SRI VENKATESWARA UNIVERSITY:: TIRUPATI SVU COLLEGE OF SCIENCES DEPARTMENT OF CHEMISTRY PHYSICAL CHEMISTRY

Syllabus for M.Sc. CHEMISTRY Choice Based Credit System (CBCS) Amended as per NEP-2020 (w.e.f. the Academic Year 2021-2022)

Vision

Impart quality education & training in the field of chemistry to enable successful careers for the post graduate students in the field of research, education & industry applications of chemical sciences.

Mission

The Department of Chemistry strives:

- To get an ideal balance between knowledge creation and knowledge dissemination in the chemical sciences with a focus to train and mentor students to become responsible scientists and scientifically literate professionals to attain National and International impact.
- To contribute to the improvement of scientific and technological literacy, and the development of critical-thinking and problem-solving skills of all students in order to compete for the world of work and responsible citizenship

PROGRAM EDUCATIONAL OBJECTIVES:

At the end of the program, the student wills be able to:

PEO1	To demonstrate broad knowledge of descriptive chemistry.
PEO2	To impart basic analytical and technical skills to work effectively in various fields of chemistry.
PEO3	To motivate critical thinking and analysis skills to solve complex problems viz., analysis of data, synthetic logistics, spectroscopy, structure and modeling, team based
	problem solving etc.
PEO4	To demonstrate an ability to conduct experiments in the above sub disciplines with
	mastery of appropriate techniques and proficiency using core chemical instrumentation and modeling method
PEO5	To develop laboratory competence in relating chemical structure to spectroscopic phenomena.
PEO6	To demonstrate the ability to synthesize, separate and characterize compounds using published reactions, protocols, standard laboratory equipment and modern instrumentation.

PROGRAM OUTCOMES: On completion of M.Sc. Chemistry programme, graduates will be able to -

PO1	Have a firm foundation in the fundamentals and application of current chemical and
	scientific theories in different areas of chemistry viz., Analytical, Environmental,
	Inorganic, Organic and Physical.
PO2	Understands the background of organic reaction mechanisms, complex chemical
	structures, and instrumental methods of chemical analysis, molecular rearrangements
	and separation techniques.
PO3	Familiarize with the importance of various elements present in the periodic table,
	coordination chemistry and structure of molecules, properties of compounds,
	structural determination of complexes using theories and instruments.
PO4	Understand about the physical aspects of atomic structure, dual behavior, reaction
	pathways with respect to time, various energy transformations, molecular assembly
	in nano-level, significance of electrochemistry, molecular segregation using their
	symmetry.

PO5	Create awareness and sense of responsibilities towards environment and apply
	knowledge to solve the issues related to Environmental pollution.
PO6	Continue to acquire relevant knowledge and skills appropriate to professional
	activities and demonstrate highest standards of ethical issues in the subject
	concerned. Ability to identify unethical behavior such as fabrication, falsification or
	misrepresentation of data and adoptive objective, unbiased and truthful actions in all
	aspects.
PO7	Be skilled in problem solving, critical thinking and analytical reasoning as applied to
	scientific problems.
PO8	Clearly communicate the results of scientific work in oral, written and electronic
	formats.
PO9	Explore new areas of research in both chemistry and allied fields of science and
	technology.
PO10	Design, analyze and carry out scientific experiments and interpret data to provide
	solutions to different industrial problems.
PO11	Independently carry out research to solve practical problems and present a
	substantial technical report.
PO12	Ability to think, acquire knowledge and skills through logical reasoning and to
	inculcate the habit of self-learning throughout life, through self- paced and self-
	directed learning aimed at personal development, and adapting to change academic
	demands of work place through knowledge/ skill development/ reskilling.

PROGRAM SPECIFIC OUTCOMES: At the end of the program, the student will be able to:

PSO1	Scientific Problem solving skills: Deep knowledge of the topic which can develop
	the problem solving skills using chemical principles.
PSO2	Analytical skills: Develop analytical skills such as synthesizing, separating,
	characterizing chemical compounds and chemical reactions with the help of
	sophisticated instruments
PSO3	Research skills: Develop research skills through dissertation/project work in
	different fields of chemistry such as organic, inorganic, analytical, physical and
	environmental.
PSO4	Learning skills on life processes: Acquire advanced level of knowledge in natural
	products as well as biological systems from the chemistry point of view.

SRIVENKATESWARAUNIVERSITY::TIRUPATI DEPARTMENTOF CHEMISTRY PHYSICAL CHEMISTRY TWO YEAR M.Sc. COURSE IN CHEMISTRY (2021-2022)SCHEME

Semester -I

Sl. No.	Course Code	Components of Study	Title of the Course	Credit Hrs/ Week	No. of Credits	IA Marks	SEM End Exam Marks	Total
1	CHE- 101	Core-Theory	Inorganic Chemistry- I	6	4	20	80	100
2	CHE- 102	Core-Theory	Organic Chemistry I	6	4	20	80	100
3	CHE- 103	* Compulsory Foundation	a)Physical Chemistry- I b)Chemistry of Nano materials	6	4	20	80	100
4	CHE- 104	* Elective Foundation	a)General Chemistry- I b)Green Chemistry	6	4	20	80	100
5	CHE- 105	Practicals (Core & Comp.)	a)Inorganic Practical-I b) Physical Chemistry-I	3	2 2			50 50
6	CHE- 106	Practicals (Core & Elective)	a) OrganicChemistry- I b)General Chemistry-I	33	2 2		-	50 50
7	CHE- 107	Audit Course	Values and Professional Ethics – I	0	0	100	-	
		Total		36	24			600

*Among the Compulsory and Elective Foundation a student shall choose anyone. SEMESTER-II

Sl. No.	Course Code	Components of Study	Title of the Course	Credit Hrs/ Week	No. of Credits	IA Marks	SEM End Exam Marks	Total
1	CHE- 201	Core-Theory	Inorganic Chemistry- II	6	4	20	80	100
2	CHE- 202	Core-Theory	Organic Chemistry -II	6	4	20	80	100
3	CHE- 203	* Compulsory Foundation	(a)Physical Chemistry- II(b) AdvancedThermodynamics andBiophysical chemistry	6	4	20	80	100
4	CHE- 204	* Elective Foundation	a)General Chemistry- II b)Chemistry of contemporary society	6	4	20	80	100
5	CHE- 205	Practicals (Core & Comp.)	a)Inorganic Practical-II b) Physical Chemistry-II	33	2 2	-		50 50
6	CHE- 206	Practicals (Core & Elective)	a)OrganicChemistry-II b)General Chemistry-II	33	2 2			50 50
7	CHE- 207	Audit Course	Human Values and Professional Ethics – I	0	0	100	-	
		Total		36	24			600

*Among the Compulsory and Elective Foundation a student shall choose anyone.

M.Sc. (PHYSICAL CHEMISTRY)

SEM	ESTER-III							
Sl. No	Course Code	Components of Study	Title of the Course	Credit Hrs/ Week	No. of Credits	IA Marks	SEM End Exam Marks	Total
1	CHE-PC-301	Core-Theory	Physical Chemistry-III	6	4	20	80	100
2	CHE-PC -302	Core-Theory	Organic Spectroscopy	6	4	20	80	100
3	CHE-PC-303	*Generic Elective	(a) Organic Chemistry III(b) Inorganic Spectroscopy& Thermal Methods of analysis	6	4	20	80	100
4	CHE-PC-304	Core& Gen. Practical	Chemical kinetics	6	4	-	-	100
5	CHE –PC- 305 A	Skill Oriented Course (theory)	Chemotherapy and drug analysis	3	2	10	40	50
	CHE –PC- 305 B	Skill Oriented Course (Practicals)	Conductometry Colorimetry	3	2	-	-	50
6	CHE- 306	Open Elective (For other departments)	(a) Spectral Techniques(b) ChromatographicTechniques	6	4	20	80	100
		Total		36	24			600

*Among the Generic Elective a student shall choose any one.

SEMESTER-IV

	ESTER-IV	a (a		0.114		TA NO 1	CEL	
SI.	Course Code	Components of		Credit	No. of	IA Marks	SEM	Total
No		Study	Title of the Course	Hrs/	Credits		End	
		-		Week			Exam	
							Marks	
1	CHE-PC-401	Core-Theory	Electro Chemistry	6	4	20	80	100
2	CHE-PC-402	Core-Theory	Thermodynamic, Polymers	6	4	20	80	100
			and Solid state chemistry					
3	CHE-PC-403	Generic Elective*	(a) Chemical Kinetics					
		(Related to	(b) Bioinorganic,					
		subject)	Bioorganic &	6	4	20	80	100
			Biophysical					
			Chemistry					
4	CHE-PC-404	Core& Gen.	Instrumental Methods of	6	4	-	-	100
		Practical	Analysis					
5	CHE-PC-405	Core-Practicals/	Project work	6	4	-	-	100
		Project work						
6	CHE-406	Open Elective	(a)Drug Chemistry	6	4	20	80	100
		(For other	or					
		departments)	(b) Electroanalytical					
			Techniques					
		Total		36	24			600

*Among the Generic Elective a student shall choose any one.

(Mandatory Core)

CHE-1	101		INOR	GANIC	C CHEI	STRY I		L-5,T-1	1,P-0	4	Credits	
Pre-re	quisite:	Unders	tanding	of grad	uate lev	el chemi	istry					
Co	urse Ob	jective	5:									
• Con	mpreher	nd the k	ey featu	res of c	oordina	tion con	npounds,	Crystal	Field T	heory, di	fferent p	roperties
and	l bondin	g by spe	ectrosco	pic tech	niques							
• Stu	dy the p	olymor	phic for	ms of no	on-transi	ition ele	ments an	d their sy	nthesis	and prop	perties	
• Une	derstand	the bas	sics of r	eaction	mechan	ism and	the med	chanistic	concept	ts of Dis	sociative	(Id) and
Ass	Associative interchange Mechanism (Ia), Taube's classification, Trans effect and Electron Transfer											
Rea	Reactions											
• Fan	Familiarize with the methods of synthesis of metal carbonyls and metal nitrosyls, Synergistic effect,											
	N and 1			•				•		•		
Cours	e Outco	mes: A	t the end	l of the	course, t	the stude	ent will b	be able				
CO1	To und	erstand	the key	features	s of coor	dinatior	n compou	unds, Cry	stal Fie	ld Theor	y, magne	tic
	propert	ies and	bonding	g in trans	sition m	etal com	plexes.					
CO2	To lear	n about	the poly	morphi	c forms	of Carb	on, Sulp	hur and F	hospho	orus, synt	hesis and	
	propert	ies of su	ılphur-n	itrogen	compou	nds, boi	ranes, car	rbides, si	licates a	and to kn	ow Wade	es rules.
CO3	Toexn	lain the	reactivi	ty of co	mplexes	in term	s of Vale	ence bond	l and C	rvstal Fie	ld theori	es
000	-			•	-			fer React		i jotai i ie		,
CO4								rent meta		nvls svn	ergistic e	ffect
001	-	electror	-	synthes	is and s	il detale.		i enti mete	ii cuioo	iiyis, syn		11001
	und 10											
				-				program			DO11	DO12
001	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	3	-	1	-	1	-	2	-	1
CO2 CO3	3	1 2	_	3	- 2	2	2	2	2	1	- 2	2
	-	,	-	1		_	_		-			

CHE 101: INORGANIC CHEISTRY I

UNIT-I: CO-ORDINATION COMPOUNDS

15 Hrs

Introduction to Crystal field Theory, CFSE and its calculation, Paring energy, Splitting of 'd' orbitals in Trigonal bi pyramidal, square planar, square pyramid and pentagonal bipyramidal geometries, Jahn –Teller effect, Application of CFT, OSSE, site Selection in Spinels, Short comings of CFT, Evidence for covalency – Nephelauxetic effect. MOT of co-ordinate bonds –M.O. Diagrams for octahedral, tetrahedral and square planar complexes. Experimental evidences for π - bonding – Crystallography, Infrared spectroscopy and Photoelectron spectroscopy.

UNIT-II: CHEMISTRY OF NON-TRANSITION ELEMENTS 15 Hrs

General characteristics of the non- transition elements special features of individual elements ; Synthesis' properties and structure of their Halides and Oxides, Polymorphism of Carbon, Phosphorus and Sulphur, Synthesis, properties and structure of boranes, Carboranes, borazines, Silicates, Carbides, Sulphur-nitrogen compounds. Electron counting in boranes, Wades rules (Poly hedral skeletal electron pair theory), Isopopoly and hetero poly acids.

UNIT-III: REACTION MECHANISMS IN COMPLEXES 15 Hrs

Reactivity of metal complexes. Inert and Labile complexes. Concept of Labile and Inert complexes in terms of Valence bond and Crystal Field theories. Taube's classification of complexes as labile and inert complexes. Dissociative (D) and Dissociative interchange Mechanism (Id) & Associative (A) and Associative interchange Mechanism (Ia). Substitution reactions in octahedral complexes- Acid Hydrolysis -factors affecting Acid Hydrolysis - Base Hydrolysis-conjugate Base Mechanisms - Anation Reactions -Substitution Reactions in Square Planar complexes- Trans effect – Mechanisms of Trans effect: polarization and π -bonding theories.Electron Transfer Reaction-Inner Sphere and outer Sphere Mechanisms- Marcus theory.

UNIT-IV: METAL πCOMPLEXES-I

15 Hrs

Nature of π bonding, Classification of π ligands, π donor ligands and π -acceptor ligands.

Metal Carbonyls: Synthesis of metal carbonyls, Structures of metal carbonyls of the types M(CO)n (M= Cr, Fe, Ni; n=4-6), $M_2(CO)n$ (M=Co, Fe, Mn; n=8-10), $M_3(CO)_{12}$ (M=Fe, Ru and Os), $M_4(CO)_{12}$ (M=Co, Rh, Ir). IR Spectraof metal carbonyls (i) Detection of bridging and terminal CO ligand, (ii) Synergistic effect, EAN and 18-electron rule. Electron counting methods (i) Oxidation state method and (ii) Neutral Atom method.

Metal Nitrosyls: Synthesis of metal Nitrosyls, bonding, Electron donation by nitric oxide, Models for NO bonding (i) Covalent model and (ii) Ionic models, Structures of metal nitrosyls (1) [Fe₄S₃(NO)] (2)[Fe₂(NO)₂I₂] (3) [(ϕ_3 P)₂Ir(CO)Cl(NO)]⁺ (4) [(ϕ_3 P)₂Ru(NO)₂Cl], Detection of bridging NO ligand, Applications of metal nitrosyls.

Books Suggested

- 1. F.A.Cotton and G. Wilkinson, Advanced In-organic chemistry VI Edition, 1999.John wiley & sons. Inc., New York.
- 2. James E. Huheey, Inorganic chemistry- Principles of structure and reactivity, VI Edition 1993. Harper Collins College Publishers, New York.
- 3. J.D. Lee: Concise Inorganic Chemistry (Blackwell)
- 4. Gary Wolfsburg: Inorganic Chemistry (5th Ed. (Viva Books)
- 5. W.L. Jolly: Modern Inorganic Chemistry (McGraw-Hill)
- 6. B.N Figgis: Introduction to Ligand Fields (John-Willey)
- 7. S.F.A. Kettle: Coordination compounds.
- 8. Coordination Chemistry. Bassalo & Jahnson.

(Mandatory Core)

CHE	-102		Organ	ic Chem	nistry I		L-	3,T-1,P	-2	40	Credits			
Pre-re	Pre-requisite: Understanding of graduate level Organic Chemistry													
	e Object													
	• Classify molecules based on stereo chemical aspects study on optical and geometrical isomerism by the application of Cahn-Ingold-Prelog rules.													
	 Familiarize with different types of substitution reactions, able to predict products, including 													
	stereochemistry in aliphatic and aromatic nucleophilic substitution reactions, effect of													
	neighboring group participation													
	• Understand thermodynamic and kinetic requirements, kinetic and thermodynamic control,													
		energy diagrams, transition states and intermediates, methods of determining												
mec	hanisms	, isotop	e effects	s in reac	tive inte	ermedia	tes					-		
	ly about	occurr	rence, is	solation	, structu	ire estal	olishmei	nt and s	synthesi	s of nat	ural pro	oducts-		
-	enoids.													
Cours	e Outco	mes: A	t the end	l of the	course,	the stud	ent will	be able						
C	01	To d	etect ste	reochen	nical str	uctures	of the m	olecule	s, stered	selectiv	e and			
		stere	ocontrol	lled read	ctions.									
C	02		scertain											
		grou	p partici	pation a	and to fa	miliariz	e the va	rious ty	pes of a	romatic	substitu	tion		
		react	ions, the	eir mech	nanism a	and the e	effect of	substitu	ients.					
C	03		now the	-		-	-	ential en	ergy dia	agrams a	and			
		trans	ition sta	tes in di	ifferent	interme	diates							
C	04		amiliariz		-	•	vnthesis	of natur	ally occ	curring t	erpenoi	ds and		
		0	adation											
		Ma	apping o	of cours	se outco	mes wit	th the p	rogram	outcon	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	1	3	2	-	1	1	-	1	-	-		
CO2	3	2	1	3	_	1	2		_	2	1	1		
CO3	3	1	2	3	-	1	1	2	1	-	1	-		
CO4	3	2	2	3	2	1	1	1	-	1	1	1		

CHE102: Organic Chemistry I

UNIT-I: <u>Stereochemistry</u>

Sereoisomerism-Stereoisomers Classification – Configuration and conformation.

