrodes and glass electrodes and principles of amperometric titrations.  CO2 To learn general principles and classifications of chromatographic separations and applications of TLC, GLC and HPLC.  CO3 To know about biodiversity, ecosystem diversity and conservation of biodiversity.  CO4 To acquire knowledge on natural resources related to food, water, mineral, energy and  Mapping of course outcomes with the program outcomes  PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1 PO1 CO1 3 2 2 3 1 2 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1														
electrodes and principles of amperometric titrations.  CO2 To learn general principles and classifications of chromatographic separations and applications of TLC, GLC and HPLC.  CO3 To know about biodiversity, ecosystem diversity and conservation of biodiversity.  CO4 To acquire knowledge on natural resources related to food, water, mineral, energy and  Mapping of course outcomes with the program outcomes  PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1 PO1 CO1 3 2 2 3 1 2 1 - 1 1 1 CO2 3 - 2 3 - 2 1 1 - 1 1 1 CO2 3 - 2 1 1 - 1 1 1 CO2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	se Outcomes: At the end of the course, the student will be able													
electrodes and principles of amperometric titrations.  CO2 To learn general principles and classifications of chromatographic separations and applications of TLC, GLC and HPLC.  CO3 To know about biodiversity, ecosystem diversity and conservation of biodiversity.  CO4 To acquire knowledge on natural resources related to food, water, mineral, energy and  Mapping of course outcomes with the program outcomes  PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1 PO1 CO1 3 2 2 3 1 2 1 - 1 1 1 CO2 3 - 2 3 - 2 1 - 2 1 1														
CO2 To learn general principles and classifications of chromatographic separations and applications of TLC, GLC and HPLC.  CO3 To know about biodiversity, ecosystem diversity and conservation of biodiversity.  CO4 To acquire knowledge on natural resources related to food, water, mineral, energy and   Mapping of course outcomes with the program outcomes  PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1 PO1 O 1  CO1 3 2 2 3 1 2 1 - 1 1  CO2 3 - 2 3 - 2 1 - 2 1 1														
applications of TLC, GLC and HPLC.  CO3 To know about biodiversity, ecosystem diversity and conservation of biodiversity.  CO4 To acquire knowledge on natural resources related to food, water, mineral, energy and  Mapping of course outcomes with the program outcomes  PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1 PO1  CO1 3 2 2 3 1 2 1 - 1 1  CO2 3 - 2 3 - 2 1 - 2 1 1		and	varations	nhia gan	matagra								CO2	
CO3 To know about biodiversity, ecosystem diversity and conservation of biodiversity.  CO4 To acquire knowledge on natural resources related to food, water, mineral, energy and  Mapping of course outcomes with the program outcomes  PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1 PO1  CO1 3 2 2 3 1 2 1 - 1 1  CO2 3 - 2 3 - 2 1 - 2 1 1		anu	arations	pine sep	matogra	or cinoi							COZ	
Mapping of course outcomes with the program outcomes           PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO1         PO1           CO1         3         2         2         3         1         2         1         -         1         1           CO2         3         -         2         3         -         2         1         -         2         1         1		sity.	biodive	ation of	conserva	ty and							CO3	
Mapping of course outcomes with the program outcomes           PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO1         PO1           CO1         3         2         2         3         1         2         1         -         1         1           CO2         3         -         2         3         -         2         1         -         2         1         1	nd land.	ergy and	neral, en	ater, mir	food, wa	ated to	ırces rel	ral resou	on natu	wledge	uire kno	To acqu	CO4	
PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO1         PO1           CO1         3         2         2         3         1         2         1         -         1         1           CO2         3         -         2         3         -         2         1         -         2         1         1			-	-								1		
CO1         3         2         2         3         1         2         1         -         1         1           CO2         3         -         2         3         -         2         1         -         2         1         1	•													
CO1     3     2     2     3     1     2     1     -     1     1       CO2     3     -     2     3     -     2     1     -     2     1     1	PO1	PO1		PO9	PO8	PO7	PO6	PO5	PO4	PO3	PO2	PO1		
CO2 3 - 2 3 - 2 1 - 2 1 1	2 2	1	1		1		2	1	2	2	2	3	CO1	
	1	1	1	2	-	1		-						
1 <b>00</b> 0   3   3   4   4   1   4   ⁻   1   ⁻   ⁻   1   ⁻   1   1   1   1   1   1   1   1   1	2	1	-	-	1	-	2	1	2	2	3	3	CO3	
CO4         3         3         2         2         2         2         1         1         -         1         1	1	1	1	-	1	1		2						

**CHE 204-A: General Chemistry II** 

#### UNIT-I: ELECTRO ANALYTICAL METHODS

Theory of potentiometry, calculation electrode potential at the equivalence. Finding of equivalence volume, derivative and linear titration plots. Ion-sensitive electrodes – types of ion sensitive electrodes – metal based cation and anion sensitive electrodes, solid membrane electrodes, glass electrodes. Liquid ion-exchange electrodes, gas sensing membrane electrodes, Amperometric titrations - Anodic stripping voltammetry, chronoamperometry, chronopotentiometry, Cyclic Voltammetry, Differential Pulse Polarography, linear sweep voltammetry, square wave voltammetry.

#### **UNIT-II: CHROMATOGRAPHY**

General principles and classifications of chromatographic separations

Thin layer chromatography: Classification, principle, experimental technique, sample application, development of plate, retardation factor.

Gas liquid chromatography: Gas liquid chromatography - instrumentation (columns and detectors), retention time and retention volume. Chromatographic behaviour of solutes, column efficiency and resolution, column processes and band broadening, time of analysis and resolution, Van-Deemter equation.

**High performance liquid chromatography:** Theory and instrumentation-column performance, gradient elution, delivery system, sample introduction, separation columns, detectors and applications of HPLC.

# **Unit – III: Biodiversity**

Conservation introduction definition genetic species and ecosystem diversity, hot spots of biodiversity, threats to biodiversity habitat loss poaching of wildlife, man wildlife conflicts. Endangered and endemic species of India, conservation of biodiversity in – situ an ex-situ conservation of biodiversity.

#### Unit – IV Natural resources and non-renewable resources

An overview of natural resources and associated problems with references to a) Forest resources b) Water resources c) Mineral resources d) Food resources e) Energy resources f) Land resources.

- 1. H.W. Willard, LL. Merrit and J.A.Dean: Instrumental Methods of Analysis. Affiliated East-West).
- 2. G.H. Jeffery J. Bassett, J. Mendham and R.C. Denny. Vogel"s Text Book of Quantitative Chemical Analysis (ELBS).
- 3. D.A. Skoog and D.M. West: Principles of Instrumental Analysis (Holt, Rinehart and Wilson).
- 4. J.G. Dick: Analytical Chemistry (McGraw Hill).
- 5. D. Midgley and K. Torrance: potentiometric Water Analysis (John Wiley).
- 6. Silbey, Alberty, Bawendi. Physical chemistry. Jhon-Wiley & sons. 4th edition-2006.

CHE 2	204B	Che	emistry i	n Conte	mporary	y Society	L-	3,T-1,P	-2	40	Credits				
Pre-re	quisite:	Unders	standing	of grad	uate lev	el Chem	istry								
Cours	e Objec	tives:													
			•		1	ies in Ph									
			•			ymes an		sic.							
	_	_				k, oil, fat									
• To 1	amiliari	ze with	h different types of fuels, soils and its ingredients.												
Cours	e Outco	mes: A	At the end of the course, the student will be able												
C	01	To a	acquire knowledge in pharmaceutical chemicals												
C	O2	To fa	familiarize with blood fluids, blood, enzymes and forensic												
C	O3	To k	now abo	out ferm	entation	ı, detecti	on of p	urity, be	verages						
C	<b>O</b> 4	To a	cquire k	nowled	ge on ga	seous fu	els, soi	l ingred	ients an	d analys	is of tra	ce			
		elem	ents					_		_					
		Ma	apping	of cours	e outco	mes wit	h the p	rogram	outcon	nes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	2	2	3	1	2	-	2	2	-	1	1			
CO2	3	1	2	3	1	2	1	-	2	2	1	-			
CO3	3	2	2	3	1	2	2	1	-	2	1	1			
CO4	3	2	3	2	1	2	1	2	-	1	1	1			

**CHE 204B: Chemistry in Contemporary Society** 

#### **UNIT – I : PHARMACEUTICALS**

**15 Hrs** 

**Pharmaceuticals**: Importance of quality control, drugs and pharmaceuticals, sources of impurities in pharmaceutical chemicals, analytical quality control in finished / final products, common methods of assay.

Common drugs and their uses: Analgesics – aspirin, paracetamol; Antheimentics – mebendazole; Antiallergies – chlorpenneramine malleate; Antibiotics-pencillin, chloromecytin; Anti-inflammatory agents-oxyphenbutazone; Antimalarials – primaquine phosphate; Antituberculosists – INH; Narcotics – nicotine, morphine; Expectorants – Benadryl; Sedatives – diazepam; Vitamins – B1, B2, B6, niacin and folic acid.

# **UNIT - II : FORENSIC AND BIOMEDICALS**

15 Hrs

**Body fluids**: Composition and detection of abnormal level of certain constituents leading to diagnosis, sample collection and preservation of physiological fluids, analytical methods for the constituents of physiological fluids (blood, urine).

**Blood:** Estimation of glucose, cholesterol, urea, haemoglobin and bilirubin.

Urine: Urea, uric acid, creatinine, calcium phosphate, sodium, potassium and chloride.

**Enzymes**: Biological significance, assay of enzymes (pepsin, tyrasinase), vitamins (thiamine ascorbic acid, vitamin A) and harmones (progesterone, oxytocin, insulin), chemical, instrumental and biological assays to be discussed wherever necessary.

**Forensic**: General discussion of poisons with special reference to mode of action of cyanide organophosphates and snake venom, poisonous materials such as lead, mercury and arsenic in biological materials.

#### **UNIT - III: FOOD AND BEVERAGES**

15 Hrs

Milk and milk products: Composition, alcohol test, fermentation, dye reduction-methylene blue and resazurin tests, analysis of fat content, minerals in milk and butter, estimation of added water in milk.