Molecular Three dimensional representations: Wedge, Fischer, Newman and Saw-horse formulae, their description and interconversions.

Molecular Symmetry & Chirality: Symmetry operations and symmetry elements (Cn & Sn). Criteria for Chirality. Dissymmetrization.

Optical isomerism: Molecular Symmetry and Chirality-Cahn-Ingold-Prelog rules R, S-nomenclature, stereoisomerism resulting from more than one chiral center, meso and pseudoasymmetric compounds - **Axial Chirality** - Stereochemistry of allenes spiranes - biphenyl derivatives and atropisomerism - **Planar chirality** - Ansa compounds and trans - Cycloalkenes - **Helicity**. Helically chiral compounds

Geometrical isomerism - E, Z - nomenclature - Physical and Chemical methods of determining the configuration of geometrical isomers-Stereoisomerism in 3, 4 and 5-membered cyclic compounds.

UNIT-II: Substitution Reactions

i) Aliphatic Nucleophilic substitutions: The $S_N 2$, $S_N 1$, mixed $S_N 1$ and $S_N 2$, SET mechanisms. Reactivity- effects of substrates, attacking nucleophiles, leaving groups and reaction medium.Common carbocation rearrangements – primary, secondary and tertiary. The neighbouring group participation (NGP) -anchimeric assistance, NGP by σ and π - bonds, phenonium ions, norbornyl and norbornenyl systems, Classical and nonclassical carbocations, NGP by halogens and heteroatoms (O,N,S)

The S_N^i and S_N2' mechanisms. Nucleophilic substitution at an allylic, and vinylic carbons.

ii. Aromatic Nucleophilic Substitution: The S_NAr , S_N1 , benzyne and $S_{RN}1$ mechanisms. Reactivity - effect of substrate, structure, leaving group and attacking nucleophile. The von Richter, Sommelet - Hauser and Smiles rearrangements.

UNIT-III: Reactive intermediates

Types of reactions, types of bond cleavage mechanisms, generation, structure, stability and reactivity of carbocations, carbanions, free radicals, carbenes, nitrenes and arynes. Thermodynamic and kinetic requirements, kinetic and thermodynamic control, potential energy diagrams, transition states and intermediates, methods of determining mechanisms, isotope effects.

UNIT-IV: Terpenoids

Classification of terpenoids, occurrence, isolation, general methods of structure determination. Isoprene and special isoprene rule. Structure determination and synthesis of the following representative molecules: Farnesol, Zingeberine, Cadinene and Abietic acid.

Books Suggested:

- 1. Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, John Wiley.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J Sundberg, Plenum.
- 3. Structure and Mechanism in Organic Chemistry C.K. Inglod, Cornell University Press.
- 4. Organic Chemistry, R.T Morrison and R.N. Boyd, Prentice Hall.
- 5. Principles of Organic Synthesis, R.O.C Norman and J. M. Coxon, Blackie Academic.
- 6. Stereochemistry, P.S. Kalsi, Wiley Eastern.
- 7. Text book of Organic Chemistry, M.C. Murry
- 8. Organic Chemistry, Vol I, I.L. Finar, ELBS Eds.

(Mandatory Core)

CHE-1	.03		Phy	sical Cl	nemistr	y I	L-	5,T-1,P	-6	4	Credits		
Pre-re	quisite:	Basic k	nowled	ge abou	t Physic	al Chen	nistry						
Course	Course Objectives:												
• Acq	Acquire knowledge in Quantum Chemistry, postulates of Quantum Mechanics., Applications of												
	rodinger wave equation and Born-Oppenheimer approximation												
	dy on Chemical Dynamics and theories in unimolecular, chain and fast reactions and												
dete	termination of reaction rates.												
	Familiarize with concepts of Thermodynamics and statistical thermodynamics, Gibbs- Duhem												
-	equation and Sackur-Tetrade equation												
	now about Thermodynamic and Kinetic concept of Electrochemistry and conductance,												
			ctrolytes										
Course	e Outco	mes At	the end	of the c	course, t	he stude	nt will b	be able t	0				
CO1	To kn	ow the c	concepts	such as	s Operat	or algeb	ora, Eige	n value	s and Ei	gen fun	ctions,		
	Degen	eracy, S	Schrodin	nger wav	ve equat	ion and	the post	ulates o	f Quant	um Meo	chanics.		
CO2	To lea	rn abou	t theorie	of rea	ction rat	tos Lina	lomann	Lindon	oonn Ui	nchal w	ood and	1	
02		A theori		5 01 1ea		ies, Lind	iemann,	Linuen	141111-111	lisher w	oou, and	1	
							_						
CO3					nic conc								
					Duhem e								
CO4		•		•	and Ki			of Nerr	nst Equa	ation and	d the der	rivation	
	of Det				nd its Ve								
				-	se outco		-	-					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	-	1	3	2	1		1	2		1	1	
CO2	3	1	2	3	1		1		1	1	-	1	
CO3	3	-	1	3	2	1	-	1		-	2	-	
CO4	3	1	2	3	-	1	1	-	2	1	-	1	

CHE-103: Physical Chemistry I

UNIT-I: Quantum Chemistry-I

(A)Introduction to Exact Quantum Mechanical Results

Operator algebra, Eigen values and Eigen functions, Operators for momentum and energy, Degeneracy, Linear combination of Eigen functions of an operator, well behaved wave functions, Normalized and orthogonal functions, The schrodinger wave equation and the postulates of Quantum Mechanics, (B) **Applications of Schrodinger wave equation:** Particle in one dimensional and three dimensional box, harmonic oscillator, rigid rotor, hydrogen atom and its applications. Hydrogen like wave function, hydrogen like orbitals and their representation, polar plots, contour plots and boundary diagram. (C)**Approximate Methods:** The variation Theorem, Linear variation principle, perturbation Theory (first Order and non-degenerate), Application of variation Method and perturbation theory to the helium atom, The Born-Oppenheimer approximation.

UNIT-II: Chemical Dynamics

(A)**Theories of reaction rates:** Collision theory, steric factor. Theory of Absolute Reaction Rates-Reaction coordinate, activated complex and the transition state. Thermodynamic formiulation of reacton rates. (B) **Unimolecular reactions:** Lindemann, Lindemann-Hinshel wood, and RRKM theories. Termolecular reactions. Complex reactions-Rate expressions for opposing, parallel and consecutive reaction (all first order type) (C) **Chain reactions:** Dynamic chain, hydrogen-bromine reaction, pyrolysis of acetaldehyde, decomposition of ethane, photochemical reactions- H_2 -Br₂, H_2 -Cl₂ reactions, Autocatalysis, H_2 -O₂ reaction explosion limits. (D) **Fast Reactions:** Flow system – Temperature and pressure Jump Methods – Relaxation Techniques.

UNIT – III : Thermodynamics

(A) **Brief review of Thermodynamic concepts:** Enthalpy, entropy, free energy. Concept of Entropy – Entropy as a state function –Entropy change in reversible process and irreversible process – Temperature – Entropy diagrams – Entropy change and phase change – Entropy of mixing – Entropy and disorder. (B) **Statistical thermodynamics:** Partial molar properties: their significance and determination of partial molar properties, fugacity and its determination. Concept of distribution, thermodynamic probability and most probable Distribution, Ensemble averaging, postulates of ensemble averaging, canonical, grand canonical and micro- canonical ensembles, partition functions, translational, rotational, vibrational and electronic partition functions, Entropy of monatomic gases (Sackur-Tetrade equation)

UNIT-IV : Electrochemistry I

(A) Thermodynamic and Kinetic concept of Electrochemistry

Thermodynamic and Kinetic Derivation of Nernst Equation, Chemical and Concentration Cells with and without Transference, Liquid Junction Potential, Derivation of the Expression for Liquid Junction Potentials-its determination and elimination, Applications of EMF Measurements: (i)Solubility product, (ii)pH Determination, (iii) Potentiometric Titrations.; (B)Conductivity: Theory of Electrolytic Conductance, Derivation of Debye-Huckle Equation and its Verification, Debye- Falkenhagen Effect, and Wein Effect, kohlrausch law. Calculation of Solubility of Sparingly soluble Salt from Conductance Measurements.

Conductometric Titrations : Titration of Strong Acid Vs Strong Base (HCl vs NaoH) ; Titration of Weak Acid Vs Strong Base (AcoH vs NaoH); Titration of mixture of Strong and Weak Acids vs Strong Base ; Precipitation Titrations.

Books Suggested

- 1. physical chemistry, P. W. Atkins (ELBS)
- 2. Quantum Chemistry, Ira N. Levine (Prentice Hall)
- 3. Atomic Structure and Chemical bond, Manas Chandra.
- 4. Chemical Kinetics, K.J. Laidler (Mc Graw Hill)
- 5. Kinetics and Mechanism of Chemical Transformations, J. Rajaraman and J. Kuriacose (Mcmilan)
- 6. Thermodynamics for chemists, S. Glasstone
- 7. Chemical thermodynamics, I.M. Klotz
- 8. Statistical Thermodynamics, M. Dole
- 9. Modern Electrochemistry, Vol. I & II, J.O. M. Bockris and A.K.N. Reddy (plen
- 10. An Introduction to Electrochemistry (3rded.), S. Glasstone (Affiliated East-West).

(Compulsory Foundation)

CHE-1	104 (A)		Gen	eral Ch	emistry	7 I	L-	5,T-1,P	-0	4	Credits		
Pre-r	equisite:	Unders	standing	of grad	uate lev	el Chen	nistry						
	se Objec												
	Gain knowledge on precision and accuracy, Limit of detection, Limit of determination,												
	Sensitivity and selectivity, statistical evaluation of data												
	Familiarize with principles and concepts of flame emission spectroscopy and atomic absorption												
	spectroscopy and their applications. To know about ecosystem, nutrient cycle and dessert ecosystem and forest ecosystem and aquatic												
		ut ecosy	ystem, n	utrient of	cycle an	d desser	t ecosys	stem and	l forest	ecosyste	em and a	aquatic	
	ystem.												
	n knowle	-	-		ater poll	ution, so	oil pollu	tion, ma	rine pol	llution,	noise po	ollution	
	solid was		U										
Cours	se Outco	mes: A	t the end	d of the	course,	the stud	ent will	be able					
CO1	To know	w about	mean a	nd medi	an value	es. stand	lard dev	iation a	nd coeff	icient of	f variati	on.	
CO2	To acqu	ire kno	wledge	on princ	ciple and	l instrun	nentatio	n of AA	S and d	ifferenc	e betwe	en	
	flame A		nd furna										
CO3	To know	w about	the prin	ciple ar	nd conce	pt of ec	osystem	and the	eir funct	ioning			
				-									
CO4	To have	e an idea	a on env	ironmei	ntal poll	ution an	d enviro	onmenta	l impact	t assessi	nent.		
		Ma	apping	of cours	se outco	mes wit	th the p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	2	3	1	-	1	-	-	2	1	1	
CO2	3	2	-	3	1	-	2	1	-	1	1	-	
CO3	3	3	2	3	2	1		1	2	1	1	2	
CO4	3	2	1	2	3	1	1	1	-	2	1	1	

CHE104-A: General Chemistry I

UNIT-I: TREATMENT OF ANALYTICAL DATA

Precision and accuracy –mean and median values –Standard deviation – coefficient of variation, Types of errors: Determinate and indeterminate errors, confidence limits, significant figures, computations, minimization of errors, statistical evaluation of data –T-test ,F- test , and X^2 –test. Correlation coefficient and coefficient of determination; Limit of detection (LOQ); Limit of determination(LOD) Sensitivity and selectivity of an analytical method.

UNIT-II: FLAME EMISSION AND ATOMIC ABSORPTION SPECTROSCOPY 15 Hrs

(a) **Flame Emission Spectroscopy**: Principles, chemical reactions in flames, Interferences, evaluation methods, flame photometer and experimental technique, procedure for determinations, limitations and disadvantages. Applications

(b)**Atomic Absorption Spectroscopy: Flame AAS:** Principle, Instrumentation – Sources of radiation (HCL and EDL), Different types of burners, Interferences- Physical, Chemical, spectral and back ground correction, and methods of minimization

GF AAS: Principle and technique –Comparison between Flame AAS and furnace AAS, Applications of AAS, Comparison between Atomic Absorption & Flame Photometry.

UNIT-III: ECOSYSTEMS

Concept of an ecosystem (Abiotic and biotic environment), structure and function of an ecosystem Producers, Consumers and decomposers. Energy flow in the ecosystem, (Nutrient cycle in the ecosystem) Ecological succession Food Chain, food webs and ecological pyramids. Introduction, types, characteristic features, structure and function of the following ecosystems, Forest ecosystem, Grassl and ecosystem, Desert ecosystems aquatic ecosystems [ponds, streams, lakes, rivers, ocean estuaries].

UNIT-IV: ENVIRONMENTAL POLLUTION

Definition a) Air pollution b) Water pollution c) Soil pollution d) Marine pollution e) Noise pollution f) Thermal pollution g) Nuclear pollution Solid waste management : Causes, effects and control measures of urban and industrial wastes. Environmental impact assessment.

Books Suggested

- 1. H.W. Willard, LL. Merritt and J.A. Dean: Instrumental Methods of Analysis
- 2. Vogel's Text book of Quantitative Inorganic Analysis.
- 3. Analytical Chemistry
- 4. Instrumental Methods of Analysis H. Kaur

15 Hrs

CHE 1	04B		Gen	eral Ch	emistry	r I	L-	3,T-1,P	-2	40	Credits					
Pre-re	quisite:	Unders	standing	of grad	uate lev	el Chem	nistry									
Course	e Objec	tives:														
• To f	amiliari	ze with	the sign	ificance	e of gree	en chem	istry and	d assessi	nent of	the imp	act.					
• To g	gain kno	wledge	on bioc	atalyst i	n oxida	tion, red	uction a	and hydr	olytic re	eactions						
• To h	have an i	idea on	ledge on biocatalyst in oxidation, reduction and hydrolytic reactions ea on solvent free reactions and modern reaction techniques.													
		iarize with the use of ionic liquids as green solvents.														
		ize with the use of ionic liquids as green solvents. omes: At the end of the course, the student will be able														
С	01	To g														
C	02	To k	To get knowledge on green reaction conditions and their impact on environment. To know about use of different biocatalysts as environmentally friendly reagents.													
С	03		cquire k owave e	•	ge on th	e use of	modern	technic	ues like	ultraso	und,					
C	04	To h	ave an i	dea on t	he use c	of ionic l	iquids i	n differe	ent react	tions.						
		Ma	apping	of cours	se outco	mes wit	th the p	rogram	outcon	nes						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1				
										0	1	2				
CO1	3	2	1	-	2	1	1	-	1	-	1	1				
CO2	3	1	1	3	1	-	1	1	-	1	-	1				
CO3	3	3	2	3	2	1		2	-	1	1	1				
CO4	3	2	1	2	3	1	1	1	1	-	1	1				

CHE 104B: General Chemistry I

UNIT-I

Fundamentals and significance of Green Chemistry: Discussion of the current state of chemistry and the environment and the definition of green chemistry. Assessment of the impact of chemistry in the environment and definition of risk hazard. An introduction to the tools of green chemistry and its fundamental principles.

Principles of Green Chemistry: Prevention of waste / by-products, Hazardous products-Designing of safer chemicals- Selection of appropriate solvents and starting materials- Use of protecting groups and catalysis- Designing of biodegradable products.

UNIT-II

Catalysis for Green Chemistry: Use of biocatalysts- Biochemical Oxidation, Biochemical Reduction, Enzyme Catalyzed Hydrolytic Process, Modified biocatalysis- transition metal catalysis- Reformatsky reaction, Wurtz reaction, Pinacol coupling, Simmons-Smith reaction, Mukaiyama reaction, Heak reaction, Ullmann's coupling.

UNIT-III

Solvent Free Reactions: Solvent free techniques- Reactions on solid mineral supports, Phase Transfer Catalysis- C-alkylation, N-alkylation, S-alkylation, Darzen's reaction, Wittig reaction. Ultrasound assisted green synthesis- Oxidation, Reduction, Hydroboration, Bouveault reaction, Strecker reaction, Microwave assisted green synthesis- Biginelli reaction, Aza-Michael reaction, Suzuki reaction, Stille reaction, Sonogashira reaction.

UNIT-IV

Ionic liquids: Definition- Types of Ionic Liquids-Synthesis of Ionic Liquids- Selection of ionic liquids- physical properties- Application in organic synthesis- alkylation, allylation, oxidation, reduction, polymerization, hydrogenation, hydroformylation, alkoxycarbonylation, carbon-carbon bond forming reactions, alkene metathesis.

Books suggested:

- 1. New Trends in Green Chemistry by V.K. Ahluwalia, M. Kidwai.
- 2. Green Chemistry: Environment Friendly Alternatives by Rashmi Sanghi, M M Srivastava
- 3. Green Solvents for Organic Synthesis by V.K. Ahluwalia, Rajender S. Varma
- 4. Green Analytical Chemistry by Mihkel Koel and Mihkel Kaljurand

CHE 1	05 A &		Co Corganic		ctical I:			5,T-1,P	-0	4	Credits	6		
Pre-re	quisite:		standing	•				Physical	Chemi	stry prac	ctical.			
	e Objec		ahniaua	oftituo	tion and	analwa								
		•	chniques ation of i			•		olumetr	ic techn	iques				
			metric a							19405.				
• Det	Determination of critical solution temperature of phenol-water system.													
Cours	Durse Outcomes: At the end of the course, the student will be able													
(O1 To demonstrate mastery of basic semi-micro qualitative analysis of simple salts													
	and interprets analytical data and will make scientific claims that are supported													
		by	the obse	rvations	5.									
(CO2	То	familiar	ize with	techniq	ues of t	itration	and calc	culation	of error	s.			
(CO3		study th tribution						perature systems.		ic comp	osition,		
(CO4	То	calibrate	e the sta	tistical d	lata			-					
		Μ	apping	of cours	se outco	mes wit	th the p	rogram	outcon	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1		
										0	1	2		
CO1	3	2	2	3	1	2	-	1	2	1	2	-		
CO2	3	2	2	2	-	2	1	1	-	2	2	1		
CO3	3	2	1	2	2	1	-	2	1	1	2	1		
CO4	3	2	2	1	2	1	-	2	2	1	1	1		

CHE 105 A & B: Core practical I: Inorganic & Physical Chemistry

Semi Micro Qualitative Analysis

Qualitative Analysis of a mixture containing four cations including two less common cations (viz., W, Mo, Se, Te, V, Ce, Th, Zr, Li and U).

- 1. Determination of critical solution temperature, eutectic composition and temperature of binary system.
- 2. Calibration of volumetric apparatus and statistical analysis of the data.
- 3. Determination of critical solution temperature of phenol-water system and study the effect of electrolyte on CST.
- 4. Determination of Eutectic composition and temperature of binary system
- 5. Determination of distribution coefficient of benzoic acid between water and benzene.
- 6. Study the adsorption of acetic acid on charcoal and analysis of the data on the basis of Langmuir and Freundlich adsorption isotherms.
- 7. Determination of rate constant of acid hydrolysis of an ester and investigate the effect of catalyst concentration, reactant concentration and temperature.

CHE 1	106A &	B			actical neral C	I: hemistry		L-5,T-1	, P-0		4 Cre	dits			
Pre-re	quisite:	Unders	standing	of grad	uate lev	el Organ	ic & G	eneral C	hemistr	y practi	cal.				
Course	e Objec	tives:													
• Iden	ntificatio	on of sir	ngle orga	anic con	nponent	by syste	matic c	Jualitativ	ve analy	sis					
• Prep	paration	of deriv	vatives a	ind purit	fication	process									
• Sing	gle step	prepara	tions												
• Cali	bration	of spec	tral anal	ysis to t	his struc	ctures									
Iden	ntificatio	on of sir	ectral analysis to this structures single organic component by systematic qualitative analysis.												
Course	e Outco	mes: A	At the end of the course, the student will be able												
(CO1														
(CO1To familiarize the systematic procedures of analysis of organic components.CO2To know the conformational tests for various functional groups.														
(CO3	То	understa	and the i	nechani	sms and	familia	arize wit	h metho	odologie	s to pre	oare			
		bio	logically	/ import	ant mol	ecules.				-					
(C O 4	Pur	ificatior	n of com	pounds	by diffe	rent pro	ocess							
		M	apping	of cours	se outco	mes wit	h the p	rogram	outcon	nes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1			
										0	1	2			
CO1	3	2	3	3	1	2	-	1	-	1	1	-			
CO2	3	2	2	3	-	2	-	1	1	-	1	2			
CO3	2	2	2	1	2	1	2	1	-	1	-	2			
CO4	1	2	2	1	1	1	1	-	1	1	1	2			

CHE: 106 B: PRACTICAL – II: ORGANIC CHEMISTRY

Single step preparations

- 1. Preparation of aspirin
- 2. Preparation of p-nitroacetanilide
- 3. Preparation of p-bromoacetanilide

CH	E 107	Hu	man Va	alues an Ethi		essional	L	3,T-1,P-	2	4	Credit	S			
Pre-re	quisite:	Unders	standing	of grad	uate lev	el Huma	ın Valu	es and p	rofessio	nal ethic	cs				
Cours	e Objec	tives:													
	alyze val		arious e	thical p	rofessio	ns									
• Unc	lerstand	moral c	oncepts	, charac	ter and o	conduct	multipl	e							
	ncept of o														
	-		at stake in areal-world situation or practice and assess own ethical values with												
			context and problems												
-			At the end of the course, the student will be able to												
					,										
C	:01	To k	To know about the needs and importance of professional ethics.												
C	202	To a	nalyze n	ature of	Values	, basic N	Aoral C	oncepts	characte	er and C	onduct.				
C	203	To g	ain knov	wledge of	on indiv	idual an	d societ	y ethica	l values	, ahimsa	i, satya a	and			
			machary												
C	CO4	To u	nderstar	nd value	s of Bha	agavd G	ita, vari	ous relig	gions, re	ligious	tolerenc	e,			
			lhian etl			-			- ·	J					
					e outco	mes wit	h the n	rogram	outcon	nes					
							-								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
C01	3	1		3	2		1	2	3	1	1	2			
	-		-	_		-		_	_	1	1	_			
CO2	3	2	2	3	1	1	1	2	3	-	-	2			
CO3	3	1	2	3	2	-	1	-	-	1	1	3			
CO4	3	1	1	3	-	1	2	2	2	2	-	3			

CHE 107: ELECTIVE FOUNDATION (HUMAN VALUES AND PROFESSIONAL ETHICS – I) Chapter I: Definition and Nature of Ethics – Is relation to Religion, Politics, Business, Law, Medicine and Environment. Need and Importance of Professional Ethics – Goals – Ethical Values in Various Professions.

Chapter II: Nature of Values – Good and Bad, Ends and Means, Actual and Potential Values, Objective and Subjective Values, Analysis of Basic Moral Concepts – Right, Ought, Duty, Obligation, Justice, Responsibility and Freedom, Good Behavior and Respect for Elders, Character and Conduct.

Chapter III: Individual and Society: Ahimsa (Non-Violence), Satya (Truth), Brahmacharya (Celibacy), Asteya (Non Possesion) and Aparigraha (Non-stealing). Purusharthas (Cardinal virtues) - Dharma (Righteousness), Artha (Wealth), Kama (Fulfillment Bodily Desires), Moksha (Liberation), Crime and Theories of Punishment – (a) Reformative, Retributive and Deterrent, (b) Views on Manu and Yajnavalkya

Chapter IV: Bhagavd Gita – (a) Niskama Karma, (b) Buddhism – The Four Nobel Truths – Arya astanga marga, (c) Jainism - Mahavratas and Anuvratas. Values Embedded in Various Religions, Religious Tolerence, Gandhian Ethics.

Books for study:

- 1. Johns S Mackenjie: A Manual of ethics
- 2. "The Ethics of Management" by Larue Tone Hosmer, Richard D. Irwin Inc.

- 3. "Ethics in Management" by S.A. Shelekar, Himalaya Publishing House.
- 4. Harold H. Titus: Ethics for Today
- 5. Maitra, S.K: Hindu Ethics
- 6. William Lilly: Introduction to Ethics
- 7. Manu: Manava Dharma Sastra or the Institute of Manu: Comprising the Indian System of Duties: Religious and Civil (ed) G.C. Haughton.
- 8. Sasruta Samhita: Tr. Kaviraj Kunjanlal, Kunjanlal Brishagratha, Chowkamba Sanskrit Series, Vol I,II and III, Varanasi, Vol I PP, 16-20, 21-32 and 74-77 only.
- 9. Charaka Samhita: Tr. Dr. Ram Karan Sarma and Vaidya Bhagavan Dash, Chowkambha Sanskrit Series Office. Varanasi I, II, III Vol I PP 183-191.
- 10. Ethics, Theory and Contemporary Issues. Barbara Mackinnon, Wadsworth/Thomson Learning, 2001.
- 11. Analyzing Moral Issues, Judith A. Boss, Mayfield Publishing Company, 1999.
- 12. I.C. Sharma Ethical Philosophy of India. Nagin& Co Julundhar.

CHE -	201		Inorg	anic Che	emistry	' II		L-5, T-	-1, P-0	4	Credits		
Pre-re	quisite:	Unders	tanding	of gradu	ate leve	el chemi	istry						
С	ourse O	bjectiv	es:										
	Understa with resp		-	-	of tra	nsition 1	metal co	mplexes	and va	rious rea	ctions or	ı ligands	
	Gain kn geometry	Ũ	e on e	lectronic	specti	ra of co	omplex	molecule	es of o	ctahedra	l and te	trahedral	
•	Understa	and ma	gnetic	propertie	es viz.	, diama	agnetism	and pa	ıramagr	netism a	nd other	related	
]	Understand magnetic properties viz., diamagnetism and paramagnetism and other related properties of complex molecules												
•]	Familiar	ize wit	h differ	ent cata	lytic re	actions	of com	plex mol	lecules	and fact	ors effec	cting the	
	reactions							-				-	
Cours	e Outco	mes: A	t the end	l of the c	ourse, t	the stude	ent will b	be able					
CO1	To fam	iliarize	with the	general	method	ds of con	nplex pr	eparation	is and p	roperties	, nature o	of	
	bonding	g and st	ructural	features	of meta	al comp	lexes.						
CO2	To kno	w about	t Russel	-Saunder	s coupl	ling, spli	itting of o	energy le	vels in	octahedra	al field a	nd	
	differer	tiate be	etween (Drgel dia	grams a	and Tan	abe-Suga	ano diagr	ams.				
CO3	To und	erstand	about th	ne laws o	f Hund	s, Curie	and Wei	iss, magn	etism a	nd magn	etic susce	ptibility	
				's and F						U		1 9	
CO4	To gain	knowl	edge on	Induced	reactio	ns, Free	radical	reactions	Therm	al decom	position		
	-		n reaction			,					1		
		,			rse out	comes v	with the	program	n outco	mes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
C01	3	2	2	3	-	2	1	-	2	1	-	1	
CO2	3	2	-	3	1	2	1	-	1	2	1	1	
CO3	3	-	2	3	-	2	1	1	-	1		1	
CO4	3	1	1	3	-	2	-	1	1	1	1	-	

CHE 201: INORGANIC CHEISTRY II

UNIT – I: TRANSITION METAL II – COMPLEXES II

Transition metal π – complexes with unsaturated organic molecules – alkenes, alkynes, diene, dienyl and Cyclopentadienyl complexes and arene complexes-general methods of preparation, properties, nature of bonding and structural features – Important reactions relating to Nucleophilic and Electrophilic attack on ligands and to organic synthesis.

UNIT – II: ELECTRONIC SPECTRA OF COMPLEXES

Russel-Saunders coupling – Spectroscopic term symbols- Derivation of term symbols of p^2 and d^2 configuration, Hole Formulation, Energy ordering of terms (Hund's Rules), Splitting of energy levels and spectroscopic states in Octahedral field, Selection rules – Break – down of selection rules, Orgel diagrams, Definition and utility–Orgel Diagrams for d^1 to d^9 configurations in Octahedral and tetrahedral fields. Interpretation of electronic spectra of high spin octahedral and tetra hedral complexes of Ti(III), V(III), Cr(III), Mn(II), Fe(II), Fe(III), Co(III), Co(II), Ni(II) and Cu(II) complexes, Calculation of Dq and B¹ parameters for Cr(III) and Ni(II) complexes. Tanabe – Sugano diagrams, Differences between Orgel diagrams and Tanabe – Sugano diagrams, Tanabe – Sugano diagrams of d² to d⁶ and d⁸ configurations. Charge transfer spectra- LMCT and MLCT.

15 Hrs

UNIT – III: MAGNETIC PROPERTIES OF TRANSITION METAL COMPLEXES 15 Hrs

Diamagnetism and paramagnetism-orbital and spin contributions, spin-orbit coupling, Hunds third rule and Energies of J levels – Curie law and Curie – Weiss law- Ferromagnetism and antiferromagnetism – Temperature independent magnetism Magnetic susceptibility and its determination by Gouy's and Faraday methods.Calculation of magnetic moment from magnetic susceptibility, spin-only formula, Orbital contribution to magnetic moment (Oh and Td Complexes) –Paramagnetism and crystalline fields – Ti (III), V (III), VO²⁺, Cr (III), Mn (II), Fe (III), Co(II), Ni (II) and Cu (II). Magnetic Exchange in copper acetate and other dimmers – spin cross over in complexes.

UNIT -- IV: CATALYSIS

15 Hrs

Homogeneous catalysis, Metal ion catalyzed reactions – Redox potentials and processes – Mechanism of redox processes involving ligands – Factors affecting redox potentials - other types of metal catalyzed reactions – Reactions involving Ag (I), Cu (II) and Os (VIII) – Reactions of Oxyanions – Factors affecting rate (General discussion only) – Induced reactions – Free radical reactions – Thermal decomposition of peroxy disulphate – Fe(III) – S_2O_8 reactions – chain reactions – H-Br reactions, $H_2O_2 - S_2O_8$ reactions.

Books Suggested

- 1. Inorganic Chemistry principles of Structure and Reactivity 6th Edition. James E. Huheey.
- 2. Organometallic Chemistry: R.C. Mehrotra and Singh.
- 3. R. S. Drago: Structural methods in Inorganic Chemistry.
- 4. H. H. Willard, L. L. Merritt, Jr., J. A. Dean and F. A. Settle, Jr.: Instrumental Methods of Analysis (CBS Publishers).
- 5. R. L. Carlin: Magnetic Chemistry. R. L. Datta and A. Syamal: Elements of Magnetic Chemistry.

(Mandatory Core)