Oils and fats: General composition of edible oils, detection of purity, tests for common edible oils and groundnut oil, cottonseed oil and mustard oil, tests for adulterants like argemone oil and mineral oils,

Beverages: Soft drinks, alcoholic drinks, tea, coffee and fruit juice, analysis of caffeine in coffee and tea, detection of chicory in coffee, chloral hydrate in toddy, food preservatives like benzoates, propionates, sorbates, bisulphites, artificial sweetners, like saccharin, dulcin and sodium cyclamate, flavours – vanillin, esters (fruit flavours) and monosodium glutamate, artificial food colourants-coal tar dyes and non-permitted colours and metallic salts, control of food quality – codex alimentarices, Indian standards.

#### **UNIT – IV : FUEL AND SOIL**

15 Hrs

**Fuels**: Definition, classification and characteristics of fuels, sampling, determination of calorific value. Liquid fuels-determination of flash point, fire point, aniline point. Knocking of petrol and diesel – octane and cetere numbers carbon residue. **Gaseous fuels**: Coal gas, waste gas, producer gas, gober gas and blast furnace gas, calorific value determination by Junker's gas calorimeter, relatice merits of solid, liquid and gaseous fules. **Soil**: Ingradiants of soil-organic matter, nitrogen, sulphur, sodium, potassium and calcium, analysis of trace elements, copper, molybdenum, zinc and boron.

#### **Reference Books:**

- 1. Pharmaceutical Analysis, T. Higuchi and E.B. Hanseen, John Wiley and Sons, New York.
- 2. Quantitative Analysis of drugs, P.D. Sethi, 3rd edition, CBS Publishers, New Delhi, 1997.
- 3. Practical Clinical biochemistry methods and interpretations, R. Chawala, J.P. Brothers Medical Publishers (P) Ltd., 1995.
- 4. Laboratory manual in biochemistry, J. Jayaraman. New Age International Publishers, New Delhi, 1981.

CHE 2	05 A &			-	ctical I: sical Ch	emistry		5,T-1,P	-0	4	Credits			
Pre-re	quisite:	Unders	tanding	of grad	uate lev	el Inorga	anic & ]	Physical	Chemis	stry prac	ctical.			
Course	e Objec	tives:												
• Sep	aration a	and dete	rminatio	on of the	e two co	mponen	t mixtu	res						
			ıl compl											
• Fam	iliarize	with co	nducton	netric, p	otentior	netric an	d redox	method	ds of an	alysis				
• colo	rometri	iarize with conductometric, potentiometric and redox methods of analysis ometric and pHmetric methods of analysis  Outcomes: At the end of the course, the student will be able												
Course	e Outco	Outcomes: At the end of the course, the student will be able												
CO1	To sepa	To separate and determine the two component mixtures												
CO2	To acc	To acquire knowledge in the preparation of metal complexes												
CO3		•				nstant an			_			ength		
604	of stro					rong aci						1		
CO4	_		edge on	the appl	lications	of cond	uctome	etry, pote	entiome	try, coul	lometry	and		
	pHme	•												
		Ma	apping o	of cours	se outco	mes wit	h the p	rogram	outcon	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1		
										0	1	2		
CO1	3	2	2	3	3	1	-	2		1	1	-		
CO2	3	2	2	3	2	2	1	-	1	-	1	2		
CO3	3	2	2	3	3	1	1	2	-	1	1	-		
CO4	3	2	2	3	2	-	1	-	1	1	-	2		

CHE 205 A & B: Core practical I: Inorganic & Physical Chemistry

#### I . Quantitative Analysis:

Separation and determination of two component mixtures:

- (i) Separation of Al(III) and Determination of Fe (III)
- (ii) Separation of Cu(II) and Determination of Zn (II)
- (iii) Separation of Ca(II) and Determination of Mg (II)
- (iv) Separation of Cu(II) and Determination of Ni (II)
- (v) Determination of Ferrocyanide and Ferricyanide

#### **II. Physical Chemistry**

- 1. Conductometry:
  - (a) Determination of cell constant
  - (b) Verification of Onsagar equation
  - (c) Determination of dissociation constant of a weak acid
  - (d) Titration of a strong acid with a strong base
  - (e) Titration of a weak acid with a strong base

# 2. Potentiometry:

- (a) Titration of a strong acid with a strong base
- (b) Titration of a weak acid with a strong base
- (c) Redox titration
- 3. Coulometry: Estimation of Manganese
- 4. pHmetry: Strong acid, Strong base titrations.

CHE 2	06A &				actical neral C	I: hemistr		5,T-1,P	-0	4	Credits			
Pre-re	quisite:	Unders	standing	of grad	uate lev	el Orgar	nic & G	eneral C	hemistr	y practi	cal.			
• Fam • Prep	aration	with tw of deriv	atives.			eparation	n and id	lentifica	tion.					
• Cali	bration	of prod	components by different methods. roducts by spectral methods. : At the end of the course, the student will be able											
	CO1		o familiarize with binary mixture separation											
	CO2		o gain hands-on-experience in purification of the components, preparation of rivatives.  o get knowledge about the chemical behavior of different components and											
	CO3		et know nanisms	ledge al	out the	chemica	al behav	ior of d	ifferent	compor	ents and	f		
(	CO4	Puri	fication	and cali	bration	of data								
		Ma	apping	of cours	se outco	mes wit	h the p	rogram	outcon	nes				
	PO1	PO2	PO2   PO3   PO4   PO5   PO6   PO7   PO8   PO9   PO1   PO1											
CO1	3	2 2 3 1 - 1 1 - 3 3									1			
CO2	3	2	2	3	-	1	-	2	1	3	3	-		
CO3	3	2	2	3	1	1	2	1	-	2	-	2		
CO4	3	2	2	3	1	2		1	1	2	1	2		

# CHE 206 A & B: Core practical II: Organic & General Chemistry

# CHE-206 A: PRACTICAL – II: ORGANIC CHEMISTRY

Separation and Identification of two component organic mixture by systematic qualitative analysis.

# CHE-206 B: PRACTICALS – II: GENERAL CHEMISTRY

# **Preparation of Metal Complexes:**

- (i) Tetra(ammine) copper (II) sulphate.
- (ii) Mercury tetra( thiocyanato) cobaltate(II).
- (iii) Hexa(ammine) Nickel (II) chloride.
- (iv) Tris(acetylacetonato) Manganese (III) chloride.
- (v) Tris (ethylenediammine) Nickel (II) thiosulpha

CHE	207	Н	luman \		-	fessiona	ıl L-	3,T-1,P	-2	4	Credits			
D	• •,	T T 1	, 1'		cs-II	1		1 41						
Pre-re	quisite:	Unders	tanding	of Hun	ian Valu	ies and p	professi	onal eth	1CS					
<u>C</u>	Obia	4												
	e Objec		1	J., 4:	fo:1.	1	1 . 1:							
						y values				aa1 iaan		ti-		
	elop et neering		warus i	nedical	, nearm	care p	roiessi	onais a	na emi	cai issu	ies in g	geneuc		
_	_		nortana	e of so	cial ath	ics towa	ords ord	ran trad	a huma	an traffi	c kina	human		
						ics iowa	iius OI §	san nau	c, mum	an ualli	C King	muman		
_		violation and social disparities. about environmental ethics, ecological crises, pollution and protection of environment												
	1	Outcomes: At the end of the course, the student will be able to												
CO1		To understand the concepts of human values, responsibilities of family values and status of women in family and society.												
CO2		-	_			edical et		e views (	of chara	ka and s	sushruta	on		
						etitioners								
CO3	To gai	n know	ledge or	n social	ethics a	nd under	rstand tl	he chara	cteristic	es of eth	ical prol	olems		
		nagemei												
CO4	To fan	niliarize	enviro	nmental	ethics,	ethical tl	neory an	nd ecolo	gical cr	isis.				
	1	Ma	apping	of cours	se outco	mes wit	h the p	rogram	outcon	nes				
	DO1	PO2	PO3	PO4	PO5	PO6					DO1	DO1		
	PO1	PO2	PO3	PU4	POS	POO	PO7	PO8	PO9	PO1 0	PO1	PO1 2		
<b>CO1</b>	3	2	1	3	1	2	2	2	3	1	1	1		
	_			_					_	_				
CO2	3	1	2	3	1	2	2	3	3	1	1	1		
CO3	3	2	1	3	-	2	1	2	2	3	-	1		
CO4	3	1	1	3	1	2	1	1	2	3	1	1		

# CHE 207: ELECTIVE FOUNDATION (HUMAN VALUES AND PROFESSIONAL ETHICS-II)

**Chapter I:** Value Education – Definition – Relevance to present day – Concept of human values - Self introspection – Self-esteem. Family values-Components, Structure and responsibilities of family Neutralization of anger – Adjustability – Threats of family life – Status of women in family and society – Caring for needy and elderly – Time allotment for sharing ideas and concerns.

**Chapter II:** Medical ethics – Views of Charaka, Sushruta and Hippocratus on moral responsibility of medical practitioners. Code of ethics for medical and healthcare professionals. Euthanasia, Ethical obligation to animals, Ethical issues in relation to health care professionals and patients. Social justice in health care, human cloning, problem of abortion. Ethical issues in genetic engineering and Ethical issues raised by new biological technology or knowledge.

**Chapter III:** Social ethics – Organ trade, Human trafficking, Human rights violation and social disparities, Feminist ethics, Surrogacy/pregnancy. Ethics of media – Impact of Newspapers, Television, Movies and Internet, Business ethics – Ethical standards of business – Immoral and illegal practices and their solutions. Characteristics of ethical problems in management, ethical theories, causes of unethical behavior, Ethical abuses and work ethics.

**Chapter IV:** Environmental ethics – Ethical theory, man and nature - Ecological crisis, Pest control, Pollution and waste, Climate change, Energy and pollution, Justice and environmental health.