CHE	-202		Orga	nic Che	emistry	II	L-	3, T-1,	P-2	4	Credits	
Pre-re	quisite:	Unders	standing	of Orga	anic Che	emistry						
Course	e Objec	tives:										
		ognize,	classify	, explai	n, and a	apply fu	ndamen	tal orga	nic read	ctions su	ich as E	E2, E1,
E1C		:41	1		4	· 1		4	c : . :	1		
			lecular a	-			ing elec	etron de	ficient	carbon,	nitroge	en and
			Widman				e three	and four	r memb	ered he	terocycl	es Be
			hetic rou								leiseye	
	-	•	currenc						•		tural pro	oducts-
alka	loids											
	1		t the end									
CO1			e the m								•	
		-	eliminat	tions ar	nd use	of isoto	opes, cl	nemical	trappin	g and	crossov	er
	1	ments.										
CO2			rearran	-		-				-		
			ectron ri	ch carbo	on atom	and far	niliarize	with th	e limita	ations ar	nd appli	cations
~~~	of read											
CO3			synthesi						-			-
	-	-	ions and			electron	donatii	ng and	withdray	wing su	bstituen	ts in
004			ring ope	U				0 11				
CO4	To un	derstanc	l the stru	ictural e	elucidati	on and s	synthesi	s of alka	aloids us	sing spe	cific rea	gents.
		Ma	apping	of cours	se outco	mes wit	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	-	2	1	-	1	1	1	-
CO2	3	2	2	3	2	2		1	1	-	1	1
CO3	3	2	2	3	2	2	1	1	_	1	_	1
<b>CO4</b>	3	2	2	3	-	2	-	1	-	1	1	1

#### CHE- 202 : ORGANIC CHEMISTRY II

#### **UNIT-I: Reaction mechanism-I**

#### 15 Hrs

Electrophilic addition to carbon carbon double bond: Stereoselective addition to carbon carbon double bond; anti addition- Bromination and epoxidation followed by ring opening. Syn addition of OsO₄ and KMnO₄.

Elimination reactions Elimination reactions  $E_2$ ,  $E_1$ ,  $E_{1CB}$  mechanisms. Orientation and stereoselectivity in  $E_2$  eliminations. Pyrolytic syn elimination and  $\alpha$ -elimination, elimination Vs substitution. Facors influencing the elimination reactions

Determination of reaction mechanism: Determination of reaction mechanism: Energy profiles of addition and elimination reactions, transition states, product isolation and structure of intermediates, use of isotopes, chemical trapping, crossover experiments. Use of IR and NMR in the investigation of reaction mechanism.

### UNIT-II: Molecular Rearrangements:

Rearrangements to electron deficient Carbon atom: Pinacol-Pinacolone, Wagner-Meerwein, Dienone-Phenol and Demjonove Rearrngements Rearrangements to electron deficient Nitrogen atom: Hofmann, Curtius, Schimidt and Beckmann Rearrangements. Rearrangements to electron deficient Oxygen atom: Baeyer-Villiger and Dakins Rearrangements Rearrangements to electron rich Carbon atom: Favorski and Neber Rearrangements Aromatic and Sigmatropic Rearrangements: Fries and Claisen Rearrangements

#### UNIT III: Three and four membered heterocycles:

Systematic nomenclature (Hantzsch-Widmann system) and Replacement nomenclature for monocyclic heterocycles (Three and four membered rings). Synthesis and chemical reactions of aziridines, oxiranes, thiiranes, azetidines, oxetanes, and thietanes.

#### **UNIT-IV: Alkaloids**

Occurrence, isolation, general methods of structure elucidation and physiological action, degradation, classification based on nitrogen heterocyclic ring, structure elucidation and synthesis of the following: Atropine, Papaverine and Quinine.

#### **Books Suggested:**

- 1. Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, John Wiley.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J Sundberg, Plenum.
- 3. Structure and Mechanism in Organic Chemistry C.K. Inglod, Cornell University Press.
- 4. Organic Chemistry, R.T Morrison and R.N. Boyd, Prentice Hall.
- 5. Modern Organic Reactions, H.O. House, Benjamin.
- 6. Principles of Organic Synthesis, R.O.C Norman and J. M. Coxon, Blackie Academic.
- 7. Stereochemistry, P.S. Kalsi, Wiley Eastern.
- 8. Text book of Organic Chemistry, M.C. Murry
- 9. Text book of Organic Chemistry, Fessendon and Fessendon.
- 10. Text book of Organic Chemistry, T.W. Solomon,
- 11. Organic Chemistry, Vol II, I.L. Finar, ELBS Eds.
- 12. Heterocyclic chemistry T.L Gilchrist, Longman Scientific Technical
- 13. An Introduction to the Heterocyclic compounds, R M Acheson, John Wiley.

#### 15 Hrs

15 Hrs

(Mandatory Core)

CHE	-203		Phy	sical ch	emistry	II	L-	5,T-1,P	-6	4	Credits			
Pre-r	equisite	Basic k	knowled	ge abou	t Physic	al Chen	nistry							
Cours	se Objec	tives:												
	arn Angu anic mol		mentum	and M	olecula	r Orbita	l Theor	y and a	pplicati	on of H	luckel t	heory to		
0	ow abou		ots in Su	rface C	hemistry	y, conce	pt of ele	ctric do	uble lay	ver mode	el and M	licelles.		
• Ge	t knowle	edge on	symme	try and	group t	heory th	heir use	in spec	troscop	y, Mull	iken c	haracter		
	les.													
	Understand Irreversible Electrode phenomenon controlled potential electrolysis and polarography.													
Course Outcomes At the end of the course, the student will be able														
CO1														
	molecu	lar orbit	als and	Huckel	theory o	of conjug	gated sy	stems.						
CO2	To lear	n Gibbs	adsorpt	ion isotl	nerm, B	ET equa	tion and	l correla	te limit	ations, c	critical n	nicellar		
	concent	tration (	CMC) a	nd facto	ors affec	ting the	CMC o	f surfac	tants.					
CO3		tify Rel							<b>U</b> 1	, conjug	acy, Sy	mmetry		
<u> </u>	·	roup (M					-	•		~				
CO4												Potential		
	Electro	lysis, to									able sys	tem.		
		N	apping	of cour	se outco	omes wi	ith the p	progran	n outco	mes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	1	3	-	2	-	1	1	1	2	-		
CO2	3	2	2	3	2	2	-	1	1	1	-	1		
CO3	3	2	2	3	-		1	-	-	1	1	_		
<b>CO4</b>	3	2	-	2	1	1	-	1	1	1	1	-		

#### **CHE-AC-203 Physical Chemistry III**

#### **UNIT-I: Quantum Chemistry-II**

#### 15 Hrs

(A) Angular momentum: Angular momentum, Rotations and angular momentum, Eigen functions and Eigen values of angular momentum, Ladder operator, addition of angular momenta, spin, antisymmetry and pauli Exclusion principle. Slater determinant. ;

(B) Molecular Orbital TheoryAtomic Orbitals, Simple Molecular Orbitals, Hybrid Atomic Orbitals, Shapes and energies of Molecular Orbital, Systems of Organic Molecules (Ex: Methane, Ethylene, Acetylene). Huckel theory of conjugated systems, Π-bond order and charge density calculations, application of Huckel theory to ethylene, butadiene and benzene.

#### **UNIT-II: Surface Chemistry**

Surface tension, capillary action, pressure difference across curved surface, (Laplace equation), vapour pressure of droplets (Kelvin equation), Gibbs adsorption isotherm, BET adsorption isotherm, derivation of BET equation, limitations of BET equation, estimation of surface area from BET equation, Surface films on liquids. Concept of electric double layer model- Helmholtz perrin, Gouy- Chapman and stern models (no derivation)

**Micells:** Surface active agents, classification of surface active agents micellisation, hydrophobic interaction, critical micellar concentration (CMC), factors affecting the CMC of surfactants, thermodynamics of micellisation, emulsions, reverse micelles.

#### **UNIT-III: SYMMETRY AND GROUP THEORY**

Definition of a group, rules that are set for a group, sub-group, order of a group, Relation between order of a finite group and its sub-group, conjugacy relation and class of a group, symmetry elements and symmetry operation. Symmetry point group (MLS, MHS and MSS), Schoenflies symbols - Representation of groups by matrices (representation for  $C_n$ ,  $C_{nv}$ ,  $D_{nh}$  etc. groups to be worked out

explicitly), character of a representation, group multiplication tables, reducible - irreducible representations The great orthogonality theorem (without proof) - character tables ( $H_2O$ , $NH_3$ ) and their use in spectroscopy, Mulliken character tables.

#### **UNIT-IV: ELECTROCHEMISTRY- II**

#### 15 Hrs

**Irreversible Electrode phenomenon:** Reversibility and irreversibility, Dissolution and deposition potentials, Decomposition voltage, overvoltage, diffusion overvoltage, charge transfer overvoltage, concentration overvoltage-hydrogen and oxygen overvoltages, Tafel plots, Exchange current density and Transfer coefficient, Butler-Volmer equation for one electron transfer processes.

**Polarography:**Theory, classification, principle, Instrumentation of Polarography, DME, HMDE diffusion current, Ilkovic equation, DC-Polarography, AC-Polarography, Controlled Potential Electrolysis, Millicoulometry, Equation for half-wave potentials, for reversible system when oxidant alone, reductant alone and both are present.

#### **Books Suggested**

- 1. P.W. Atkins: Physical Chemistry (ELBS).
- 2. Ira N. Levine: Quantum Chemistry (Prentice Hall).
- 3. R. Mcweeny: Coulson's Valence (ELBS).
- 4. J.O.M. Bockris and A.K.N. Reddy, Modern Electrochemistry, vol.I & II (Plenum).
- 5. S. Glasstone; An Introduction to Electrochemistry (3rd ed.)(Affiliated East-West).
- 6. V. Moroi: Micelles, theoretical and applied aspects (Plenum).
- 7. Maron and prutton: principles of physical Chemistry.
- 8. Silbey, Alberty, Bawendi. Physical Chemistry. Jhon-Wiley & Sons. 4th edition-2006.
- 9. D.N. Bajpai: Advanced physical Chemistry: S. Chand & Company, 1998.

		-	×	DMPUL				/				
CHE	-204 A		Gene	eral Ch	emistry	II	L-	5,T-1,P	-0	40	Credits	
Pre-re	quisite:	Unders	standing	of grad	uate lev	el Chem	nistry					
	e Objec		.1		C 11 CC	. 1		11	.1 1			
		0	-	-		erent ele	ctro ana	lytical r	nethods			
					c technic		livensity					
	•		•			n of bioc -renewa	•					
• 10	) KIIOW 2	idout na	luraries	sources		-lellewa	ble leso	urces				
Cours	o Outco	mos. A	t the end	d of the	COURSA	the stud	ont will	ha ahla				
Course	e Ouico	mes. A			course,	ine stuu						
CO1	То асц	ire kno	wledge	on ion s	elective	electro	des soli	d memb	orane ele	ectrodes	and ola	ss
001	-		-			etric titra		a meme		cuodes	und Siu	.55
CO2			A			ications		natogra	phic ser	arations	and	
					HPLC.			8	r ~- r			
CO3						n divers	ity and c	conserva	ation of	biodive	rsity.	
CO4	To acqu	uire kno	wledge	on natu	ral resou	irces rel	ated to f	food, wa	ater, mir	eral, en	ergy and	d land.
	1										23	
		IVIă	apping	of cours	se outco	mes wit	in the p	rogram	outcon	ies		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1
										0	1	2
CO1	3	2	2	3	1	2		1	-	1	1	2
CO2	3	-	2	3	-	2	1	-	2	1	1	1
<b>CO3</b>	3	3	2	2	1	2	-	1	-	-	1	2
005	3	3	2	2								

#### (COMPULSORY FOUNDATION)

CHE 204-A: General Chemistry II

#### **UNIT-I: ELECTRO ANALYTICAL METHODS**

Theory of potentiometry, calculation electrode potential at the equivalence. Finding of equivalence volume, derivative and linear titration plots. Ion-sensitive electrodes –types of ion sensitive electrodes – metal based cation and anion sensitive electrodes, solid membrane electrodes, glass electrodes. Liquid ion-exchange electrodes, gas sensing membrane electrodes, Amperometric titrations - Anodic stripping voltammetry, chronoamperometry, chronopotentiometry, Cyclic Voltammetry, Differential Pulse Polarography, linear sweep voltammetry, square wave voltammetry.

#### **UNIT-II: CHROMATOGRAPHY**

General principles and classifications of chromatographic separations

**Thin layer chromatography:** Classification, principle, experimental technique, sample application, development of plate, retardation factor.

**Gas liquid chromatography:** Gas liquid chromatography - instrumentation (columns and detectors), retention time and retention volume. Chromatographic behaviour of solutes, column efficiency and resolution, column processes and band broadening, time of analysis and resolution, Van-Deemter equation.

**High performance liquid chromatography:** Theory and instrumentation-column performance, gradient elution, delivery system, sample introduction, separation columns, detectors and applications of HPLC.

#### **Unit – III : Biodiversity**

Conservation introduction definition genetic species and ecosystem diversity, hot spots of biodiversity, threats to biodiversity habitat loss poaching of wildlife, man wildlife conflicts. Endangered and endemic species of India, conservation of biodiversity in – situ an ex-situ conservation of biodiversity.

#### Unit - IV Natural resources and non-renewable resources

An overview of natural resources and associated problems with references to a) Forest resources b) Water resources c) Mineral resources d) Food resources e) Energy resources f) Land resources.

#### **Books Suggested**

1. H.W. Willard, LL. Merrit and J.A.Dean: Instrumental Methods of Analysis. Affiliated East-West).

2. G.H. Jeffery J. Bassett, J. Mendham and R.C. Denny. Vogel's Text Book of Quantitative Chemical Analysis (ELBS).

- 3. D.A. Skoog and D.M. West: Principles of Instrumental Analysis (Holt, Rinehart and Wilson).
- 4. J.G. Dick : Analytical Chemistry (McGraw Hill).
- 5. D. Midgley and K. Torrance : potentiometric Water Analysis (John Wiley).
- 6. Silbey, Alberty, Bawendi. Physical chemistry. Jhon-Wiley & sons. 4th edition-2006.

CHE 2	204B	Che	emistry i	n Conte	mporary	y Society	L-	3,T-1,P	-2	4	Credits			
Pre-re	quisite:	Unders	standing	of grad	uate lev	el Chem	istry							
Cours	e Objec	tives:												
						ies in Ph								
			•			ymes an		sic.						
-	To gain knowledge on composition of milk, oil, fats etc.													
• To f	Fo familiarize with different types of fuels, soils and its ingredients.													
Course	Course Outcomes: At the end of the course, the student will be able													
C	01	To acquire knowledge in pharmaceutical chemicals												
C	02	To fa	amiliariz	ze with	blood flu	uids, blo	od, enz	ymes an	d forens	sic				
C	03	To k	now abo	out ferm	entation	n, detecti	on of p	urity, be	verages					
C	04	To a	cquire k	nowled	ge on ga	seous fu	els, soi	l ingredi	ients and	d analys	is of tra	ce		
		elem	ents											
	,	Ma	apping of	of cours	se outco	mes wit	h the p	rogram	outcon	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
<b>CO1</b>	3	2	2	3	1	2	-	2	2	-	1	1		
CO2	3	1	2	3	1	2	1	_	2	2	1	_		
CO3	3	2	2	3	1	2	2	1	-	2	1	1		
CO4	3	2	3	2	1	2	1	2	_	1	1	1		

#### CHE 204B: Chemistry in Contemporary Society

#### **UNIT - I : PHARMACEUTICALS**

# **Pharmaceuticals** : Importance of quality control, drugs and pharmaceuticals, sources of impurities in pharmaceutical chemicals, analytical quality control in finished / final products, common methods of assay.

**Common drugs and their uses**: Analgesics – aspirin, paracetamol; Antheimentics – mebendazole ; Antiallergies – chlorpenneramine malleate; Antibiotics-pencillin, chloromecytin; Anti-inflammatory agents-oxyphenbutazone; **Antimalarials** – primaquine phosphate; Antituberculosists – INH; Narcotics – nicotine, morphine; Expectorants – Benadryl; Sedatives – diazepam; Vitamins – B1, B2, B6, niacin and folic acid.

#### **UNIT - II : FORENSIC AND BIOMEDICALS**

**Body fluids**: Composition and detection of abnormal level of certain constituents leading to diagnosis, sample collection and preservation of physiological fluids, analytical methods for the constituents of physiological fluids (blood, urine).

**Blood:** Estimation of glucose, cholesterol, urea, haemoglobin and bilirubin.

Urine: Urea, uric acid, creatinine, calcium phosphate, sodium, potassium and chloride.

**Enzymes**: Biological significance, assay of enzymes (pepsin, tyrasinase), vitamins (thiamine ascorbic acid, vitamin A) and harmones (progesterone, oxytocin, insulin), chemical, instrumental and biological assays to be discussed wherever necessary.

**Forensic** : General discussion of poisons with special reference to mode of action of cyanide organophosphates and snake venom, poisonous materials such as lead, mercury and arsenic in biological materials.

15 Hrs

#### **UNIT – III : FOOD AND BEVERAGES**

**Milk and milk products** : Composition, alcohol test, fermentation, dye reduction-methylene blue and resazurin tests, analysis of fat content, minerals in milk and butter, estimation of added water in milk. **Oils and fats**: General composition of edible oils, detection of purity, tests for common edible oils and groundnut oil, cottonseed oil and mustard oil, tests for adulterants like argemone oil and mineral oils, **Beverages**: Soft drinks, alcoholic drinks, tea, coffee and fruit juice, analysis of caffeine in coffee and tea, detection of chicory in coffee, chloral hydrate in toddy, food preservatives like benzoates, propionates, sorbates, bisulphites, artificial sweetners, like saccharin, dulcin and sodium cyclamate, flavours – vanillin, esters (fruit flavours) and monosodium glutamate, artificial food colourants-coal tar dyes and non-permitted colours and metallic salts, control of food quality – codex alimentarices, Indian standards.

#### **UNIT - IV : FUEL AND SOIL**

#### 15 Hrs

**Fuels** : Definition, classification and characteristics of fuels, sampling, determination of calorific value. Liquid fuels-determination of flash point, fire point, aniline point. Knocking of petrol and diesel – octane and cetere numbers carbon residue. **Gaseous fuels** : Coal gas, waste gas, producer gas, gober gas and blast furnace gas, calorific value determination by Junker's gas calorimeter, relatice merits of solid, liquid and gaseous fules. **Soil** : Ingradiants of soil-organic matter, nitrogen, sulphur, sodium, potassium and calcium, analysis of trace elements, copper, molybdenum, zinc and boron.

#### **Reference Books :**

- 1. Pharmaceutical Analysis, T. Higuchi and E.B. Hanseen, John Wiley and Sons, New York.
- 2. Quantitative Analysis of drugs, P.D. Sethi, 3rd edition, CBS Publishers, New Delhi, 1997.
- 3. Practical Clinical biochemistry methods and interpretations, R. Chawala, J.P. Brothers Medical Publishers (P) Ltd., 1995.
- 4. Laboratory manual in biochemistry, J. Jayaraman. New Age International Publishers, New Delhi, 1981.

CHE 2	205 A &				ctical I: sical Ch	emistry		5,T-1,P	-0	4	Credits		
Pre-re	quisite:	Unders	standing	of grad	uate lev	el Inorga	nic & l	Physical	Chemi	stry prac	ctical.		
Course	e Objec	tives:											
• Sepa	aration a	and dete	rminatio	on of the	e two co	mponen	t mixtu	res					
			l compl										
	iliarize with conductometric, potentiometric and redox methods of analysis rometric and pHmetric methods of analysis												
	cometric and pHmetric methods of analysis												
Course	Outcomes: At the end of the course, the student will be able												
CO1	To separate and determine the two component mixtures												
CO2	To separate and determine the two component mixtures         To acquire knowledge in the preparation of metal complexes												
CO3	To stu	dy the d	letermin	ation of	cell con	nstant an	d verifi	cation o	of Onsag	gar equa	tion, str	ength	
	of stro	ng	acid by	Titratio	n of a st	rong aci	d with a	a strong	base an	d vice v	ersa		
CO4	To get	knowle	edge on	the appl	ications	of cond	uctome	etry, pote	entiome	try, coul	lometry	and	
	pHme	try.											
		Ma	apping	of cours	e outco	mes wit	h the p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	
										0	1	2	
CO1	3	2	2	3	3	1	-	2		1	1	-	
CO2	3	2	2	3	2	2	1	-	1	-	1	2	
CO3	3	2	2	3	3	1	1	2	-	1	1	-	
CO4	3	2	2	3	2	-	1	-	1	1	-	2	

#### CHE 205 A & B: Core practical I: Inorganic & Physical Chemistry

#### I . Quantitative Analysis:

Separation and determination of two component mixtures:

- (i) Separation of Al(III) and Determination of Fe (III)
- (ii) Separation of Cu(II) and Determination of Zn (II)
- (iii) Separation of Ca(II) and Determination of Mg (II)
- (iv) Separation of Cu(II) and Determination of Ni (II)
- (v) Determination of Ferrocyanide and Ferricyanide

#### **II.** Physical Chemistry

- 1. Conductometry:
  - (a) Determination of cell constant
  - (b) Verification of Onsagar equation
  - (c) Determination of dissociation constant of a weak acid
  - (d) Titration of a strong acid with a strong base
  - (e) Titration of a weak acid with a strong base
- 2. Potentiometry:
  - (a) Titration of a strong acid with a strong base
  - (b) Titration of a weak acid with a strong base
  - (c) Redox titration
- 3. Coulometry: Estimation of Manganese
- 4. pHmetry: Strong acid, Strong base titrations.

CHE 2	206A &				actical neral Cl	I: hemistry		5,T-1,P	-0	4	Credits	5			
Pre-re	quisite:	Unders	standing	of grad	uate lev	el Orgar	nic & G	eneral C	hemistr	y practi	cal.				
Course	e Objec	tives:													
• Fam	niliarize	with tw	o comp	onent m	ixture se	eparation	n and id	entifica	tion.						
• Prep	paration	of deriv	vatives.												
• Puri	fication	by com	ponents	by diff	erent me	ethods.									
• Cali	bration	of prod	components by different methods. products by spectral methods.												
Course	e Outco	mes: A	es: At the end of the course, the student will be able												
(	C <b>O</b> 1	To fa	s: At the end of the course, the student will be able To familiarize with binary mixture separation												
(	CO2	To g	ain hanc	ls-on-ex	perienc	e in puri	fication	of the o	compon	ents, pre	paration	1 of			
		0	vatives.		1	1			1	· 1	1				
(	CO3	To g	et know	ledge al	out the	chemica	al behav	vior of d	ifferent	compor	nents and	1			
		mecl	nanisms	C						•					
(	CO4	Puri	fication	and cali	bration	of data									
						• /									
		Ma	apping	of cours	se outco	mes wit	h the p	rogram	outcon	nes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1			
										0	1	2			
CO1	3	2	2	3	1	-	1	1	-	3	3	1			
CO2	3	2	2	3	-	1	-	2	1	3	3	-			
CO3	3	2	2	3	1	1	2	1	-	2	-	2			
<b>CO4</b>	3	2	2	3	1	2		1	1	2	1	2			

#### CHE 206 A & B: Core practical II: Organic & General Chemistry

#### CHE-206 A : PRACTICAL – II : ORGANIC CHEMISTRY

Separation and Identification of two component organic mixture by systematic qualitative analysis.

#### CHE-206 B : PRACTICALS - II : GENERAL CHEMISTRY

#### **Preparation of Metal Complexes:**

- (i) Tetra(ammine) copper (II) sulphate.
- (ii) Mercury tetra( thiocyanato) cobaltate(II).
- (iii) Hexa(ammine) Nickel (II) chloride.
- (iv) Tris(acetylacetonato) Manganese (III) chloride.
- (v) Tris (ethylenediammine) Nickel (II) thiosulpha

CHE	207	H	luman V	Values a ethio	and pro cs-II	fessiona	ıl L-	3,T-1,P	-2	4	Credits	;		
Pre-re	quisite:	Unders	tanding	of Hum	nan Valu	ies and j	professi	onal eth	ics					
	e Object		_			_								
					n, family						in in	ronatio		
	neering	incs to	warus i	neurcal,	, health	care j	ororessi	onais a	na euno	cal issu	les in g	genetic		
		the in	portanc	e of so	cial ethi	ics towa	ards org	gan trad	e, huma	an traffi	c king	human		
	erstand the importance of social ethics towards organ trade, human traffic king human s violation and social disparities.													
	w about environmental ethics, ecological crises, pollution and protection of environment													
Course	e Outcomes: At the end of the course, the student will be able to													
CO1	To understand the concepts of human values, responsibilities of family values and status													
	of wor	nen in f	amily a	nd socie	ety.									
CO2	-		0		erent m			e views o	of chara	ka and s	sushruta	on		
		-			ical prac									
CO3	-		-	n social	ethics a	nd under	rstand tl	ne chara	cteristic	s of ethi	ical prol	olems		
<b>CO4</b>		agemen		montol	athias	this al t		-d agala	ciaal an					
004	10 1an				ethics, e		-		-					
		Ma	apping	of cours	se outco	mes wit	h the p	rogram	outcon	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1		
001	2		1				•		2	0	1	2		
CO1	3	2	1	3	1	2	2	2	3	1	1	1		
CO2	3	1	2	3	1	2	2	3	3	1	1	1		
CO3	3	2	1	3	-	2	1	2	2	3	-	1		
<b>CO4</b>	3	1	1	3	1	2	1	1	2	3	1	1		

#### CHE 207: ELECTIVE FOUNDATION (HUMAN VALUES AND PROFESSIONAL ETHICS-II)

**Chapter I:** Value Education – Definition – Relevance to present day – Concept of human values - Self introspection – Self-esteem. Family values-Components, Structure and responsibilities of family Neutralization of anger – Adjustability – Threats of family life – Status of women in family and society – Caring for needy and elderly – Time allotment for sharing ideas and concerns.

**Chapter II:** Medical ethics – Views of Charaka, Sushruta and Hippocratus on moral responsibility of medical practitioners. Code of ethics for medical and healthcare professionals. Euthanasia, Ethical obligation to animals, Ethical issues in relation to health care professionals and patients. Social justice in health care, human cloning, problem of abortion. Ethical issues in genetic engineering and Ethical issues raised by new biological technology or knowledge.

**Chapter III:** Social ethics – Organ trade, Human trafficking, Human rights violation and social disparities, Feminist ethics, Surrogacy/pregnancy. Ethics of media – Impact of Newspapers, Television, Movies and Internet, Business ethics – Ethical standards of business – Immoral and illegal practices and their solutions. Characteristics of ethical problems in management, ethical theories, causes of unethical behavior, Ethical abuses and work ethics.

**Chapter IV:** Environmental ethics – Ethical theory, man and nature - Ecological crisis, Pest control, Pollution and waste, Climate change, Energy and pollution, Justice and environmental health.

#### **Books for study:**

- 1. Johns S Mackenjie: A Manual of ethics
- 2. "The Ethics of Management" by Larue Tone Hosmer, Richard D. Irwin Inc.
- 3. Management Ethics Integrity at work by Joseph A. Petrick and John F. Quinn, Response Books, New Delhi.
- 4. "Ethics in Management" by S.A. Shelekar, Himalaya Publishing House.
- 5. Harold H. Titus: Ethics for Today
- 6. Maitra, S.K: Hindu Ethics
- 7. William Lilly: Introduction to Ethics
- 8. Sinha: A Manual of Ethics
- 9. Manu: Manava Dharma Sastra or the Institute of Manu: Comprising the Indian System of Duties: Religious and Civil (ed) G.C. Haughton.
- 10. Sasruta Samhita: Tr. KavirajKunjanlal, KunjanlalBrishagratha, Chowkamba Sanskrit Series, Vol I,II and III, Varanasi, Vol I PP, 16-20, 21-32 and 74-77 only.
- 11. Charaka Samhita: Tr. Dr. Ram Karan Sarma and Vaidya Bhagavan Dash, Chowkambha Sanskrit Series Office. Varanasi I, II, III Vol I PP 183-191.
- 12. Ethics, Theory and Contemporary Issues. Barbara Mackinnon, Wadsworth/Thomson Learning, 2001.
- 13. Text Book for Intermediate First Year Ethics and Human Values, Board of Intermediate Eduction Telugu Academy, Hyderabad.
- 14. I.C. Sharma Ethical Philosophy of India. Nagin& Co Julundhar.

#### (Mandatory Core)

CHE-I	PC-301		Ph	ysical (	Chemist	try III	L-	5,T-1,P	-0	4	Credits	
Pre-requisite: Understanding of graduate level Physical Chemistry												
Cours	se Objec	tives:										
• Learn applications of Group Theory, symmetry criteria and symmetry restrictions.												
• Applications of X-ray Diffraction and Electron Diffraction on solid state chemistry.												
• Familiarize with the applications of Microwave spectroscopy, infrared spectroscopy and Raman												
-	ectroscop	•		4 of T			of mol				Elementi	
• Get knowledge on concept of Thermodynamics of polymer dissolution and Flory-Huggins theory of polymer solutions												
theory of polymer solutions.												
Course Outcomes: At the end of the course, the student will be able to												
CO1	To know the determination of Character Co-ordinate of C ₂ V point group based on 3N											
	Coordinates and to learn the Mutual exclusion Principle.											
CO2	To learn the Bragg conditions-Miller Indices- Laue method, Bragg method, Debye Scherrer											
GOA	method of X-ray structural analysis of crystals.											
CO3												
<u>CO1</u>	selection rules and Vibrational- rotational Raman spectroscopy.											
CO4	To study the concepts on heat of dissolution, regular solution theory, Hildebrand solubility parameter, concept of Flory-Huggins theory of polymer solutions											
	soludili	ly paran	neter, co	oncept o	I Flory-	Huggins	stneory	of poly	mer son	mons		
Mapping of course outcomes with the program outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	2	2	3	-	2	-	-	-	-	2	
CO2	3	2	2	3	2	2	-	-	-	2	-	-
CO3	3	2	2	3	2	2	-	-	-		-	2
CO4	3	2	2	3	-	2	_	-	-	2	-	2

#### CHE-PC-301 CORE-THEORY PHYSICAL CHEMISTRY III

#### **UNIT-I Applications of Group Theory**

Construction of reducible and irreducible representations, Determination of Character Co-ordinate of  $C_2V$  point group based on 3N Coordinates. Standard reduction formula, Determination of normal modes of vibrations of SO₂, NH₃, POCl₃, PtCl₄²⁻·H₂O₂ molecules. Mutual exclusion Principle, Direct Product, Accidental Degeneracy and Fermi resonance Group Theory and Spectroscopy: IR Spectral activity of NH₃ molecule, selection rules, symmetry Criteria for optical activity, symmetry restrictions on dipole moments, symmetry and stereo isomerism. Prediction of IR and Raman Spectral activity of H₂O and CO₂.

#### **UNIT-II: X-ray Diffraction:**

(A) Solid State Chemistry Dislocation of Solids, Schottky and Frenkeldefects, insulaters, a,d semiconductors, Band theory of solids, solid state reactions.

(**B**) Bragg conditions-Miller Indices- Laue method, Bragg method, Debye Scherrer method of X-ray structural analysis of crystals. Index reflections, identification of unit cells from systematic absences in diffraction pattern- structure of simple lattices and X-ray intensities- structure factor and its relation to intensity and electron density- Description of procedure for X-ray structure analysis (NaCl and KCl).

#### 15 Hrs

(C) Electron Diffraction: Scattering intensity Vs scattering angle, Wierlequation, and its importance. Measurement techniques, Elucidation of structures of simple gas phase molecules, Low energy electron diffraction (LEED) for the study of surfaces.

#### **UNIT-III: SPECTROSCOPHY**

**Microwave spectroscopy:** classification of molecules, rigid rotator model, effect of isotopic substitution on the transition frequencies, intensities- stark effect.

**Infrared spectroscopy:** Linear harmonic oscillator, zero point energy, anharmonity, Mores potential energy diagram, fundamental and overtone transitions, hot bands and combinations bands. Vibration-rotation spectroscopy, PQR branches, selection rules, factors affecting the band positions and intensities for IR region. **Raman spectroscopy:** Classical and quantum theories of Raman effect, pure rotational, pure vibrational Raman spectroscopy, selection rules, mutual exclusion principle, resonance Raman spectroscopy and coherent antistokes Raman spectroscopy. Vibrational- rotational Raman spectroscopy.

#### **UNIT-IV: POLYMER SOLUTIONS**

Thermodynamics of polymer dissolution, effect of molecular weight on solubility, solubility of crystalline and amorphous polymer, heat of dissolution, regular solution theory, Hildebrand solubility parameter, Flory-Huggins theory of polymer solutions, conformational entropy, osmotic pressure and viscosity of polymer solutions. Molecular weight determination by light scattering, ultra-centrifugation and sedimentation equilibrium method. Liquid Crystals- synthesis and applications

#### **Books Suggested**

- 1. F.A. Cotton : Introduction to Group theory for chemists.
- 2. Geroge Davidson Elsevier : Introductory Group Theory for Chemists.
- 3. Gurdeep Raj, Ajay Bhagi&Vinod Jain : Group Theory and Symmetry in Chemistry
- 4. Instrumental methods of analysis M.H. Willard, Meritt Jr. and J.A. Dean
- 5. Principles of instrumental analysis Skoog and West
- 6. F. W. Billmeyer, Jr.: Text Book of Polymer Science. Wiley Interscience.
- 7. V. R. Gowariker, N. V. Viswanathan, Jayadev Sreedhar.: polymer Science. New Age international Publishers.

#### 15 Hrs

(Mandatory Core)												
CHE-	PC 30	2	0		Spectro		nd	L-5,T-1	l,P-0	4	Credit	s
					pplication							
Pre-requisite: Understanding of Organic Spectroscopy and Applications												
Course Objectives												
<ul><li>Course Objectives:</li><li>Familiarize with the instrumentation of UV and visible spectroscopy, applications of</li></ul>												
	• Familiarize with the instrumentation of UV and visible spectroscopy, applications of identifying the structures of the molecules.											
<ul> <li>Understand IR spectrometry and applications to ascertain the fundamental groups by observing</li> </ul>												
absorption bands												
• Study on the applications of NMR spectroscopy in ascertaining the stereochemical structures of												
the molecules.												
• Understand the working principle and fragmentation rules of different molecules in Mass												
spectroscopy Course Outcomes: At the end of the course, the student will be able to												
Course Outcomes. At the end of the course, the student will be able to												