# **Books for study:**

- 1. Johns S Mackenjie: A Manual of ethics
- 2. "The Ethics of Management" by Larue Tone Hosmer, Richard D. Irwin Inc.
- 3. Management Ethics Integrity at work by Joseph A. Petrick and John F. Quinn, Response Books, New Delhi.
- 4. "Ethics in Management" by S.A. Shelekar, Himalaya Publishing House.
- 5. Harold H. Titus: Ethics for Today
- 6. Maitra, S.K: Hindu Ethics
- 7. William Lilly: Introduction to Ethics
- 8. Sinha: A Manual of Ethics
- 9. Manu: Manava Dharma Sastra or the Institute of Manu: Comprising the Indian System of Duties: Religious and Civil (ed) G.C. Haughton.
- 10. Sasruta Samhita: Tr. KavirajKunjanlal, KunjanlalBrishagratha, Chowkamba Sanskrit Series, Vol I,II and III, Varanasi, Vol I PP, 16-20, 21-32 and 74-77 only.
- 11. Charaka Samhita: Tr. Dr. Ram Karan Sarma and Vaidya Bhagavan Dash, Chowkambha Sanskrit Series Office. Varanasi I, II, III Vol I PP 183-191.
- 12. Ethics, Theory and Contemporary Issues. Barbara Mackinnon, Wadsworth/Thomson Learning, 2001.
- 13. Text Book for Intermediate First Year Ethics and Human Values, Board of Intermediate Eduction Telugu Academy, Hyderabad.
- 14. I.C. Sharma Ethical Philosophy of India. Nagin& Co Julundhar.

CHE	OC		Spectr	al Tech	niques		L	-5,T-1,P	P-0	4	Credit	S
306   Pre-requisite: Understanding of Spectral Techniques												
2.0 104mmung of Speemer 100mmunes												
Course Objectives:												
	• Familiarize with the instrumentation of UV and visible spectroscopy, applications of											
	identifying the structures of the molecules.											
	• Understand IR spectrometry and applications to ascertain the fundamental groups by											
observing absorption bands												
• Study on the applications of NMR spectroscopy in ascertaining the stereochemical												
structures of the molecules.  Linderstand the working principle and fragmentation rules of different molecules in Mass.												
<ul> <li>Understand the working principle and fragmentation rules of different molecules in Mass spectroscopy</li> </ul>												
Course Outcomes: At the end of the course, the student will able												
Course Outcomes. At the old of the course, the student will dole												
CO1	To get experience to calculate λ max values for dienes, enones, polyenes, aromatic and											
	heteroaromatic compounds.											
CO2	To familiarize with the absorption bands of the molecules with specific functional groups											
CO3	To in	To interpret the data to different types of protons and carbons present in a molecule so as										so as
		to ascertain the structure of the										
CO4	To acquire knowledge about specific fragmentation rules of different molecules which											
are unique.												
Mapping of course outcomes with the program outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	2	2	2	1		2	2	
	3			3		2		1	_			-
CO2	3	2	2	3	2	2	-	2	1	2	2	-
CO3	3	2	2	3	2	2	-	2	-	2	2	2
CO4	3	2	2	3	2	2	1	-	2	2	2	-

#### CHE-OC 302: CORE THEORY: ORGANIC SPECTROSCOPY AND APPLICATIONS

#### UNIT-I: ULTRAVIOLET AND VISIBLE SPECTROSCOPY: 15Hrs

Various electronic transitions (185-800 nm), effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, conjugated polyenes. Fisher-Woodward rules for conjugated dienes and carbonyl compounds, ultraviolet spectra of aromatic and heterocyclic compounds. Steric effect in biphenyls.

# UNIT – II: INFRARED SPECTROSCOPY

15Hrs

Instrumentation and sample handling. Characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ether, phenols and amines. Detailed study of vibrational frequencies of carbonyl compounds (ketones, aldehydes, esters, amides, acids, anhydrides, lactones, lactams and conjugated carbonyl compounds). Effect of hydrogen bonding and solvent effect on vibrational frequencies, overtones, combination bands and fermi resonance, FT-IR

### **UNIT -III: NMR SPECTROSCOPY:**

#### 15Hrs

¹H NMR spectroscopy: Magnetic properties of nuclei, Principles of NMR. Instrumentation, CW and pulsed FT instrumentation, equivalent and nonequivalent protons, enantiotopic and diastereotopic protons, Chemical shifts, factors affecting the chemical shifts, electronegativity and anisotropy, shielding and deshielding effects, Signal integration, Spin-spin coupling: vicinal, germinal and long range, Coupling constants and factors affecting coupling constants.

Applications of ¹H NMR spectroscopy: Reaction mechanisms (cyclic bromonium ion, electrophilic and nucleophilic substitutions, carbocations and carbanions), E, Z isomers, conformation of cyclohexane and decalins, keto-enol tautomerism, hydrogen bonding, proton exchange processes (alcohols, amines and carboxylic acids), C-N rotation. Stereochemistry, hindered rotation, Karplus curve variation of coupling constant with dihedral angle. Simplification of complex spectra, nuclear magnetic double resonance, contact shift reagents, nuclear Overhauser effect (NOE).

¹³C NMR spectroscopy: General considerations, chemical shift (aliphatic, olefinic, alkyne, aromatic, heteroaromatic and carbonyl carbon), coupling constants. Two dimensional NMR spectroscopy-COSY.

#### UNIT-IV: MASS SPECTROMETRY

15Hrs

Introduction, ion production, type of ionization, EI, CI, FD, and FAB-factors affecting fragmentation, ion analysis, ion abundance. Mass spectral fragmentation of organic compounds, common functional groups, molecular-ion peak, metastable peak, Mc. Lafferty rearrangement. Nitrogen rule, isotope labeling. High resolution mass spectrometry, Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.

- 1. Organic spectroscopy, W. Kemp 5th Ed, ELBS
- 2. Spectroscopy of organic compounds, RM Silversteen and others, 5th Ed,John Wiley
- 3. Spectroscopy of organic compounds, P.S. Kalsi, Wiley, 1993.
- 4. NMR in chemistry-A multi nuclear introduction, William Kemp, Mc Millan, 1986.
- 5. Spectroscopic methods in Organic chemistry, DH Williams & I Flemmi.

CHE-OC-			Inorganic Spectroscopy Thermal Methods of A				L	-5,T-1,P	-0	4	Credits	
303A		11	nermai	Method	is of An	alysis						
<b>Pre-requisite:</b> Understanding of Basic Inorganic Spectroscopy and Thermal Methods of Analysis												
Course Objectives:												
• Gain knowledge on thermal methods of analysis and principles and applications to												
	inorganic materials.											
	<ul> <li>Familiarize with basics of Mossbauer and NQR spectroscopy.</li> </ul>											
	<ul> <li>Learn the properties like g-factor, nuclear spin, hyperfine coupling constants</li> </ul>											
<ul> <li>Study the ESR instrumentation, various applications and photoelectron spectroscopy.</li> </ul>												
Course Outcomes: At the end of the course, the student will be able												
CO1												
	To know the basic principles of instrumental methods of analysis.											
CO2	To gain knowledge on chemistry of alloys.											
CO3	To Understand the complexity, theory and working principle of colourimetry											
CO4	To familiarize with laws of colorimetric titrations.											
Mapping of course outcomes with the program outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	3	-	2	3	2	-	1	1	1012
	3	2	2	3	2	2	3	2	2	1	1	2
CO2	3						3	2	1	1	1	
CO3		1	-	3	-	2	1	2	1	- 1	1	-
CO4	3	2	2	3	2	-	l	2	-	1	-	2

CHE-OC- 303A: Inorganic Spectroscopy and Thermal Methods of Analysis

#### UNIT -I: THERMAL METHODS OF ANALYSIS

15 Hrs

Thermo gravimetry –Principle, Factors affecting the results, instrumentation. Application with special reference to CuSO₄5H₂O, CaC₂O₄ 2H₂O. Different thermal analysis – principle, instrumentation, difference between TG and DTA, applications with special reference to the clays and minerals. Different scanning calorimetry –principle, and applications to inorganic materials like chlorates and perchlorates, ammonium nitrate.

## UNIT -II: MOSSBAUER SPECTROSCOPY and NQR

15 Hrs

**Mossbauer spectroscopy:** Basic principles, Recoil energy, Doppler shift, Chemical shift, Quadrapole effects, Magnetic effects. Instrumentation, spectral parameters and spectrum display.

Aapplication of the technique to the studies of (1) bonding and structures of  $Fe^{2+}$  and  $Fe^{3+}$  compounds, (2)  $Sn^{2+}$  and  $Sn^{4+}$  compounds.

**NQR spectroscopy:** Basic principles of NQR spectroscopy, quadrupole nuclei, quadrupole moments, electric field gradient, coupling constant and applications.

#### UNIT –III: ELECTRON SPIN RESONANCE SPECTROSCOPY 15 Hrs

Basic Principles, Hyper fine splitting, Factors affecting the 'g' value. Isotropic and anisotropic hyperfine coupling constants, Hamiltonian and spin densities. Zero field splitting and Kramer's degeneracy, Relaxation process and line widths. Instrumentation and Applications. The EPR spectrum of bis(salicylidimine)-copper(II) complex, study of inorganic free radicals, biological applications of Electron Spin Resonance (Study of free radicals and Iron-sulfur proteins)

#### UNIT -IV: PHOTO ELECTRON SPECTROSCOPY

**15 Hrs** 

Photoelectric effect, Koopmans's theorem, ionization energy.

X-ray photoelectron spectroscopy (ESCA): Principle, Binding energies, Chemical shift, Applications of XPES to Qualitative analysis, to surface studies and structural analysis. Ultraviolet photoelectron spectroscopy- Principle, application of UPES in studying the molecular orbitals of O₂ and N₂ molecules. Block diagram of photoelectron spectrophotometer. Sources of radiation, detectors. Auger spectra – Principle, Applications of Auger spectra to surface studies and use of Auger spectra as a finger print tool.