CO1	To get experience to calculate $\lambda$ max values for dienes, enones, polyenes, aromatic and										and	
	heteroaromatic compounds.											
CO2	To familiarize with the absorption bands of the molecules with specific functional groups										groups	
CO3	To interpret the data to different types of protons and carbons present in a molecule so as										e so as	
	to ascertain the structure of the molecule based on the data provided											
<b>CO4</b>	Тоа	cauire	knowle	dae abo	ut specif	ic frage	nentatio	n rule	of diffe	rent mol		which are
04	To acquire knowledge about specific fragmentation rules of different molecules which are unique.										villen are	
Mapping of course outcomes with the program outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
GOI									/			
CO1	3	2	2	3	2	2	-	-	-	2	2	-
CO2	3	2	2	3	2	2	-	-	-	2	2	-
CO3	3	2	2	3	2	2	-	-	-	2	2	2
CO4	3	2	2	3	2	2	_	_	_	2	2	_
004	5	-	-	5	-	-				-	-	

#### **CHE-PC 302: CORE THEORY: ORGANIC SPECTROSCOPY AND APPLICATIONS**

#### UNIT-I: ULTRAVIOLET AND VISIBLE SPECTROSCOPY:

Various electronic transitions (185-800 nm), effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, conjugated polyenes. Fisher-Woodward rules for conjugated dienes and carbonyl compounds, ultraviolet spectra of aromatic and heterocyclic compounds. Steric effect in biphenyls.

#### **UNIT – II: INFRARED SPECTROSCOPY**

Instrumentation and sample handling. Characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ether, phenols and amines. Detailed study of vibrational frequencies of carbonyl compounds (ketones, aldehydes, esters, amides, acids, anhydrides, lactones, lactams and conjugated carbonyl compounds). Effect of hydrogen bonding and solvent effect on vibrational frequencies, overtones, combination bands and fermi resonance, FT-IR

#### 15Hrs

#### UNIT -III: NMR SPECTROSCOPY:

¹**H NMR spectroscopy:** Magnetic properties of nuclei, Principles of NMR. Instrumentation, CW and pulsed FT instrumentation, equivalent and nonequivalent protons, enantiotopic and diastereotopic protons, Chemical shifts, factors affecting the chemical shifts, electronegativity and anisotropy, shielding and deshielding effects, Signal integration, Spin-spin coupling: vicinal, germinal and long range, Coupling constants and factors affecting coupling constants.

Applications of ¹H NMR spectroscopy: Reaction mechanisms (cyclic bromonium ion, electrophilic and nucleophilic substitutions, carbocations and carbanions), E, Z isomers, conformation of cyclohexane and decalins, keto-enol tautomerism, hydrogen bonding, proton exchange processes (alcohols, amines and carboxylic acids), C-N rotation. Stereochemistry, hindered rotation, Karplus curve variation of coupling constant with dihedral angle. Simplification of complex spectra, nuclear magnetic double resonance, contact shift reagents, nuclear Overhauser effect (NOE).

¹³C NMR spectroscopy: General considerations, chemical shift (aliphatic, olefinic, alkyne, aromatic, heteroaromatic and carbonyl carbon), coupling constants. Two dimensional NMR spectroscopy-COSY.

#### UNIT-IV: MASS SPECTROMETRY

Introduction, ion production, type of ionization, EI, CI, FD, and FAB-factors affecting fragmentation, ion analysis, ion abundance. Mass spectral fragmentation of organic compounds, common functional groups, molecular-ion peak, metastable peak, Mc. Lafferty rearrangement. Nitrogen rule, isotope labeling. High resolution mass spectrometry, Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.

#### **Books suggested:**

- 1. Organic spectroscopy, W. Kemp 5th Ed, ELBS
- 2. Spectroscopy of organic compounds, RM Silversteen and others, 5th Ed, John Wiley
- 3. Spectroscopy of organic compounds, P.S. Kalsi, Wiley, 1993.
- 4. NMR in chemistry-A multi nuclear introduction, William Kemp, Mc Millan, 1986.
- 5. Spectroscopic methods in Organic chemistry, DH Williams & I Flemmi

#### 15Hrs

					(Mand	latory C	ore)							
CHE-P	C-303A		Org	anic Ch	emistry	7 III	Ι	3,T-1,	P-2	4	Credits			
Pre-re	quisite:	Unders	standing	of Orga	anic Che	emistry								
			Course (				~~~**		a	asia M	<b>b i</b>			
	eochemi		ie applie	cations	of diffe	rent rea	gents in	organi	c synth	esis, M	echanisi	ns and		
							of organ				:			
	hesis.	topoer	ty, proc	infanty.	, auxilia	ary and	reagen	t-contro	med m	ethous	in asyn	imetric		
				oxidizing	g and re	educing	agents	in orgai	nic synt	hesis w	ith regi	on and		
		olled pr mes: A		d of the	course,	the stud	ent will	be able	to					
CO1														
	To familiarize with the specific functions of the reagents particularly diazomethane, N-bromosuccinimide, Ziegler Natta catalyst, 1,3-dithianes and Merrifield resin in the synthesis of a variety of complex molecules. To gain knowledge in the synthesis of different organometallic reagents and also stereo													
CO2							rent org					stereo		
CO3	To ur contro	derstan lled rea	d diaste ctions	ereosele	ctivity,	stereose	electivity	y and s	ubstrate	e contro	olled au	xillary		
CO4		so the r					hich cau nd comp							
		Ma	apping	of cours	se outco	mes wi	th the p	rogram	outcor	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	2	3	2	2	-	2	-	2	2	-		
CO2	3	2	2	3	2	2	-	2	-	-	2	-		
CO3	3	2	2	3	2	2	-		-	-	-	-		
CO4	3	2	2	3	2	2	-	2	-	2	2	-		

#### CHE-PC-303A Core-Theory Organic Chemistry III

#### **UNIT I: REAGENTS IN ORGANIC SYNTHESIS**

Use of the following reagents in organic synthesis: Anhydrous AlCl₃, Boran trifluoride, N-Bromosuccinimide, Diazomethane, Dicyclohexylcarbodiimide, Lead tetraacetate, Zieglar-Natta catalysts, DDQ, Dithianes, Merrifield resin.

#### **UNIT-II: ORGANOMETALLIC REAGENTS**

Synthesis and applications of Grignard reagents, Organolithium, Zinc, Copper, Mercury, Palladium and Rhodium compounds in Organic Synthesis, Homogeneous catalytic hydrogenation and hydroformylation reactions

#### **UNIT III: ASYMMETRIC SYNTHESIS**

**Topocity - Prochirality**- Substrate selectivity - Diastereoselectivity and enantioselectivity-Substrate controlled methods-use of chiral substrates - examples

Auxiliary controlled methods-Use of chiral auxiliaries-Chiral enolates-alkylation of chiral imines -

### 15 Hrs

15 Hrs

#### Stereoselective Diels-Alder reaction

**Reagent controlled methods**-Use of chiral reagents-Asymmetric oxidation-Sharpless epoxidation-Asymmetric reduction-Use of lithium aluminium hydride and borate reagents.

#### UNIT IV: METHODS OF ORGANIC SYNTHESIS

#### 15 Hrs

i). Oxidations: (a) Alcohols to carbonyls-Chromium (iv) oxidants-Dimethylsulfoxide oxidation, periodate xidation, Oppenauer oxidation, oxidation with manganese dioxide, oxidation with silver carbonate (b) Alkenes to epoxides-peroxide induced epoxidations. (c) Alkenes to diols-oxidation with potassium permanaganate, osmium tetraoxide, Prevost reaction (d) Ketones to esters-Bayer-Villiger oxidation (e) Oxidative bond cleavage-cleavage of alkenes by transition metals. (f) Oxidation of alkyl or alkenyl fragments-selenium dioxide and chromium trioxide oxidations.

**ii).** *Reductions* : Reduction with lithium aluminium hydride, sodium borohydride, alkoxides, bismethoxy ethoxy aluminium hydride, Boran aluminium hydride and derivatives-catalytic,hydrogenationdissolving metal reductions, Non-Metallic reducing agents including enzymatic and microbial reductions.

#### **Suggested Books**

- 1. Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, John Wiley.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J. Sundberg, Plenum.
- 3. Structure and Mechanism in Organic Chemistry, C.K. Inglod, Cornell University Press.
- 4. Organic Chemistry, R.T Morrison and R.N. Boyd, Prentice Hall.
- 5. Name reactions and reagents in organic synthesis, B.P. Muway and M.G Ellord, John Wiley.
- 6. Principles of Organic Synthesis, R.O.C Norman and J.M Coxon, Blackie Academic & Professional.
- 7. Reaction Mechanism in Organic Chemistry, P.S. Kalsi, New Age International.
- 8. Principles of organometallic chemistry, P. Powell, ELBS.
- 9. Organo transition metal chemistry-Applications to organic synthesis, S.G. Davis, Pergmon.
- 10. Stereochemistry to Organic Compounds, D. Nasipuri, New Age International.
- 11. Stereochemistry, P.S. Kalsi, Wiley Eastern.

CHE-I	PC- 304		0	-	oscopy ls of An		L-	5,T-1,P	-0	4	Credits				
Pre-ree	quisite:	Unders	standing	of Basi	c Inorga	unic Spe	ctroscop	by and T	'hermal	Method	s of An	alysis			
• Gain mater • Famil	ials iarize w	dge on vith basi	cs of M	ossbaue	ds of an or and Nuclear sp	QR spec	ctroscop	у.			s to inc	organic			
		the ESR instrumentation, various applications and photoelectron spectroscopy.													
-	Outcomes :At the end of the course, the student will be able														
CO1	To know about TG and DTA and applications of different scanning calorimetry.														
CO2	To gain knowledge on Doppler shift and chemical shift, basic principles and applications of NQR spectroscopy.														
CO3			ero fie on and a	-	itting ons of E		ramer's	degen	eracy,	relaxat	ion pro	ocesses,			
CO4			ut photo / photoe			and Koo	pmans (	theorem	and im	part the	applica	tions of			
		Ma	apping	of cours	se outco	mes wit	th the p	rogram	outcon	nes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2			
CO1	3	2	2	3	-	2	-	-	-	-	2	-			
CO2	3	2	2	3	2	2	-	-	-	2	2	-			
CO3	3	2	2	3	2	2	-	-	-	2	-	-			
CO4	3	2	2	3	2		-	-	-	-	2	-			

#### CHE-PC- 304: Inorganic Spectroscopy and Thermal Methods of Analysis

#### **UNIT -I: THERMAL METHODS OF ANALYSIS**

#### 15 Hrs

15 Hrs

15 Hrs

Thermo gravimetry –Principle, Factors affecting the results, instrumentation. Application with special reference to CuSO₄5H₂O, CaC₂O₄ 2H₂O. Different thermal analysis – principle, instrumentation, difference between TG and DTA, applications with special reference to the clays and minerals.Different scanning calorimetry –principle, and applications to inorganic materials like chlorates and perchlorates, ammonium nitrate.

#### UNIT –II: MOSSBAUER SPECTROSCOPY and NQR

**Mossbauer spectroscopy:** Basic principles, Recoil energy, Doppler shift, Chemical shift, Quadrapole effects, Magnetic effects. Instrumentation, spectral parameters and spectrum display.

Aapplication of the technique to the studies of (1) bonding and structures of  $Fe^{2+}$  and  $Fe^{3+}$  compounds, (2)  $Sn^{2+}$  and  $Sn^{4+}$  compounds.

**NQR spectroscopy:** Basic principles of NQR spectroscopy, quadrupole nuclei, quadrupole moments, electric field gradient, coupling constant and applications.

#### UNIT –III: ELECTRON SPIN RESONANCE SPECTROSCOPY

Basic Principles, Hyper fine splitting, Factors affecting the 'g' value. Isotropic and anisotropic hyperfine

coupling constants, Hamiltonian and spin densities. Zero field splitting and Kramer's degeneracy, Relaxation process and line widths. Instrumentation and Applications. The EPR spectrum of bis(salicylidimine)-copper(II) complex, study of inorganic free radicals, biological applications of Electron Spin Resonance (Study of free radicals and Iron-sulfur proteins)

#### UNIT -- IV: PHOTO ELECTRON SPECTROSCOPY

#### 15 Hrs

Photoelectric effect, Koopmans's theorem, ionization energy.

**X-ray photoelectron spectroscopy (ESCA):** Principle, Binding energies, Chemical shift, Applications of XPES to Qualitative analysis, to surface studies and structural analysis. Ultraviolet photoelectron spectroscopy- Principle, application of UPES in studying the molecular orbitals of  $O_2$  and  $N_2$  molecules. Block diagram of photoelectron spectrophotometer. Sources of radiation, detectors. Auger spectra – Principle, Applications of Auger spectra to surface studies and use of Auger spectra as a finger print tool.

#### **Books Suggested**

- 1. F.A. Cotton and G. Wilkinson, Advanced In-organic chemistry VI Edition, 1999. John wiley & sons. Inc., New York.
- 2. J.E. Huheey, E.A. Keiter and R.L. Keiter: Inorganic Chemsitry, Principles of Structure and Reactivity (4th Ed.) (Addison-Wesley)
- 3. Gary Wulfsberg: Inorganic Chemistry (5th Ed. (Viva Books)
- 4. J.D. Lee: Concise Inorganic Chemistry (Blackwell)
- 5. W.L. Jolly: Modern Inorganic Chemsitry (McGraw-Hill)
- 6. R.L. Carlin: Magneto-chemsitry (Springer-Verlag)
- 7. R.L. Dutta and A. Syamal: Elements of Magnetochemsitry (Affiliate East-West).
- 8. K. Hussain Reddy Text book of Bioinorganic chemistry

CHE F	PC 304			С	ore pra	ctical I:		L-	5,T-1,P	-0	4	Credits			
						troscop									
Dro ro	quigita	I In				ds of an		Droot	ical						
Pre-re	quisite:	Un	luers	tanding	of morg		hemistry	- Pract	Ical.						
	e Objec														
						rent read									
	Flame photometry to determine different cations Familiarize with conductometric titrations of mixtures														
• Fam	iliarize	wit	n conductometric titrations of mixtures												
Cole	orometr	ic e	stim	timation of different molecules.											
Course	e Outco	tcomes: At the end of the course, the student will be able													
(	CO1     To study chemical kinetics of homogeneous solutions														
(	CO2			gain k tometry		ge on	the det	erminat	tion of	differe	nt catio	ons by	flame		
(	CO3		То	underst	and the	principl	e and wo	orking a	spects o	of condu	ctometr	ic titrati	ons		
(	CO4		То	acquire	knowle	dge on t	the imple	ementat	ion of c	olorome	etric esti	mations			
			Ma	apping	of cours	e outco	mes wit	h the p	rogram	outcon	nes				
	PO1	P	02	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3		-	-	3	-	2	3	2	-	-	1	-		
CO2	3		2	2	3	2	2	3	2	-	1		2		
CO3	3		-	-	3	-	2	-	2	-	-	-	-		
<b>CO4</b>	3		2	2	3	_	-	_	2	-	1	-	2		

#### CHE : PC-304: Practicals (Core & Gen.)

#### **1. Chemical Kinetics:**

- a) Study of the kinetics of halogenations of acetone.
- b) Determination of activation energy of reaction between iodide and Persulphate
- c) Determination rate constant of oxidation of iodide ion by persulphate ion and study the effect of neutral salt (KCl).

#### 2. Flame Photometry:

- a) Determination of Na
- b) Determination of K
- c) Determination of Cu

CHE PO	C 305A	Che	mother	apy and	l Drug	Analysi	s L-	5,T-1,P	-0	4	Credits	}		
Pre-re	quisite:	Unders	tanding	of Cher	nothera	py and I	Drug Ar	nalysis						
Course	e Objec	tives:												
• (	Gain kno	owledge	e on che	mothera	py and	analysis	of drug	<b>5</b> .						
• /	Analysis	s of drug	gs chem	ically ar	nd biolo	gically.								
Course	e Outco	mes: A	t the end	d of the	course,	the stud	ent will	be able						
	TT 1	1	1 1	· (* .	• 1	.1	1							
CO1	To kno	ow abou	it the cla	assificat	ion and	synthes	is of dru	igs.						
CO2	To fan	To familiarize with the qualitative and quantitative analysis of drugs.												
CO3														
CO4														
		Ma	apping	of cours	se outco	mes wit	h the p	rogram	outcon	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
C01	3			3		2	3	2			1			
CO2	3	2	2	3	2	2	3	2		1		2		
CO3														
CO4														

# CHE PC 305A: (SKILL ORIENTED COURSE : THEORY) : CHEMOTHEROPY AND DRUG ANALYSIS

#### **UNIT-I: Chemotherapy**

Definition, History, and Evolution of Chemotherapy; Discovery, Classification, Nomenclature, Mode of action and synthesis of the following classes of compounds with special references to specific drugs mentioned under each class

- a. Sulfa drugs- Sulfanilamide and Sulfamethoxazole.
- b. Antibacterials
- c. Lactum group of antibiotics Penicillin, Ampicillin and Amoxycillin.
- d. Cephalosporin-C and Ciprofloxacin.
- e. Anticancer drugs 5-Flurouracil, Methotrexate.
- f. Antifungals Griseofulvin
- g. Antimalarials Chloroquin

#### **UNIT-II: Chemical and Biochemical analysis of Drugs**

Qualitative and Quantitative Analysis of drugs: Uses of IR, UV, GLC and HPLC methods.

Drug Assay by Biochemical Analysis – ELISA (Cortisol, alcohol, opiates).

Radio Immuno Assay (RIA) – Enalapril, Insulin; Kidney, Lungs and Liver function tests; Use of isotopes in the Bioanalysis of drugs and in drug design programmes.

#### **Book Suggested**

- 1. Medicinal Chemistry and Pharmaceutical Chemistry Harikishan Singh and Kapur
- 2. Medicinal Chemistry and Biochemistry R.L.Nath
- 3. Introduction to Medicinal Chemistry Patrick
- 4. The Organic Chemistry of Drug Synthesis Vols. 1-6 Ledneicer Top drugs top synthetic routes John Saunders
- 5. Medicinal Chemistry Ashutoshkar
- 6. Synthetic Organic Chemistry and Drugs Gurideep R Chetwal
- 7. Biochemistry Harper, Conn & Stumpf, Lehninger
- 8. Biochemistry Western Jodd
- 9. Biochemistry Cann & Stumpf
- 10. Bergers Medicinal Chemistry Vols. 1-5 Manfred E. Wolf
- 11. Introduction to drug design Siverman
- 12. Biochemical approach to Medicinal Chemistry Thomas Nogrady
- 13. Prinicples of Medicinal chemistry William Foye
- 14. Text book of organic medicinal and pharmaceutical chemistry Delgrado and William A
- 15. Industrial Microbiology Casida

CHE P	C 305B	Inst	rument	al Meth	ods of A	Analysis	, L-	3,T-1,P	-2	40	Credits			
Pre-re	quisite:	Unders	tanding	of Instr	umental	Method	ls of An	alysis P	ractical					
Cou	ırse Ob	jectives	:											
• ]	Familiar	ize with	n conduc	ctometri	c titratio	ons of m	ixtures							
• (	Coloron	netric es	timatior	n of diff	erent mo	olecules								
Course	e Outco	mes: A	t the end	d of the	course,	the stude	ent will	be able						
CO1	To und	To understand the principle and working aspects of conductometric titrations												
CO2	To acq	uire kno	owledge	on the	impleme	entation	of colo	orometri	c estima	tions.				
CO3														
CO4														
		Ma	apping o	of cours	se outco	mes wit	h the p	rogram	outcon	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	2	3	-	-	-	-	-	2	-	2		
CO2	3	2	2	3	3	2	-	-	-	2	2	2		
CO3														
CO4														

#### CHE : PC-305 (B) : Practicals (Skill Oriented Course)

- 1. <u>Conductometry:</u>
  - a) Titration of mixture of halides
  - b) Titration of mixture of HCl+HOAC
  - c) Saponification of an ester
- 2. Colorimetry:
  - a) Estimation of Manganese
  - b) Estimation of Iron
  - c) Estimation of Phosphate
  - d) Titration of copper Vs EDTA

CHE I	PC 306		Spectr	al Tech	niques		L-	5,T-1,P	-0	4	Credits	
Pre-re	quisite:	Unders	tanding	of Spec	tral Tec	hniques						
• F id • U	dentifyi Jndersta bservin	ize with ng the st nd IR g absorp	h the in tructures spectro ption bar	s of the metry ands.	molecul and app	of UV les. lication ic absor	s to as	certain	the fur			
• T	•	nd the v				ragment				molecul	es in Ma	ISS
Course	e Outco	mes: A	t the end	d of the	course,	the stud	ent will	able				
CO1	To kno	w the ba	asic prin	ciples o	f spectro	oscopy.						
CO2			e with echniqu		nalysis	of vari	ious fu	nctional	group	os by i	using d	lifferent
CO3	To Unc	lerstand	the app	lication	s of AA	S.						
CO4	To gair functio	nal grou	ips.		-	ral fragi				-	s and co	ommon
]	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1
		1.52			1.00				1.07	1 0 1 0		2
CO1	3	-	-	3	-	2	3	2	-	-	1	-
CO2	3	2	2	3	2	2	3	2	-	1	-	2
CO3	3	2	-	2	2	-	2	-	-	-	1	-
CO4	3	2	2	3	-	2	-	-	-	1	-	2

#### CHE : PC : 306(A): (OPEN ELECTIVE) SPECTRAL TECHNIQUES

#### **UNIT – I: ULTRAVIOLET AND VISIBLE SPECTROSCOPY**

Various electronic transitions (185-800nm.), Beer-Lambert Law, effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, Fieser-Woodward rules for conjugated dienes and carbonyl compounds

#### **UNIT – II : INFRARED SPECTROSCOPY**

Instrumentation and sample handling, characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ethers, phenols, amines, ketones, aldehydes, esters, amides, acids and anhydrides. Effect of hydrogen bonding.

#### UNIT – III:ATOMIC ABSORPTION SPECTROSCOPY: FLAME AAS: 15 Hrs

Principle, Instrumentation – Sources of radiation (HCL and EDL), Different types of burners, Interferences- Physical, Chemical, spectral and back ground correction, and methods of minimization GF AAS: Principle and technique –Comparison between Flame AAS and furnace AAS, Applications of AAS, Comparison between Atomic Absorption & Flame Photometry.

#### 15 Hrs

#### **UNIT -IV: MASS SPECTROMETRY**

# Principle, instrumentation, different methods of ionization, EI, CI, FD and FAB, Mass spectra-molecular ion, base peak, meta-stable peak, nitrogen rule and Mc Lafferty rearrangement. Mass spectral fragmentation of organic compounds and common functional groups. Normal and branched alkanes, alkenes, cycloalkanes, benzene and its derivatives, alcohols and phenols, ethers, aldehydes and ketones, carboxylic acids and their derivatives , amines and nitro compounds. Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.

#### **Books Suggested:**

- 1. Organic spectroscopy, W. Kemp 5th Ed, ELBS .2.
- 2. Spectroscopy of organic compounds, RM Silversteen and others 5th Ed, John Wiley 1991
- 3. Spectroscopy of organic compounds, PS Kalsi, Wiley, 1993
- 4. NMR in chemistry A Multi nuclear introduction, William Kemp, Mc Millan 1986
- 5. Spectroscopic methods in Organic Chemistry, DH Williams & I Flemmi TMH . 2005

CHE I	PC 306	Chr	omatog	raphic	Techni	ques	L-	5,T-1,P	-0	40	Credits		
Pre-re	quisite:	Unders	tanding	of grad	uate leve	el Chror	natogra	phic Teo	chniques	s			
Cours	e Objec	tives:											
• Fam	niliarize	with Cl	assificat	tion of C	Chromat	ographi	c metho	ds.					
• Und	lerstand	Demon	stration	experin	nent in T	ГLC.							
	ly on the			0				romatog	raphy (l	HPLC).			
• Und	lerstand	erstand the working principle of gas chromatography.											
Cours	e Outcomes: At the end of the course, the student will able to												
CO1	To know the stationary and mobile phases in chromatographic techniques.												
CO2	To familiarize applications of different chromatographic methods.												
CO3	To Und	erstand	the prin	ciple of	chroma	atograph	ic techn	iques.					
CO4	To gain	knowle	edge on	the nori	nal phas	se and re	everse p	hase.					
		Ma	apping	of cours	se outco	mes wit	h the p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	
												2	
CO1	3	-	-	3	-	2	3	2	-	-	1	-	
CO2	3	2	2	3	2	2	3	2	-	1	-	2	
CO3	3	2	-	2	2	-	2	-	-	-	1	-	
CO4	3	2	2	3	-	2	-	-	-	1	-	2	

#### **CHE PC 306 : Chromatographic Techniques**

**Unit** –**I:** Introduction - Classification of Chromatographic methods – Column chromatography-Adsorption phenomenon: Nature of adsorbents-Solvent systems-Differential migration-Separation of mixture of o-/p-nitro anilines (A demonstration experiment).

**Unit** –**II:** Thin-Layer Chromatography (TLC)-Coating materials and preparation of TLC plates-Solvents for development-Detection of compounds in TLC-  $R_f$  values in TLC-Applications of TLC in chemistry-Preparative TLC – Demonstration experiment in TLC.

**Unit** –**III:** High-Performance Liquid Chromatography (HPLC) - Application of HPLC- HPLC instrument-Stationary phases in HPLC-Normal and reversed phase HPLC: A comparison- Normal phase HPLC: Principle-Retention times in Normal and reversed phase HPLC- Reversed phase HPLC: Principle.

**Unit** –**IV:** Gas-Liquid Chromatography- Instruments for Gas-Liquid Chromatography- Gas-Chromatographic Columns and the Stationary Phase- Application of Gas-Liquid Chromatography- Gas-Solid Chromatography.

#### **Reference Books:**

- 1. Analytical chemistry: G L David Krupadanam, D. Vijaya prsad, K. Varaprasad Rao, KLN Reddy, C. Sudhakar.
- 2. Analytical chemistry: Skoog West Holler.
- 3. Modern Analytical Chemistry : David Harvey DePauw University.
- 4. J.G. Dick. Analytical Chemistry, Mc Grraw Hill, New Delhi, (1973).

(Mandatory Core)

CHE-P	C- 401		Ele	ectroche	emistry		L-	5,T-1,P	-0	40	Credits			
Pre-re	quisite:	Unders	standing	of Elec	trochem	nistry								
Cours	e Objec	tives:												
• Study	/ industr	ial elect	trochem	istry, co	orrosion	and met	thods of	prevent	ion					
• Learr	n about e	electrocl	hemical	batterie	s and ce	ells and t	their per	formand	ce					
					capillar				okineti	c effect				
• Fami	liarize p	olarogra	aphy tec	hniques	and che	emical p	assivity							
Cours	e Outco	omes :A	t the end	d of the	course,	the stud	ent will	be able	to					
CO1														
			osion pro											
CO2	Learn a	bout elec	ctrochem	ical Batt	eries, fue	el cells a	nd nickel	-cadmiu	m batter	ies.				
CO3	Underst potentia		trical dou	uble laye	er system	s, sedim	entation	potential	, null po	ints of m	etals and	l zeta		
CO4	Calcula	te electro	ochemica	ıl parame	eters; fan	niliarize	mixed lig	gand syst	ems and	reversib	le syster	ns.		
	1	Ma	apping	of cours	se outco	mes wit	th the p	rogram	outcon	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	3	3	3	2	-	2	-	-	1	2		
CO2	3	3	3	3	2	-	-	2	-	2	-	3		
CO3	3	3	3	3	3	-	-	2	-	-	-	2		
CO4	3	3	3	3	-	2	-	-	-	-	-	3		

#### CHE PC-401: CORE THEORY: ELECTROCHEMISTRY

#### **UNIT-I: Industrial Electrochemistry**

Deposition of metals, Factors influencing physical nature of electrodeposited metals - current density, concentration of electrolyte, temperature, colloidal matter, electrolyte and basis metal. Throwing power, simultaneous discharge of cations. Separation of metals by electrolysis. Electrochemical passivity. Passivity and current density. Chemical passivity. Theories of passivity. Mechanical passivity. The corrosion of metals. Hydrogen evolution type of corrosion, corrosion in presence of depolarizer. Differential oxygenation corrosion. Methods of corrosion protection.

#### **UNIT- II: Electrochemical Devices:**

Batteries- their performance - characteristics - considerations in the selection and applications, Chemistry of primary batteries – Zinc – Carbon, Mercuric oxide, silver oxide and lithium cells – Solid electrolyte cells.

Chemistry of secondary batteries – Lead acid, Nickel cadmium batteries, Water activated batteries, Fuel cells – Their thermodynamics- performance

#### **UNIT-III: Electrokinetic's and Electro capillary phenomena:**

Electrical double layer, Helmholtz – Perrin, Gouy – Chapman and Stern theories of electrical double layer. Lipmann equation.

Electrokinetic effect: Electro osmosis, Electrophoresis, streaming potential, sedimentation potential and their relation to zeta potential. Determination of zeta potential from electrophoresis measurements. Tiselius apparatus. Electro capillary curves, Null points of metals and their experimental determination.

#### 15 Hrs

#### 15 Hr

#### **UNIT-IV: Advances in Polarography:**

#### 15 Hrs

#### (A) Polarography of Metal Complexes

Reversible, Diffusion-controlled systems, Determination of Formulae and Stability, Constants of Complexed Metal Ions, Determination of Stability Constants and Coordination Numbers of metal complexes, Calculation of Individual Complex, Stability Constants, Mixed Ligand Systems- the Method of Schaap and Mcmasters

#### (B) Polarography of organic compounds

Structural Effects, Nature of Electroactive group, Steric Effects, substituent Effects.

#### **Books suggested:**

- 1. S. Glasstone. An introduction to Electrochemistry. Affiliated East-West Press Pvt. Ltd.
- 2. P.T.K. Kissinger, W.R. Heinemann. Laboratory Techniques in Electro analytical Chemistry, Marsal Debber, Inc.
- 3. Willard, Merit. Instrumental methods of analysis, Welowarth Publiching Co.,
- 4. L. Antropov. Theoretical Electrochemistry. Mir Publications.
- 5. Silbey, Alberty, Bawendi. Physical chemistry. Jhon-Wiley & sons. 4th edition-2006.
- 6. V.S. Bagotsky. Fundamental of Electrochemistry. Jhon Wiley & Sons. 2nd editions-2006.
- 7. Introduction to polarography and allied Technique by Dr.K. Zutshi

					(N	/Iandato	ry Core	e)					
CHE-	PC 40	2 T	hermo	lynami	ics, Polyı	mers an	nd	L-5,T-1	l,P-0	4	4Credit	s	
					e Chemis								
Pre-re	quisit	e: Und	erstandi	ng of T	hermody	vnamics	, Polyn	ners and	Solid-st	ate Chen	nistry		
Cou	Irse O	bjectiv	es:										
• '	To lear	n thern	nodynai	nic Pro	perties of	f fluids,	phase	equilibr	ia and fla	ash calcu	lations.		
• '	Therm	odynan	ic prop	erties o	f liquids,	, activity	y and a	ctivity c	oefficien	its.			
•	Polymer structures, morphology and properties.												
• '	To get knowledge on concept of solid state chemistry and super conductance.												
	To get knowledge on concept of solid state chemistry and super conductance. <b>Irse Outcomes:</b> At the end of the course, the student will be able to												
CO1	Deriv	e Gibbs	Duhen	n equati	on and to	o calcula	ate fuga	acity an	d chemic	al potent	tial.		
CO2	Calcu	late exc	ess free	e energy	and entr	ropy, to	draw H	Hildebra	nd curve	es and to	correlat	e excess	
	-		l activit										
CO3	Learn	morph	ology, T	Гm and	Tg point	s and to	calcul	ate trans	sition ten	nperature	es and to	o identify	
	cross	linking	in poly	mers.									
CO4	Identi	fy mag	netic pr	operties	s of solid	s, magn	etic ma	terials,	supercon	ductors a	and BC	S theory	
		Ν	Aappin	g of cou	urse outo	comes v	vith the	e progr	am outco	omes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
C01	3	3	3	3	2	-	-	-	-	1	-	3	
CO2	3	3	3	2	2	-	-	-	-	-	1	3	
CO3	3	3	2	2	2	-	-	-	-	2	-	2	
<b>CO4</b>	3	3	3	2	2	-	-	-	-	2	-	1	

#### CHE PC-402: CORE THEORY: THERMODYNAMICS, POLYMERS AND SOLID STATE CHEMISTRY

#### **UNIT-I:** Thermodynamic properties of fluids:

Thermodynamic relationship residual properties – systems of variable composition- ideal and non-ideal behaviour – fugacity-fugacity coefficient in solutions- Phase equilibrium of low to moderate pressures- dew point-bubble point and flash calculations.

#### UNIT – II: Thermodynamic properties of 'Liquid Mixtures 15 Hrs

Activity and activity coefficients-excess free energy-excess enthalpy-excess volume-excess entropy-relation between excess functions and activity coefficients –Application of Gibbs-Deuhem equation-regular solutions –van Laar theory and Scachard-Hildebrand theory.

#### **UNIT-III: Polymers- structure and properties**

Morphology and order in crystalline polymers, configuration of Polymer chains, crystal structures and polymers, Stain induced morphology, morphology of chrystalline polymers, crystallisation and melting- polymer structure and physical properties, crystalline melting point,  $T_m$ -melting point of homogeneous series, effect of chain flexibility and other steric factors- entropy and heat of fusion, the glass transition temperature, Tg , relationship between Tm and Tg effects of molecular weight, diluents, chemical structure, chain topology, branching and cross linking.

#### 15 Hrs

#### **UNIT-IV: Solid State Chemistry**

#### 15 Hrs

Magnetic properties of solids- Classification of magnetic materials, Magnetic Susceptibility, Langevin diamagnetism, Weiss theory of para magnetism. Electronic properties of metals, insulators and semiconductors: Electronic Structure of solids, Band theory, band Structure of metals, insulators and semiconductors. Electrons, holes and Excitons. The temperature dependence of conductivity of extrinsic semiconductors. Photo conductivity and photovoltaic effect –P-n-Junctions. Super conductivity: Occurence of superconductivity. Destruction of Superconductivity by magnetic fields-Meisner effect. Types of superconductors. Theories of super conductivity BCS theory.

#### **Books suggested:**

- 1. J.M. Pransnitz. Molecular Thermodynamics of Fluid Phase Equilibrium. Prentice. Hall
- 2. Kuriocose and Rajram. Thermodynamics
- 3. Smith and Van Ners. Chemical Thermodynamics.
- 4. R.C. Srivastava, Subi. K. Saha. Thermodynamics-A care course. Prentice-Hall of India Pvt, Ltd,. 3rd edition-2007.
- 5. Silbey, Alberty, Bawendi. Physical chemistry. Jhon-Wiley & sons. 4th edition-2006.
- 6. F. W. Billmeyer, Jr.: Text Book of Polymer Science. Wiley Interscience.
- 7. V. R. Gowariker, N. V. Viswanathan, Jayadev Sreedhar.: polymer Science. New Age international Publishers.
- 8. Solid State chemistry by M.G. Arora.
- 9. Solid State Chemistry by Wiley.

					(Mand	latory C	ore)					
CHE-P	C-403A		Cl	nemical	Kinetio	es	I	3,T-1,	P-2	4	Credits	
Pre-re	quisite:	Unders	standing	of Cher	mical ki	netics						
Cours	e Objec	tives:										
			0		erogene		•	•	•		lication	S
	1				xcitatior		1					
					xation n		-	hemical	and iso	tope eff	ects	
					neory an							
Cours	e Outco	mes: A	t the end	d of the	course,	the stud	ent will	be able	to			
CO1	Draw sk	rabal pH	I diagrar	n and to	separate	unimole	cular and	l bimoleo	cular rea	ctions		
CO2	Study la	ws of pl	notochem	nistry, to	derive st	tern-voln	ner equat	tion				
CO3	Identify	chromo	potentio	metry po	oints and	to invest	tigate kir	netic curi	ents and	l isotopic	effects	
CO4	Learn pl	hotocher	nical thre	esholds,	chemilu	minescen	ice					
		Ma	apping	of cours	se outco	mes wit	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	-	-	-	-	1	2	1