- 1. F.A. Cotton and G. Wilkinson, Advanced In-organic chemistry VI Edition, 1999. John wiley & sons. Inc., New York.
- 2. J.E. Huheey, E.A. Keiter and R.L. Keiter: Inorganic Chemsitry, Principles of Structure and Reactivity (4th Ed.) (Addison-Wesley)
- 3. Gary Wulfsberg: Inorganic Chemistry (5th Ed. (Viva Books)
- 4. J.D. Lee: Concise Inorganic Chemistry (Blackwell)
- 5. W.L. Jolly: Modern Inorganic Chemsitry (McGraw-Hill)
- 6. R.L. Carlin: Magneto-chemsitry (Springer-Verlag)
- 7. R.L. Dutta and A. Syamal: Elements of Magnetochemsitry (Affiliate East-West).
- 8. K. Hussain Reddy Text book of Bioinorganic chemistry

CHE-0	OC- 3031	В	Ph	ysical (	Chemist	try III	L-	5,T-1,P	-0	4	Credits			
Pre-r	equisite:	Unders	standing	of grad	uate lev	el Physi	cal Che	mistry	l					
Cour	se Objec	tives:												
• Lea	arn appli	cations	of Grou	p Theor	y, symn	netry cri	teria and	d symme	etry rest	rictions				
• Ap	plication	s of X-r	ay Diffi	action a	ind Elec	tron Dif	ffraction	on soli	d state c	hemistr	y.			
• Fai	miliarize	with the	e applica	ations o	f Micro	wave sp	ectrosco	opy, infr	ared spe	ectrosco	py and	Raman		
spe	ectroscop	y.												
• Ge	t knowle	edge on	concep	ot of T	hermody	ynamics	of pol	ymer di	issolutio	on and	Flory-H	uggins		
	theory of polymer solutions.  Course Outcomes: At the end of the course, the student will be able to													
Cour	Course Outcomes: At the end of the course, the student will be able to													
CO1														
	Coordinates and to learn the Mutual exclusion Principle.													
CO2								ethod, B	ragg me	ethod D	ebve Sc	herrer		
002	method							omou, B	1455 1110	mou, D	coje se	1101101		
CO3					_			-rotatio	n spectr	oscopy.	POR br	anches.		
								ectrosco		FJ;	_ (	,		
CO4	To stud									Hildebra	ınd			
		•				-	_	of poly	•					
		• •		•										
		Ma	apping o	of cours	se outco	mes wit	th the p	rogram	outcon	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	2	3	-	2	1	-	2	1	2	-		
CO2	3	2	2	3	2	2	1	2	-	2	1	1		
CO3	3	2	2	3	2	2	1	1	2	-	1	2		
CO4	3	2	2	3	-	2	1	-	1	2	1	2		

#### CHE-AC-303B CORE-THEORY PHYSICAL CHEMISTRY III

## **UNIT-I Applications of Group Theory**

**15 Hrs** 

Construction of reducible and irreducible representations, Determination of Character Co-ordinate of C₂V point group based on 3N Coordinates. Standard reduction formula, Determination of normal modes of vibrations of SO₂, NH₃, POCl₃, PtCl₄²⁻·H₂O₂ molecules. Mutual exclusion Principle, Direct Product, Accidental Degeneracy and Fermi resonance Group Theory and Spectroscopy: IR Spectral activity of NH₃ molecule, selection rules, symmetry Criteria for optical activity, symmetry restrictions on dipole moments, symmetry and stereo isomerism. Prediction of IR and Raman Spectral activity of H₂O and CO₂.

## **UNIT-II: X-ray Diffraction:**

15 Hrs

- **(A) Solid State Chemistry** Dislocation of Solids, Schottky and Frenkeldefects, insulaters, a,d semiconductors, Band theory of solids, solid state reactions.
- **(B)** Bragg conditions-Miller Indices- Laue method, Bragg method, Debye Scherrer method of X-ray structural analysis of crystals. Index reflections, identification of unit cells from systematic absences in diffraction pattern- structure of simple lattices and X-ray intensities- structure factor and its relation to intensity and electron density- Description of procedure for X-ray structure analysis (NaCl and KCl)
- **(C) Electron Diffraction:** Scattering intensity Vs scattering angle, Wierlequation, and its importance. Measurement techniques, Elucidation of structures of simple gas phase molecules, Low energy electron diffraction (LEED) for the study of surfaces.

#### **UNIT-III: SPECTROSCOPHY**

**15 Hrs** 

**Microwave spectroscopy:** classification of molecules, rigid rotator model, effect of isotopic substitution on the transition frequencies, intensities- stark effect.

**Infrared spectroscopy:** Linear harmonic oscillator, zero point energy, anharmonity, Mores potential energy diagram, fundamental and overtone transitions, hot bands and combinations bands. Vibration-rotation spectroscopy, PQR branches, selection rules, factors affecting the band positions and intensities for IR region. **Raman spectroscopy:** Classical and quantum theories of Raman effect, pure rotational, pure vibrational Raman spectroscopy, selection rules, mutual exclusion principle, resonance Raman spectroscopy and coherent antistokes Raman spectroscopy. Vibrational- rotational Raman spectroscopy.

#### **UNIT-IV: POLYMER SOLUTIONS**

15 Hrs

Thermodynamics of polymer dissolution, effect of molecular weight on solubility, solubility of crystalline and amorphous polymer, heat of dissolution, regular solution theory, Hildebrand solubility parameter, Flory-Huggins theory of polymer solutions, conformational entropy, osmotic pressure and viscosity of polymer solutions. Molecular weight determination by light scattering, ultra-centrifugation and sedimentation equilibrium method. Liquid Crystals- synthesis and applications

## **Books Suggested**

- 1. F.A. Cotton: Introduction to Group theory for chemists.
- 2. Geroge Davidson Elsevier: Introductory Group Theory for Chemists.
- 3. Gurdeep Raj, Ajay Bhagi&Vinod Jain: Group Theory and Symmetry in Chemistry
- 4. Instrumental methods of analysis M.H. Willard, Meritt Jr. and J.A. Dean
- 5. Principles of instrumental analysis Skoog and West
- 6. F. W. Billmeyer, Jr.: Text Book of Polymer Science. Wiley Interscience.
- 7. V. R. Gowariker, N. V. Viswanathan, Jayadev Sreedhar.: polymer Science. New Age international Publishers.

CHE (	OC 304	o		ore pra Estimat		: Practical	l l	-5,T-1,P	P-0	4	Credit	S		
Pre-re	quisite	: Under	standing	of Orga	anic Ch	emistry	- Practio	cal.	L					
Cours	e Objec	ctives:												
• Esti	mation	of phen	ol											
		of gluco												
• Esti	mation	and per	centage	purity o	f aspirii	n								
• Esti	mation and percentage purity of paracetamol  e Outcomes: At the end of the course, the student will be able													
Cours	se Outcomes: At the end of the course, the student will be able													
CO1	To gain knowledge about the estimation/percent purity of different organic molecules.													
CO2	purity.													
CO3	To ac	quire kr	nowledg	e in han	dling of	f toxic c	hemical	s in esti	mation 1	process.				
CO4	To ga	in expe	rience in	the cal	culating	g the per	centage	purity.						
		M	apping	of cours	se outco	omes wi	th the p	rogram	outcor	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	2	3	2	2	1	2	1	-	2	-		
CO2	3	2	2	3	2	2	2	2	-	2	2	2		
CO3	3	2	2	3	2	1	-	2	2	1	-	2		
CO4	3	2	2	3	2	-	1	2	1	2	-	2		

## CHE: OC: 304: Practicals (Core & Gen.) Organic Estimations

- 1) Estimation of phenol
- 2) Estimation of glucose
- 3) Estimation of percentage purity of aspirin
- 4) Estimation of percentage purity of paracetamol.

CHE O	C 305A	Che	mother	apy and	d Drug	Analysi	s L-	5,T-1,P	-0	4	Credits				
Pre-re	quisite:	Unders	standing	of Cher	mothera	py and l	Orug Ar	nalysis							
Cours	e Objec	tives:													
•	Gain kn	owledge	e on che	mothera	py and	analysis	of drug	ζS.							
• ,	Analysis	s of drug	gs chem	ically an	nd biolo	gically.									
Cours	e Outco	mes: A	t the end	d of the	course,	the stud	ent will	be able							
					,										
CO1	To kn	ow abou	it the cla	assificat	ion and	synthes	is of dru	ıgs.							
CO2	T. C	.1	1.1 .1	11.		1		1 .	C 1						
CO2	I o far	To familiarize with the qualitative and quantitative analysis of drugs.													
CO3															
CO4															
		Ma	apping o	of cours	se outco	mes wit	th the p	rogram	outcon	nes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	1	1	2	-	2	3	2	2	-	1	1			
CO2	3	2	2	3	2	2	2	2	_	1	_	2			
CO3															
CO4															

# CHE OC 305A: (SKILL ORIENTED COURSE : THEORY) : CHEMOTHEROPY AND DRUG ANALYSIS

## **UNIT-I:** Chemotherapy

Definition, History, and Evolution of Chemotherapy; Discovery, Classification, Nomenclature, Mode of action and synthesis of the following classes of compounds with special references to specific drugs mentioned under each class

- a) Sulfa drugs- Sulfanilamide and Sulfamethoxazole.
- b) Antibacterials
- c) Lactum group of antibiotics Penicillin, Ampicillin and Amoxycillin.
- d) Cephalosporin-C and Ciprofloxacin.
- e) Anticancer drugs 5-Flurouracil, Methotrexate.
- f) Antifungals Griseofulvin
- g) Antimalarials Chloroquin

## **UNIT-II: Chemical and Biochemical analysis of Drugs**

Qualitative and Quantitative Analysis of drugs: Uses of IR, UV, GLC and HPLC methods.

Drug Assay by Biochemical Analysis – ELISA (Cortisol, alcohol, opiates).

Radio Immuno Assay (RIA) – Enalapril, Insulin; Kidney, Lungs and Liver function tests; Use of isotopes in the Bioanalysis of drugs and in drug design programmes.

## **Book Suggested**

- 1. Medicinal Chemistry and Pharmaceutical Chemistry Harikishan Singh and Kapur
- 2. Medicinal Chemistry and Biochemistry R.L.Nath
- 3. Introduction to Medicinal Chemistry Patrick
- 4. The Organic Chemistry of Drug Synthesis Vols. 1-6 Ledneicer Top drugs top synthetic

## routes – John Saunders

- 5. Medicinal Chemistry Ashutoshkar
- 6. Synthetic Organic Chemistry and Drugs Gurideep R Chetwal
- 7. Biochemistry Harper, Conn & Stumpf, Lehninger
- 8. Biochemistry Western Jodd
- 9. Biochemistry Cann & Stumpf
- 10. Bergers Medicinal Chemistry Vols. 1-5 Manfred E. Wolf
- 11. Introduction to drug design Siverman
- 12. Biochemical approach to Medicinal Chemistry Thomas Nogrady
- 13. Prinicples of Medicinal chemistry William Foye
- 14. Text book of organic medicinal and pharmaceutical chemistry Delgrado and William A
- 15. Industrial Microbiology Casida

CHE O	C 305B	Inst	rument	al Meth	ods of	Analysis	s L-	3,T-1,P	-2	40	Credits				
Pre-re	quisite:	Unders	tanding	of Instr	umental	l Method	ls of Ar	nalysis P	ractical						
Cot	ırse Ob	jectives	1:												
• ]	Multiste	p prepa	rations o	of biolog	gically i	mportan	t organi	ic molec	ules.						
• ]	Familiar	ize to ic	dentify t	he syntl	nesized o	compou	nds by s	spectral 1	methods	S.					
Course	e Outco	Outcomes: At the end of the course, the student will be able  To acquire knowledge in handling of toxic chemicals in multisten preparation of													
CO1	To ac	To acquire knowledge in handling of toxic chemicals in multistep preparation of													
	biologically important molecules in good percentage of yield.														
CO2	To ga	To gain experience in the proposal of synthetic routes to functionalized derivatives.													
CO3															
CO4															
		Ma	apping	of cours	se outco	mes wit	h the p	rogram	outcon	nes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	1	1	3	-	2	3	2	1	-	1	1			
CO2	3	2	2	3	2	2	3	2	-	1	-	2			
CO3															
CO4															

CHE: OC: 305 (B): Practicals (Skill Oriented Course): Multistep preparations

- 1) Preparation of benzilic acid
- 2) Preparation of benzanilide
- 3) Preparation of o-chlorobenzoic acid
- 4) Preparation of symmetric tribromobenzene

CHE	OC		Spectral Techniques L-5,T-1,P-0 4 Credits												
306															
Pre-re	equisite:	Unders	standing	of Spec	etral Teo	chniques	S								
	Course	Object	ives:												
							and v	isible s	pectros	copy, a	pplication	ons of			
i	dentifyi	ng the s	tructure	s of the	molecu	les.									
					and app	olication	is to as	scertain	the fur	ndamen	tal grou	ips by			
	bservin	-	-				_								
	-						_	pectrosc							
	• Understand the working principle and fragmentation rules of different molecules in Mass spectroscopy.														
Cours	Course Outcomes: At the end of the course, the student will able														
CO1	CO1 To know the basic principles of spectroscopy.														
CO2	002														
	To familiarize with the analysis of various functional groups by using different spectroscopic techniques.														
CO3			the app		s of AA	S.									
CO4	To gair	knowl	edge al	hout Ma	icc checi	tral frag	mentatio	on of ore	ranic co	mnound	ds and c	ommon			
CO4		nal grou		bout Ma	iss spec	ııaı mag	meman	011 01 018	gaine co	inpound	is and c	Ollillioli			
	rane			of cour	se outco	mes wi	th the r	rogram	outcor	nes					
	PO1	PO2			PO5		PO7	PO8	PO9	PO10	PO11	PO12			
	POI	PO2	PO3	PO4	POS	PO6	PO/	PO8	PO9	2010	7011	PO12			
CO1	3	1	-	3	-	2	3	2	-	-	1	_			
COS	2	1		2					1	1					
CO ₂	3	1	2	2	2	2	2	2	1	1	-	2			
CO3	3	2	1	2	2	1	2	-	2	-	1	1			
CO4	3	1	2	3	1	2	-	-	1	1	-	2			
	1	l	l .	1	1	1	1	1	1	l	1	1			

CHE: OC: 306(A): (OPEN ELECTIVE) SPECTRAL TECHNIQUES

#### UNIT – I: ULTRAVIOLET AND VISIBLE SPECTROSCOPY

Various electronic transitions (185-800nm.), Beer-Lambert Law, effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, Fieser-Woodward rules for conjugated dienes and carbonyl compounds

#### **UNIT - II: INFRARED SPECTROSCOPY**

CHE OC

15 Hrs

15 Hrs

Instrumentation and sample handling, characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ethers, phenols, amines, ketones, aldehydes, esters, amides, acids and anhydrides. Effect of hydrogen bonding.

#### UNIT – III:ATOMIC ABSORPTION SPECTROSCOPY: FLAME AAS: 15 Hrs

Principle, Instrumentation – Sources of radiation (HCL and EDL), Different types of burners, Interferences- Physical, Chemical, spectral and back ground correction, and methods of minimization GF AAS: Principle and technique –Comparison between Flame AAS and furnace AAS, Applications of AAS, Comparison between Atomic Absorption & Flame Photometry.

## **UNIT -IV: MASS SPECTROMETRY**

15 Hrs

Principle, instrumentation, different methods of ionization, EI, CI, FD and FAB, Mass spectra-molecular ion, base peak, meta-stable peak, nitrogen rule and Mc Lafferty rearrangement. Mass spectral fragmentation of organic compounds and common functional groups. Normal and branched alkanes, alkenes, cycloalkanes, benzene and its derivatives, alcohols and phenols, ethers, aldehydes and ketones, carboxylic acids and their derivatives , amines and nitro compounds. Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.

## **Books Suggested:**

- 1. Organic spectroscopy, W.Kemp 5th Ed, ELBS .2.
- 2. Spectroscopy of organic compounds, RM Silversteen and others 5th Ed, John Wiley 1991
- 3. Spectroscopy of organic compounds, PS Kalsi, Wiley, 1993
- 4. NMR in chemistry A Multi nuclear introduction, William Kemp, Mc Millan 1986
- 5. Spectroscopic methods in Organic Chemistry, DH Williams & I Flemmi TMH . 2005

CHE (	OC	Chr	omatog	raphic	Technic	ques	L-	5,T-1,P	-0	40	Credits			
Pre-re	quisite:	Unders	tanding	of grad	uate lev	el Chron	natogra	phic Tec	chnique	S				
<ul><li>Fan</li><li>Und</li><li>Stud</li><li>Und</li></ul>	e Objectiliarize derstand dy on the lerstand e Outco	with Cl Demon e applicathe wor	stration ations of king pri	experin f High-l inciple o	nent in Terform of gas ch	ΓLC. ance Lic romato	ıuid Chı graphy.	romatog	raphy (l	HPLC).				
CO1	To know the stationary and moone phases in enformatographic techniques.													
CO2														
CO3	To Understand the principle of chromatographic techniques.													
CO4	To gain	knowle	edge on	the nor	nal phas	se and re	everse p	hase.						
	I	Ma	apping o	of cours	se outco	mes wit	h the p	rogram	outcon	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2		
CO1	3	-	-	3		2	3	2	-	-	1	-		
CO2	3	2	2	3	2	2	3	2	-	1	-	2		
CO3	3	2	-	2	2		2	-	-	-	1	-		
CO4	3	2	2	3	-	2		-	-	1	-	2		

#### **CHE OC 306: Chromatographic Techniques**

**Unit –I:** Introduction - Classification of Chromatographic methods – Column chromatography-Adsorption phenomenon: Nature of adsorbents-Solvent systems-Differential migration-Separation of mixture of o-/p-nitro anilines (A demonstration experiment).

**Unit –II:** Thin-Layer Chromatography (TLC)-Coating materials and preparation of TLC plates-Solvents for development-Detection of compounds in TLC- R_f values in TLC-Applications of TLC in chemistry-Preparative TLC – Demonstration experiment in TLC.

**Unit –III:** High-Performance Liquid Chromatography (HPLC) - Application of HPLC- HPLC instrument-Stationary phases in HPLC-Normal and reversed phase HPLC: A comparison- Normal phase HPLC: Principle-Retention times in Normal and reversed phase HPLC- Reversed phase HPLC: Principle.

**Unit** –**IV:** Gas-Liquid Chromatography- Instruments for Gas-Liquid Chromatography- Gas-Chromatographic Columns and the Stationary Phase- Application of Gas-Liquid Chromatography- Gas-Solid Chromatography.

#### **Reference Books:**

- 1. Analytical chemistry: G L David Krupadanam, D. Vijaya prsad, K. Varaprasad Rao, KLN Reddy, C. Sudhakar.
- 2. Analytical chemistry: Skoog West Holler.
- 3. Modern Analytical Chemistry : David Harvey DePauw University.
- 4. J.G. Dick. Analytical Chemistry, Mc Grraw Hill, New Delhi, (1973).

CHE-	OC- 401	1	Org	anic sy	nthesis	I	L-	-5,T-1,P	-0	40	Credits			
Pre-re	equisite	Unders	standing	of Orga	anic syn	thesis								
	se Objec													
orgai	nic syntl	nesis and	d their s _l	pecial b	ehavior.		_				_			
						fins, ca products.		compo	unas,	aromanc	Comp	ounas,		
• Unde	erstand	the con	ncept o	f peric	yclic r	eactions,	deterr		of al	lowed	and for	bidden		
• Study	y differe	ent poly	mer rea						noplasti	cs, Fibe	ers, Elas	stomers		
and I	• Study different polymer reactions, Stereospecific polymers, Thermoplastics, Fibers, Elastomers and Ion exchange resins.													
Course Outcomes: At the end of the course, the student will be able to														
CO1	Familia	arize wi	th the ur	nique rea	activity	of Boro	n, Phosp	phorus, S	Sulfur a	nd Silic	on reage	ents		
CO2						arbonyl								
						gaın kne ycloadd			detern	nination	or allo	owed or		
CO3	Learn t	he meth	ods of j			•			applicati	ions of v	various	addition		
		ndensati												
CO4	Familia	arize wi	th the ur	nique rea	activity	of Boro	n, Phosp	phorus, S	Sulfur a	nd Silic	on reage	ents		
		M	apping	of cours	se outco	omes wit	th the p	rogram	outcor	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	3	3	_	3	-	2	-	2	_	1		
CO2	3	3	3	3	3	2	-	1	-	2	-	3		
CO ₃	3	3	3	3	3	2	ı	1	-	-	1	3		
CO4	3	3	3	2	-	2	-	-	2	2	1	2		

#### CHE OC-401: CORE THEORY: ORGANIC SYNTHESIS-I

## UNIT-I: Chemistry of Organo Boran, Phophorus, Sulfur and Silicon reagents 15Hrs

Electronic structure and bonding in Boron, Phosphorus, Sulphur and Silicon compounds-Their reactivity and applications in Organic Synthesis.

**Boron Reagents**-Hydroboration-Organoboranes in the formation of C-C bonds, alcohols, amines, halogen and carbonyl compounds-Free radical reactions of organoboranes.

**Phosphorus Reagents**- Formation of carbon-carbon double bonds-Functional group transformations – deoxygenation reactions-reactivity as electrophiles- conversitoon of alcohols to alkyl halides, Witting reaction and nucleophiles - Corey-Winters reaction, Michaelis-Arbusov reaction-Perkow reaction and Mitsnobu reaction.

**Sulphur Reagents-** Sulphur ylides, stabilized and non-stabilized – Preparation and reactivity Pummerer reaction – sulphonyl carbanions-Julia reaction

**Silicon reagents-**Peterson's olefination, influence of trialkyl silyl reagents in electrophilic reactions, aryl silanes, alkenyl silanes, alkynyl silanes, allyl silanes.

#### **UNIT-II: PHOTOCHEMISTRY**

15Hr

Photochemical energy, photochemical excitations, Franck-Condon principle, electronic transitions, Jablonski diagram, singlet and triplet states, energy transfer in photochemical reactions - photosensitization reactions and quantum yield.

Photochemistry of carbonyl compounds - Norrish Type-I and Norrish Type-II reactions, Photo Reduction and Paterno-Buchi reaction. Photochemistry of  $\alpha,\beta$ -unsaturated ketones, enones, dienones and p-benzoquinones.

Photochemistry of unsaturated systems (olefins), cis-trans isomerization and dimerization reactions, Photochemistry of conjugated dienes - 1,3-butadiene, aromatic compounds, Photoaddition (1,2- & 1,4-additions) and Photosubstitution reactions of benzene derivatives. Photo-Fries rearrangement and Barton reaction.

#### UNIT III: PERICYCLIC REACTIONS

15 Hrs

Molecular orbital symmetry, Frontier orbitals of ethylene, 1,3 butadiene, 1,3,5-hexatriene and allyl and pentadienyl system. Classification of pericyclic reactions. Woodward-Hoffmann correlation diagrams. FMO and PMO (Mobius Huckel) approach. Electrocyclic reactions-Conrotatory and disrotatory. 4n, 4n+2 and allyl systems. Cycloadditions-antarafacial and suprafacial additions, 4n and 4n+2 systems, 2+2 addition of ketene, 1,3 dipolar cycloadditions and cheleotropic reactions.

Sigmatropic rearrangements - Suprafacial and antarafacial shifts of H, Sigmatropic shifts involving carbon moieties, 3,3 and 5,5 Sigmatropic rearrangements. Claisen, Cope and Oxy-Cope rearrangements. Ene reaction

## **UNIT IV: SYNTHETHETIC POLYMERS**

**15 Hrs** 

Polymer Reactions-Addition and condensation polymerization processes- Bulk, Solution, Suspension and Emulsion polymerization.

Stereospecific Polymers-Preparation and significance- classification of polymers based on physical properties-Thermoplastics-Thermosetting plastics-Fibers and elastomers- General applications.

Preparation of Polymers-Preparation of Polymers based on different types of monomers Industrial applications-olefin polymers-Diene polymers-nylons-Glyptal resins-Urea-formaldehyde, phenol-formaldehyde and melamine resins- Epoxy resins - Ion exchange resins.

## **Book References:**

- 1. Modern Synthetic Reactions, H.O. House, W.A Benjamin.
- 2. Some Modern Methods of Organic Synthesis, W. Carruthers, Cambridge University Press.
- 3. Advanced Organic Chemistry, F.A. Carey and R.J Sundberg, Plenum.
- 4. Principles of Organic Synthesis, R.O.C. Norman and J.M Coxon, Blackie
- 5. Advanced Organic Chemistry Part A & B, F.A Carey and R. J Sunderg, Plenum Press.
- 6. Structure and Mechanism in Organic Chemistry C.K. Inglod, Cornell University Press.
- 7. Reaction Mechanism in Organic Chemistry, P.S. Kalsi, New Age International.
- 8. Modern Synthetic Reactions, H.O. House, W.A. Benjamin.
- 9. Chemistry of Organic Natural Products, O.P. Agrawal, Vols., 1 & 2, Goel Pubs.
- 10. Natural Products Chemistry K.B.G. Torssell, John Wiley, 1983.
- 11. Principles of biochemistry, A.L. Lehninger worth publishers
- 12. A Text book of Biochemistry, A.V.S.S. Rama Rao

(Mandatory Core)

CHE-O					Synthesis			L-5,T-1	1,P-0	4	4Credit	S		
Pre-re	quisite	e: Und	erstandi	ing of C	Organic S	ynthesi	S							
Cou	rse O	bjectiv	es:											
•	Use di	sconne	ction ap	proach	and retr	osynthe	etic ana	lysis ar	nd contro	ol of ster	eochem	istry to		
(	design	efficie	nt multi	-step sy	ntheses i	nvolvin	ig diffei	rent typ	es of disc	connectio	on appro	aches		
• .	Applic	ations t	o synth	esis cor	nplex nat	turally o	occurrir	ng comp	ounds					
• ]	Familia	arize w	ith syntl	hesis an	d pharm	acologi	cal prop	perties o	of antima	larials ar	ıd antibi	otics		
•	Unders	stand st	ructure	and syn	thesis of	protein	s and n	ucleic a	cids					
Cours	Course Outcomes: At the end of the course, the student will be able to													
CO1														
	of organic synthesis by retrosynthetic approach.													
CO2														
CO3	Under	stand	quinolir	e, acrio	dine and	guanic	line gro	oup of	alkaloids	as anti	malaria	ls and to		
	famili	arize w	ith the 1	role of f	functioni	ng of br	oad spe	ectrum a	antibiotic	S.				
CO4	Acqui	re kno	wledge	about	the clas	ssificati	on, pro	perties	, structu	re & co	onforma	tion and		
	biolog				ides/prote									
		N	<b>Aappin</b>	g of cou	urse outo	comes v	vith the	progr	am outc	omes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	3	3	2	-	1	-	-	1	-	3		
CO2	3	3	3	3	2	1	-	-	-	1	-	2		
CO3	3	3	3	3	2	-	-	2	-	1	1	3		
CO4	3	3	3	3	2	2	-	2	-	-	2	3		

CHE OC-402: CORE THEORY: ORGANIC SYNTHESIS-II

#### UNIT-I: DESIGNING OF ORGANIC SYNTHESIS

15 Hrs

**Disconnection Approach**-Classification of organic reactions. Functionalisation and interconversion of functional groups, formation of carbon-carbon single and double bonds, general strategy, disconnection and synthon approach, retrosynthetic analysis, key intermediates and starting materials in designing a synthesis, linear and convergent synthesis, reconnections. The importance of the order of events in organic synthesis, one group C-X and two group C-X disconnections, chemoselectivity, reversal of polarity, cyclisation reactions, amine synthesis.

**Protecting Groups**-Principles of protection of alcohol, amine, carbonyl and carboxyl groups.

**One Group C-C Disconnections**-Alcohols and carbonyl compounds, regioselectivity. Alkene synthesis, use of acetylenic compounds in organic synthesis.

**Two Group C-C Disconnections**-Diels-Alder reaction, 1,3-difunctionalised compounds, unsaturated carbonyl compounds, control in carbonyl condensations, 1,5-difunctionalised compounds, Michael addition and Robinson annulation.

#### **UNIT II: MULTI STEP SYNTHESIS**

15 hrs

Multi step synthesis of some complex naturally occurring compounds involving through retrosynthetic analysis and control of stereochemistry, Longifolene, Taxol, Juvabione, Fediricamycine A.

#### UNIT III: ANTIMALARIALS AND ANTIBOTICS

15 hrs

Antimalarials: Synthesis and activity of Quinoline group – Quinine, Plasmoquine and Chloroquine –

Acridine group – Quinacrine – Guanidine group – Paludrine.

Antibiotics: Synthesis and activity of Penicillin, Chloramphenicol and Streptomycin – Broad spectrum antibiotics – Tetracyclines, Novobiocin.

Chemotherapy: Structure – activity relationships.

## **UNIT-IV: BIOMOLECULES**

15 Hrs

Peptides and Proteins-Methods of peptide synthesis, sequence determination, structure of oxytocin, proteins-classification, structure, conformation and properties. Nucleic acids- Nucleosides, Nucleotides, DNA and RNA, structure and conformations, replication, translation of genetic material, genetic code, gene expression, gene mutation, protein synthesis.

#### **Book References:**

- 1) Modern Synthetic Reactions, H.O. House, W.A Benjamin.
- 2) Some Modern Methods of Organic Synthesis, W. Carruthers, Cambridge University Press.
- 3) Advanced Organic Chemistry, F.A. Carey and R.J Sundberg, Plenum.
- 4) Principles of Organic Synthesis, R.O.C. Norman and J.M Coxon, Blackie
- 5) Advanced Organic Chemistry Part A & B, F.A Carey and R. J Sunderg, Plenum Press.
- 6) Structure and Mechanism in Organic Chemistry C.K. Inglod, Cornell University Press.
- 7) Reaction Mechanism in Organic Chemistry, P.S. Kalsi, New Age International.
- 8) Modern Synthetic Reactions, H.O. House, W.A. Benjamin.
- 9) Chemistry of Organic Natural Products, O.P. Agrawal, Vols., 1 & 2, Goel Pubs.
- 10) Natural Products Chemistry K.B.G. Torssell, John Wiley, 1983.
- 11) Principles of biochemistry, A.L. Lehninger worth publishers
- 12) A Text book of Biochemistry, A.V.S.S. Rama Rao

(Mandatory Core)

CHE-O	C-403A	A Het	terocycl	es and		Produ		3,T-1,	P-2	4	Credits	S	
Pre-re	equisite:	Unders	tanding	of Hete	rocycle	s and Na	atural Pı	roducts	I				
Cours	e Objec	tives:	-										
	niliarize								hetero	cycles.	Synthes	sis and	
	ctivity of												
	derstand	•	esis and	i reacti	vity of	benzo	fused 1	five me	mbered	and	six mei	mbered	
	erocycle			11.	1 4	41 .	11.	1		• 1	1.1	ļ	
	n knowl	_				•		•					
• Familiarize with on structural elucidation, synthesis and biosynthesis of flavonoids and isoflavonoids													
Course Outcomes: At the end of the course, the student will be able to													
CO1 Familiarize with the synthetic routes of five membered heterocycles with two heteroatoms													
~~~		justify tl											
CO2			_	•	thetic m	ethodol	ogies of	benzof	used and	d six me	embered		
602	_	ycles ar											
CO ₃			th the sti	ructural	elucidat	tion and	synthes	sis of nat	turally o	occurrin	g steroic	ds and	
604	hormor		1		1.1.	• ,•	1	.1 .	C (7)	• 1	1		
CO4			olation,	structur	al deteri	nınatıor	and sy	nthesis o	of flavoi	noids an	ıd		
	isoflav		•	C		•	1 41						
		IVI	apping	oi cours	se outco	mes wii	tn tne p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	3	2	2	-	2	-	2	-	3	
CO2	3	3	3	3	2	2	-	2	ı	2	1	3	
CO3	3	3	3	3	2	-	-	2	-	-	1	3	
CO4	3	3	3	3	2	-	-	2	-	_	1	3	

CHE: OC-403(A): (GENERIC ELECTIVE): HETEROCYCLES AND NATURAL PRODUCTS

UNIT-I: NOMENCLATURE AND FIVE MEMBERED HETEROCYCLES 15 HRS

Systematic nomenclature (Hantzsch-Widman nomenclature) for fused and bridged heterocycles, Five membered heterocycles with two heteroatoms: Synthesis and reactions of pyrazole, imidazole, isoxazole, oxazole, isothiazole and thiazole

UNIT-II: BENZOFUSED FIVE MEMBERED AND SIX MEMBERED HETEROCYCLES 15 HRS

Benzofused five membered heterocycles: Synthesis and reactions of Benzopyrazoles, Benzimidazoles and Benzoxazoles

Six Membered heterocycles with two or more heteroatoms: Synthesis and reactions of diazines (pyridazine, pyrimidine & pyrazine) and triazines (1,2,3-, 1,2,4-1,3,5- triazines)

UNIT-III: STEROIDS AND HORMONES

15 HRS

Occurrence, nomenclature, basic skeleton, Diel's hydrocarbon and stereochemistry. Isolation, structure determination and synthesis of Cholesterol (total synthesis not expected), Bile acids, Androsterone, Testosterone, Estrone, Progesterone. Biosynthesis of steroids.

UNIT-IV: FLAVONOIDS AND ISOFLAVONOIDS

15 Hrs

Occurrence, nomenclature and general methods of structure determination. Isolation and synthesis of Apigenin, Luteolin, Kaempferol, Quercetin, Butein, Daidzein, Biosynthesis of flavonoids and isoflavonoids: Acetate Pathway and Shikimic acid Pathway. Biological importance of flavonoids and isoflavonoids.

Reference Books:

- 1. Heterocyclic chemistry Vol. 1-3, R.R. Gupta, M.Kumar and V. Gupta, Springer Verlag.
- 2. The Chemistry of Heterocycles, T. Eicher and S. Hauptmann, Thieme.
- 3. Heterocyclic Chemistry, J.A. Joule, K. Mills and G.F. Smith, Chapman and Hall.
- 4. Heterocyclic Chemistry, T.L. Gilchrist, Longman Scientific Technical.
- 5. Contemporary Heterocyclic Chemistry, G.R. Newkome and W.W. Paudler, Wiley-Inter Science.
- 6. An Introduction to the Heterocyclic Compounds, R.M. Acheson, Jonn Wiley.
- 7. Comprehensive Heterocyclic Chemistry, A.R. Katritzky and C.W. Rees, eds. Pergamon Press.
- 8. Organic Chemistry, Vol. 2, I. L. Finar, ELBS.
- 9. Introduction to Flavonoids TA Geissman.

(Compulsory Foundation)

CHE-0	OC-403E	3	Bi			organic		5,T-1,P	-0	4	Credits	5		
				ophysic		_								
Pre-r	equisite:	Unders	standing	of Bioi	norganio	c, Bioorg	ganic, E	Biophysi	cal Che	mistry				
Cours	se Objec	tives:												
• Hig	ghlighten	metal o	complex	es as ox	ygen ca	rriers an	d electr	on trans	fer in b	iology.				
• M	etal ion t	ranspor	t and sto	rage in	biologic	al syste	ms and	importa	nce of t	race met	tals in b	iology.		
• Lea	arn physi	ologica	l functio	ons of ca	ırbohydı	rates, lip	ids, enz	ymes cl	assifica	tion, ste	reospec	ificity.		
• The	• The basic concepts of biophysical chemistry in biochemical reactions, exergonic and endergonic													
	reactions.													
Course Outcomes: At the end of the course, the student will be able to														
CO1	Gain knowledge on metallo proteins in electron transfer processes.													
CO2	Know 1	the appl	ications	of trace	metal i	ons and	metal ic	ons as cl	nelating	agents i	n medic	eine.		
CO3	Achiev	e and de	evelop h	ighly st	ereosele	ctive sy	nthesis	of organ	ic comp	ounds a	and drug	gs by		
		_	onmenta											
CO4	Unders	tand the	rmodyn	amics o	f biopol	ymer re	actions	and to c	orrelate	free end	ergy and	1		
	biopoly		rameters											
		Ma	apping o	of cours	se outco	mes wit	h the p	rogram	outcon	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	3	2	3	3	3	2	_	2	_	3		
CO2	3	3	3	3	3	2	3	_	_	_	3	3		
CO ₃	3	3	3	3	3	3	-	2	-	2	-	3		
CO4	3	3	3	3	3	3	2	2	-	3	3	3		

CHE AC-403(B): (GENERIC ELECTIVE): BIOINORGANIC, BIOORGANIC, BIOPHYSICAL CHEMISTRY

UNIT-I: BIO-INORGANIC CHEMISTRY-I

15 Hrs

Metal complexes as oxygen carriers –Heme proteins –Hemoglobin and myoglobin –Non heme proteins –hemerythrin and hemocyanin – model synthetic complexes of iron, cobalt and copper.Coenzymes Vitamin B₁₂,carboxy peptidase and superoxidedismutase.

Electron Transfer in Biology: Structure and functions of metalloproteins in electron transfer processes –catalase –peroxidose –cytochromes and iron –sulphur proteins –synthetic models.

UNIT – II: BIOINORGANIC CHEMISTRY- II: Metal ion transport and storage in biological systems, Metal ions in Biology, Molecular mechanism of ion transport across membranes: ionophores, photosynthesis.

Hydrolytic metalloenzymes: Carbonic anyhdrase, carboxy peptidase, calcium in control processes, calcium and muscle contraction, calcium and secretion, calcium in blood clotting mechanisms. Therapeutic uses of enzymes.

Importance of trace metals in biology: Metal ions as chelating agents in medicine, trace metal ions and metal and non-metal deficiency. Biological nitrogen fixation, in-vivo and in-vitro nitrogen fixation.

UNIT-III: BIOORGANIC CHEMISTRY

Carbohydrates: Structure and biological functions of mucopolysaccharides, glycoproteins, and glycolipids- Role of sugars in biological recognition-Blood group substances

Lipids: Essential fatty acids-structure and function of triglycerols, Glycerophospholipids, cholesterol, bile acids prostaglandins- composition and functioning of lipoproteins

Enzymes: Nomenclature and classification, properties, factors affecting enzyme catalysis, enzyme inhibition- reversible and irreversible inhibition. Uses of enzymes in food drink industry and clinical laboratories.

UNIT-IV: BIOPHYSICAL CHEMISTRY:

Standard free energy change in biochemical reactions, exergonic and endergonic reactions, hydrolysis of ATP, thermodynamics of biopolymer solutions, chain configuration of bio polymers, and calculation of average dimensions. Membrane equilibrium, ion transport through cell membrane. dialosis and its function. Structure and functions of proteins, enzymes, DNA and RNA in living systems, forces involved in bio polymer interactions, electrostatic forces, hydrophobic forces, molecular expansion, and dispersion forces.

Books Suggested

- 1. M.N. Hughes, The Inorganic chemistry of Biological Processes, John wiley and Sons, New York 2nd Edition, 1981.
- 2. A Text book of Biochemistry, A.V.S.S. Rama Rao
- 3. Physical chemistry by Atkenes
- 4. Physical chemistry by Albertz.
- 5. Bio physical chemistry by Van Holde
- 6. Bio Physics by Narayanam
- 7. Organic Chemistry, Vol. 2, I. L. Finar, ELBS.
- 8. Chemistry of Natural Products, P.S. Kalsi, Kalyani Publishers.
- 9. Chemistry of Organic Natural Products, O. P. Agarwal, Vols., 1 & 2, Geol Pubs.
- 10. Natural products Chemistry K.B.G. Torssell, John Wiley, 1983.
- 11. Burger's Medicinal Chemistry, M.E. Wolff, John Wiley
- 12. Medicinal Chemistry, A. Kar, New Age International

CHE (OC 404	Spo	ectral Id	-				5,T-1,P	-0	4	Credits	S		
Pre-re	quisite:	Under	standing			ntification	on of or	ganic co	mpound	ds				
SpecIdenUna	Treater the characteristic creatage processes by mass.													
Course	Course Outcomes: At the end of the course, the student will be able to													
CO1 Calculate λ max values.														
CO2	Ascerta	in func	tional gr	oups.										
CO3	Interpre	et the sp	oectral da	ata to th	e structi	ure and	stereoch	nemistry	of the r	nolecule	es.			
CO4	Analys	se the fr	agmenta	ation pat	tern of t	he mole	cules.							
		M	apping o	of cours	se outco	mes wit	th the p	rogram	outcon	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	3	3	3	-	-	2	-	-	2	3		
CO2	3	3	3	3	-	2	-	2	-	2	-	3		
CO3	3	3	-	3	-	3	-	2	-	3	-	3		
CO4	3	-	3	_	3	2	-	-	-	2	-	3		

CHE OC 403: PRACTICAL-I

Spectral identification of organic compounds by UV, IR, NMR (¹H & ¹³C) & Mass spectroscopy.

DEMONSTRATION EXPERIMENTS

- 1 IR Interpretation of IR spectrum of alcohols, ketones, aldehydes and other standard materials
- 2 AAS: Demonstration of AAS Determination of Zn, Cd, Pb, Mn, Fe and Ni in effluents using AAS.
- 3 Spectrofluorimetry estimation of quinine and fluoroscene
- 4 Ion selective electrodes estimation of F⁻, S²⁻ and CN⁻ in effluents using ion selective electrode meter.
- 5 Polarography and Anode stripping voltametry
- (a) Polarography and Anode stripping voltametry behavior of Cd, Zn, Pb in a mixture.
- (b) Determination of Pb and Cd in samples using Anode stripping voltametr
- 6 Gas chromatography- Determination of pesticides
- 7 HPLC- Determination of pesticides
- 8 NMR
 - a). Demonstration of NMR spectrometer and study of hydrogen bonding in a given alcohol or phenol.
 - b). Interpretation of NMR chemical shifts of ethyl benzene, ethyl alcohol
- 9 TGA, DTA, DSC Demonstration of TG, DTA and DSC and study of decomposition of calcium oxalate, calcium carbonate, copper sulfate, oxalic acid.
- 10 pH metry

- a) Determination of alkalinity in a colored effluent using pH metric end point.
- b) Determination of purity of commercial HCl, H₂SO₄, H₃PO₄ and CH₃COOH using pH metric end point

CHE O	C 405		Practica	al II: Pr	oject W	Vork	L-	5,T-1,P	-0	4	Credits			
Pre-re	quisite	Organ	ic Chen	nistry P	roject V	Work								
Course	e Objec	tives:												
•	Identif	ication o	of proble	em by li	terature	survey								
•	Ability	to carry	y out inc	depende	ntly witl	h compe	etency ir	researc	h desig	n and sy	nthesis			
•	Interpr	etation o	of specti	al data	to the st	ructures	of the r	nolecule	es					
•	Comm	unicatio	n of res	earch re	sults thr	ough pr	esentati	ons and	prepara	tion of o	dissertat	ion		
Course Outcomes: At the end of the course, the student will be able to														
CO1 Identify the problem, to collect the literature and understanding parameters to design the problem.														
CO2														
CO3	Colle	ct and ir	nterpreta	tion of	the data	to the s	tructure	S.						
CO4	Prese	ntation o	of the da	ita in the	e form o	f dissert	tation.							
		Ma	apping	of cours	se outco	mes wit	th the p	rogram	outcon	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	2	3	-	2	2	2	-	2	2	3		
CO2	3	3	3	3	3	2	2	2	-	2	2	3		
CO3	3	3	3	3	3	3	3	2	-	2	-	3		
CO4	3	3	3	3	3	2	3	2	-	-	2	3		

CHE OC 404: PRACTIAL II/ PROJECT WORK

CHE OC 406A Dr			rug Chemistry			L-	L-3,T-1,P-2			4Credits		
Pre-requisite: Understanding of Drug Chemistry												
Course Objectives:												
To learn about the natural products as leads for new drugs												
Determination of cardiovascular drugs												
To study Autacoids												
Interpretation of Antipyretics												
Course Outcomes: At the end of the course, the student will be able to												
CO1	1 Know about natural products.											
CO2	Know Interpretation of cardiovascular drugs.											
CO3	Know the Analyzing about prostaglandins.											
CO4	Know the Definition, Classification, Nomenclature, Structure and Synthesis of anti-											
inflammatory drugs.												
Mapping of course outcomes with the program outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	-		2			2	3
CO2	3	3	3	3	-	2	-	2	-	2	-	3
CO3	3	3		3	-	3	-	2	-	3	-	3
CO4	3	-	3	-	3	2	-	-	-	2	-	3

CHE: OC: 406 (A): (OPEN ELECTIVE): DRUG CHEMISTRY

UNIT - I: NATURAL PRODUCTS AS LEADS FOR NEW DRUGS

Occurrence, Structure and therapeutic uses of Drugs acting on Central Nervous System

Morphine alkaloids (morphine, codeine, thebaine, heroin, pethidine)

Cannabinoids (9-cannabinol, Tetrahydrocannabinol)

Neuromuscular Blocking Agents (Curare, Decamethonium)

Vinca Alkaloids (Vincristin and Vinblastin), Taxol and Taxotere, podophyllotoxin, Etoposide, Teniposide.

UNIT - II: CARDIOVASCULAR DRUGS

Definition, Classification, Nomenclature, Structure and Synthesis.

Cardiac glycosides (ex: Digoxin, Digitoxin);

Antihypertensive drugs (ex: Methyl dopa, Clonidene hydrochloride);

Antiarrhythmic agents (ex: Quinidine sulfate);

Antisympathetic drugs (ex: Propranolol hydrochloride, Verapamil hydrochloride);

Vasopressor drugs (ex: Prenylamine, Buphenine).

UNIT - III: AUTACOIDS

Definition, Occurrence, Isolation, Nomenclature, Classification, Synthesis, Biosynthesis and Stereochemical structures of Prostaglandins. Structural elucidation of PGE₁, PGE₂; Synthesis and biosynthesis of PGE₂, PGF_{2 α}.

Structure and Biosynthesis of Thromboxane A2 and Prostacyclin (synthesis not

UNIT - IV: ANTI-INFLAMMATORY DRUGS

Definition, Classification, Nomenclature, Structure and Synthesis of Paracetamol, Aspirin (Antipyretic), Salol, Cinchophen, Antipyrene, Phenylbutazone, Indomethacin, Tolmetin, Ibuprofen, Diclofenac and Naproxen.

Books suggested:

- 1. Medicinal Chemistry by Ashitosh Kar
- 2. Medicinal Chemistry by D. Sriram, P. Yogeeswari
- 3. Medicinal Chemistry by David A. Williams, Thomas L. Lemke
- 4. Medicinal Chemistry by V. Alagarsamy
- 5. Biochemistry by U. Satyanarayana
- 6. Natural Products Chemistry and Applications by Sujata V. Bhat, B.A. Nagasampagi,
 - S. Meenakshi
- 7. Medicinal Chemistry by V.K. Ahluwalia, Madhu Chopra
- 8. Medicinal Chemistry by Balkishen Razdar
- 9. Advanced Practical Medicinal Chemistry by Ashutosh Kar
- 10. Chemistry of Organic Natural Products by O. P. Agarwal, Vols., 1 & 2, Geol Pubs.
- 11. Chemistry of Natural Products by S. V. Bhat, B.A. Nagasampagi, M. Sivakumar
- 12. Natural Products Chemistry by K.B.G. Torssell, John Wiley, 1983.

CHE	OC 406	Electroanalytical Techniques	L-5,T-1,P-0	4 Credits						
Pre-requisite: Understanding of Electroanalytical Techniques										
Course Objectives:										
 To learn about the classification of electroanalytical methods 										
•	 Determination of types of currents 									
• Principle, instrumentation, reversible and irreversible cyclic voltammograms										
•	Interpretation of Ion selective electrodes									
Course Outcomes: At the end of the course, the student will able to										
CO1	Ability to interpret potentiometry and conductometry									
CO2	Interpretation of results while adhering to DC Polarography.									
CO3	Analysing and compiling the data and results in polarography.									

CO4	Familiarize Types of ion sensitive electrodes.											
Mapping of course outcomes with the program outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	-	-	2	-	-	2	3
CO ₂	3	3	3	3	ı	2	-	2	-	2	-	3
CO3	3	3	1	3	1	3	-	2	-	3	-	3
CO4	3	_	3	_	3	2	_	-	_	2	_	3

CHE: OC: 406(B): (OPEN ELECTIVE): ELECTRO ANALYTICAL TECHNIQUES

Unit I: Types and Classification of Electro analytical Methods.

- i) **Potentiometry-** Types of electrodes, Hydrogen gas, Calomel, Quin hydrone and glasselectrodes. Determination of pH. Potentiometric titrations.
- **ii)** Conductometry Definition of terms conductivity, specific conductivity, cell constant. Mobility of ions, Conductometric titrations.

Unit II: D.C Polarography: Dropping mercury electrode- Instrumentation-polarogram. Types of Currents: Residual, Migration, Limiting. Two and Three electrode assemblies. Ilkovic equation (derivation not necessary) and its consequences. Types of limiting Currents: Adsorption, Diffusion, Kinetic. Applications of polarography in qualitative and quantitative analysis. Analysis of mixtures. Application to inorganic and organic compounds. Determination of stability constants of complexes.

Unit III: (i) A.C. polarography (ii) Square-wave polarography (iii) Pulse polarography (iv) Differential pulse polarography(V) Cyclic Voltammetry: Principle, instrumentation, reversible and irreversible cyclic voltammograms.

Unit IV: Ion selective electrodes: Ion-sensitive electrodes –types of ion sensitive electrodes –metal based cation and anion sensitive electrodes, solid membrane electrodes. Liquid ion-exchange electrodes, gas sensing membrane electrodes.

Books Suggested

- 1. H.W. Willard, LL. Merrit and J.A. Dean: Instrumental Methods of Analysis. Affiliated East-West).
- 2. G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denny. Vogel's Text Book of Quantitative Chemical Analysis (ELBS).
- 3. D.A. Skoog and D.M. West: Principles of Instrumental Analysis (Holt, Rinehart and Wilson).
- 4. J.G. Dick: Analytical Chemistry (Mc Graw Hill).