CO2	3	3	3	3		2	-	-	-	1	-	2
CO3	3	3	3	3	2	2	-	-	-	-	-	2
CO4	3	3	3	3	2	-	-	-	-	-	2	2

#### CHE PC-403A : (GENERIC ELECTIVE): CHEMICAL KINETICS

#### UNIT – I: Catalysis

**Homogeneous catalysis:** Steady state and equilibrium treatments of acid-base catalysis. Skrabal  $P^{H}$  diagrams, Protolytic and Prototropic mechanism. Acidity functions, Zucker, Hammett, Bunnett and Yates hypothesis in the elucidation of the mechanism. Enzyme catalysis – influence of concentration,  $P^{H}$  and temperature. **Heterogeneous Catalysis:** Mechanism of interface reactions, application of transition state theories to unimolecular and bimolecular surface reactions

#### **UNIT – II: Photochemistry:**

Interaction of electromagnetic radiation with matter, laws of photochemistry, Quantum yield, types of excitations, Fate of excited molecule, transfer of excitation energy, kinetics of unimolecular and bimolecular photophysical process, Stern-Volmer equation, Kinetics of photochemical reaction rate constants and life times of reactive energy states, determination of rate constants of reactions, effect of light intensity on the rate of photochemical reactions.

## UNIT-III: Electrochemical relaxation methods, Photochemical methods, Isoptopic effect 15 Hrs

**Electrochemical relaxation methods:**Introduction, advantages of Electrochemical transient (or) relaxation techniques, application of these methods, various types of perturbation of a system, pulse polarography, chronopotentiametry, investigation of kinetic currents by chronopotentiometry.

**Photochemical methods**: Introduction, phenomena of ISC, fluorescence and phosphorescence, experimental arrangement of fluorescence measurements. Example of quenching reactions.

**Isotopic Effects**: Equilibrium isotope effects, equilibria in solution, primary kinetic isotopic effects semiclassical treatments, Quantum-mechanical Tunneling, Reactions of the Type  $H+H_2$ , Transfer of  $H^+$ , H and H⁻ reactions of Huonium, Isotope effect with Havier atoms.

#### 15 Hrs

#### Unit-IV: Photo Chemical and Radiation Chemical Reactions 15 Hrs

Photochemical reactions photochemical primary process, reactions of electronically excited states of species, photo chemical thresholds, laws of photochemical equivalence, rotating-sector technique, multi photon excitation, photosensitization, radiation chemical primary process, chemiluminiscence.

#### **Books suggested**:

- 1. K.K. Rohatgi Mukerjee. Fundamentals of Photochemistry.
- 2. C. Kalidas. Principles of fast reactions techniques and Applications.
- 3. V. Yegnaramam, C.A. Basha And G. Prabhakar Rao : Applications of Electrochemistry.
- 4. Keith J.Laidler: Chemical Kinetics.
- 5. J. Dalton: A New System of Chemical Philosophy.
- 6. Chemical Kinetics:Keith J.Laider.

							ndation)							
CHE-I	PC-403B			rganic, I			L-	5,T-1,P	-0	4	Credits			
				ysical (										
Pre-r	equisite:	Unders	standing	of Bioi	norgani	c, Bioor	ganic, B	iophysi	cal Che	mistry				
Cours	se Objec	tives:												
• Hig	ghlighten	metal o	complex	es as ox	ygen ca	rriers ar	nd electr	on trans	fer in b	iology.				
• Me	etal ion t	ranspor	t and sto	orage in	biologic	cal syste	ms and	importa	nce of t	race met	als in b	iology.		
• Lea	arn physi	ologica	l functio	ons of ca	urbohydi	rates, lip	oids, enz	ymes cl	assifica	tion, ste	reospeci	ficity.		
• The	Learn physiological functions of carbohydrates, lipids, enzymes classification, stereospecificity. The basic concepts of biophysical chemistry in biochemical reactions, exergonic and endergonic													
	reactions.													
Cours														
	Course Outcomes: At the end of the course, the student will be able to													
CO1	Gain kı	nowledg	ge on me	etallo pr	oteins ii	n electro	n transf	er proce	esses.					
CO2	Know t	he appl	ications	of trace	metal i	ons and	metal ic	ons as cl	nelating	agents i	n medic	ine.		
CO3	Achiev	e and de	evelop h	ighly st	ereosele	ctive sy	nthesis	of organ	ic comp	pounds a	and drug	s by		
		0	onmenta											
<b>CO4</b>			•		f biopol	ymer re	actions	and to c	orrelate	free ene	ergy and	l		
	biopoly		rameters											
		Ma	apping	of cours	se outco	mes wit	th the p	rogram	outcon	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
<b>CO1</b>	3	3	2	3	_	2	_	2	_	1	1	1		
CO2	3	3	3	3	-	2	-	2	-	-	1	3		
CO3	3	3	3	2	2		_	3	-	1	1	3		
CO4	3	2	2	3	2	2	_		_	2	_	1		

#### CHE PC-403(B): (GENERIC ELECTIVE): BIOINORGANIC, BIOORGANIC, BIOPHYSICAL CHEMISTRY

#### UNIT-I: BIO-INORGANIC CHEMISTRY- I

#### 15 Hrs

Metal complexes as oxygen carriers –Heme proteins –Hemoglobin and myoglobin –Non heme proteins –hemerythrin and hemocyanin – model synthetic complexes of iron, cobalt and copper.Co-enzymes Vitamin B₁₂,carboxy peptidase and superoxidedismutase.

**Electron Transfer in Biology:** Structure and functions of metalloproteins in electron transfer processes –catalase –peroxidose –cytochromes and iron –sulphur proteins –synthetic models.

**UNIT – II: BIOINORGANIC CHEMISTRY- II:** Metal ion transport and storage in biological systems, Metal ions in Biology, Molecular mechanism of ion transport across membranes: ionophores, photosynthesis.

**Hydrolytic metalloenzymes:** Carbonic anyhdrase, carboxy peptidase, calcium in control processes, calcium and muscle contraction, calcium and secretion, calcium in blood clotting mechanisms. Therapeutic uses of enzymes.

**Importance of trace metals in biology:** Metal ions as chelating agents in medicine, trace metal ions and metal and non-metal deficiency. Biological nitrogen fixation,in-vivo and in-vitro nitrogen fixation.

#### **UNIT-III: BIOORGANIC CHEMISTRY**

**Carbohydrates:** Structure and biological functions of mucopolysaccharides, glycoproteins, and glycolipids- Role of sugars in biological recognition-Blood group substances

**Lipids:** Essential fatty acids-structure and function of triglycerols, Glycerophospholipids, cholesterol, bile acids prostaglandins- composition and functioning of lipoproteins

**Enzymes:** Nomenclature and classification, properties, factors affecting enzyme catalysis, enzyme inhibition- reversible and irreversible inhibition. Uses of enzymes in food drink industry and clinical laboratories.

#### **UNIT-IV: BIOPHYSICAL CHEMISTRY:**

Standard free energy change in biochemical reactions, exergonic and endergonic reactions, hydrolysis of ATP, thermodynamics of biopolymer solutions, chain configuration of bio polymers, and calculation of average dimensions. Membrane equilibrium, ion transport through cell membrane. dialosis and its function. Structure and functions of proteins, enzymes, DNA and RNA in living systems, forces involved in bio polymer interactions, electrostatic forces, hydrophobic forces, molecular expansion, and dispersion forces.

#### **Books Suggested**

- 1. M.N. Hughes, The Inorganic chemistry of Biological Processes, John wiley and Sons, New York 2nd Edition, 1981.
- 2. A Text book of Biochemistry, A.V.S.S. Rama Rao
- 3. Physical chemistry by Atkenes
- 4. Physical chemistry by Albertz.
- 5. Bio physical chemistry by Van Holde
- 6. Bio Physics by Narayanam
- 7. Organic Chemistry, Vol. 2, I. L. Finar, ELBS.
- 8. Chemistry of Natural Products, P.S. Kalsi, Kalyani Publishers.
- 9. Chemistry of Organic Natural Products, O. P. Agarwal, Vols., 1 & 2, Geol Pubs.
- 10. Natural products Chemistry K.B.G. Torssell, John Wiley, 1983.
- 11. Burger's Medicinal Chemistry, M.E. Wolff, John Wiley
- 12. Medicinal Chemistry, A. Kar, New Age International

CHE PC 4		C norganic		ctical I: strv - P			5,T-1,P	-0	4	Credits	8			
Pre-requis		0		v			ical.							
Course Ob	jectives:													
• Learn	potentio	ometric tit	rations	of mixtı	ure of ac	vids								
• Deter	minatior	of electro	ode pote	ential by	v polarog	graphy								
• Gain knowledge on interpretation of data from IR, AAS, HPLC and GC														
• Determination of alkanility and purity by pH metry														
• Determination of arkamity and purity by primetry														
Course Ou	Course Outcomes: At the end of the course, the student will be able													
CO1 Top	erform t	itration of	mixture	e of hali	des and	to draw	potenti	ometry	curves					
CO2 To	earn am	pherometi	ric titrati	ions and	l mixtur	es by po	larograp	ohy						
CO3 To C	Correlatio	on of data	obtaine	d from l	IR, AAS	, HPLC	and GC	2						
CO4 To I	Determin	ation of a	lkanility	and put	rity by p	H metry	y							
		Apping	-	-				outcon	nes					
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
<b>CO1</b> 3	3	1	2	3	-	-	2	-	2	-	3			
<b>CO2</b> 3	3	3	2	3	2	-	-	-	2	3	3			
<b>CO3</b> 3	2	3	3	2	3	-	2	-		2	3			
<b>CO4</b> 3	3	3	2	3	3	-	2	-	2	-	3			

#### CHE PC 403: CORE PRACTICALS: PRACTICAL - I-

- b) Titration of mixture of halides
- c) Titration of ferrous ammonium sulphate with potassium dichromate
- d) Redox titrations
- e) Solubility of Sparingly soluble salt.
- f) Formula and instability constant of a complex
- g) Dissociation constant of acetic acid
- 2. Polarography: a) Determination of E1/2 of Zn and Cd
  - b) Determination of Zn and Cd in mixture
  - c) Amperometric titration.

#### **II DEMONSTRATION EXPERIMENTS**

- 1. IR Interpretation of IR spectrum of alcohols, ketones, aldehydes and other standard materials
- 2. AAS: Demonstration of AAS Determination of Zn, Cd, Pb, Mn, Fe and Ni in effluents using AAS.
- 3. Spectrofluorimetry estimation of quinine and fluoroscene
- 4. Ion selective electrodes estimation of  $F^-$ ,  $S^{2-}$  and  $CN^-$  in effluents using ion selective electrode meter.
- 5. Polarography and Anode stripping voltametry

^{1.} Potentiometry: a) Titration of mixture of acids

- 6. Polarography and Anode stripping voltametry behavior of Cd, Zn, Pb in a mixture.
- 7. Determination of Pb and Cd in samples using Anode stripping voltametr
- 8. Gas chromatography- Determination of pesticides
- 9. HPLC- Determination of pesticides
- 10. NMR
- 11. (a)Demonstration of NMR spectrometer and study of hydrogen bonding in a given alcohol or phenol.
- 12. (b)Interpretation of NMR chemical shifts of ethyl benzene, ethyl alcohol.
- 13. TGA, DTA, DSC Demonstration of TG, DTA and DSC and study of decomposition of calcium oxalate, calcium carbonate, copper sulfate, oxalic acid.
- 14. pH metry
  - a. Determination of alkalinity in a colored effluent using pH metric end point.
  - b. Determination of purity of commercial HCl, H₂SO₄, H₃PO₄ and CH₃COOH using pH metric end point

CHE P	C 404		Р	roject V	Work		L-	5,T-1,P	-0	4	Credits		
Pre-requisite: Physical Chemistry Project Work													
Course Objectives:													
•	Identification of problem by literature survey												
• Carry out the problem independently													
• Interpretation of data													
Communication of research results through presentations and preparation of dissertation													
Course Outcomes: At the end of the course, the student will be able													
CO1	To identify research problems and to collect research literature												
CO2	To propose hypothesis of a research problem												
CO3	To perform research experiments												
CO4	To analyse the data and conclude the research outcomes												
Mapping of course outcomes with the program outcomes													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
C01	3	3	3	3	2	2	3	2	-	-	-	3	
CO2	3	3	3	3	3	2	3	2	-	-	2	3	
CO3	3	3	3	2	2	3	2	3	-	2	-	3	
CO4	3	3	3	3	3	3	2	2	-	2	-	3	

CHE PC 404: PRACTIAL II/ PROJECT WORK

CHE P	PC 406ADrug ChemistryL-3,T-1,P-24Credits											
Pre-re	quisite:	Unders	tanding	of Drug	g Chemi	stry			I			
Cot	ırse Ob	jectives	:									
	Го learn			al produ	ucts as le	eads for	new dru	ıgs				
Determination of cardiovascular drugs												
To study Autacoids												
Interpretation of Antipyretics												
<b>Course Outcomes:</b> At the end of the course, the student will be able to												
CO1	Know about natural products.											
CO2	Know Interpretation of cardiovascular drugs.											
CO3	Know the Analyzing about prostaglandins.											
<b>CO4</b>	Know the Definition, Classification, Nomenclature, Structure and Synthesis of anti-											of anti-
	inflamn		0	of cours		mos wit	h tho n	rogram	outcor	205		
	DO 1						-	0			DO11	DO10
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
<b>CO1</b>	3	3	3	3	3	-	_	2	-	-	2	3
CO2	3	3	3	3	_	2	_	2	-	2	-	3
CO3	3	3		3	-	3	-	2	-	3	-	3
CO4	3	-	3	-	3	2	_	-	-	2	-	3

#### CHE : PC : 406 (A): (OPEN ELECTIVE) : DRUG CHEMISTRY

#### **UNIT – I: NATURAL PRODUCTS AS LEADS FOR NEW DRUGS**

Occurrence, Structure and therapeutic uses of Drugs acting on Central Nervous System

Morphine alkaloids (morphine, codeine, thebaine, heroin, pethidine)

Cannabinoids (9-cannabinol, Tetrahydrocannabinol)

Neuromuscular Blocking Agents (Curare, Decamethonium)

Vinca Alkaloids (Vincristin and Vinblastin), Taxol and Taxotere, podophyllotoxin, Etoposide, Teniposide.

#### UNIT – II: CARDIOVASCULAR DRUGS

Definition, Classification, Nomenclature, Structure and Synthesis.

Cardiac glycosides (ex: Digoxin, Digitoxin);

Antihypertensive drugs (ex: Methyl dopa, Clonidene hydrochloride);

Antiarrhythmic agents (ex: Quinidine sulfate);

Antisympathetic drugs (ex: Propranolol hydrochloride, Verapamil hydrochloride);

Vasopressor drugs (ex: Prenylamine, Buphenine).

#### **UNIT – III: AUTACOIDS**

Definition, Occurrence, Isolation, Nomenclature, Classification, Synthesis, Biosynthesis and Stereochemical structures of Prostaglandins. Structural elucidation of PGE₁, PGE₂; Synthesis and biosynthesis of PGE₂, PGF_{2 $\alpha$}.

Structure and Biosynthesis of Thromboxane A2 and Prostacyclin (synthesis not expected).

#### UNIT – IV: ANTI-INFLAMMATORY DRUGS

Definition, Classification, Nomenclature, Structure and Synthesis of Paracetamol, Aspirin (Antipyretic), Salol, Cinchophen, Antipyrene, Phenylbutazone, Indomethacin, Tolmetin, Ibuprofen, Diclofenac and Naproxen.

#### **Books suggested:**

- 1. Medicinal Chemistry by Ashitosh Kar
- 2. Medicinal Chemistry by D. Sriram, P. Yogeeswari
- 3. Medicinal Chemistry by David A. Williams, Thomas L. Lemke
- 4. Medicinal Chemistry by V. Alagarsamy
- 5. Biochemistry by U. Satyanarayana
- 6. Natural Products Chemistry and Applications by Sujata V. Bhat, B.A. Nagasampagi, S. Meenakshi
- 7. Medicinal Chemistry by V.K. Ahluwalia, Madhu Chopra
- 8. Medicinal Chemistry by Balkishen Razdar
- 9. Advanced Practical Medicinal Chemistry by Ashutosh Kar
- Chemistry of Organic Natural Products by O. P. Agarwal, Vols., 1 & 2, Geol Pubs.
- 11. Chemistry of Natural Products by S. V. Bhat, B.A. Nagasampagi, M. Sivakumar
- 12. Natural Products Chemistry by K.B.G. Torssell, John Wiley, 1983.

CHE	PC 400	5	Elec	troanal	ytical 7	Fechniqu	ies	L-5,T-1,	P-0	4	Credits	5
Pre-requisite: Understanding of Electroanalytical Techniques												
Course Objectives:												
• To learn about the classification of electroanalytical methods												
Determination of types of currents												
• Principle, instrumentation, reversible and irreversible cyclic voltammograms												
Interpretation of Ion selective electrodes												
Course Outcomes: At the end of the course, the student will able to												
<b>CO1</b>	Ability to interpret potentiometry and conductometry											
CO2	Interpretation of results while adhering to DC Polarography.											
CO3	Analysing and compiling the data and results in polarography.											
<b>CO4</b>	Familiarize Types of ion sensitive electrodes.											
Mapping of course outcomes with the program outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
<b>CO1</b>	3	3	3	3	3	-	-	2	-	-	2	3
CO2	3	3	3	3	-	2	-	2	-	2	-	3
<b>CO3</b>	3	3	-	3	-	3	-	2	-	3	-	3
<b>CO4</b>	3	-	3	-	3	2	-	-	-	2	-	3

**CHE : PC : 406(B): (OPEN ELECTIVE) : ELECTRO ANALYTICAL TECHNIQUES Unit I:** Types and Classification of Electro analytical Methods.

**i**) **Potentiometry-** Types of electrodes, Hydrogen gas, Calomel, Quin hydrone and glasselectrodes. Determination of pH. Potentiometric titrations.

**ii**) **Conductometry** – Definition of terms – conductivity, specific conductivity, cell constant. Mobility of ions, Conductometric titrations.

**Unit II:** D.C Polarography :. Dropping mercury electrode- Instrumentation-polarogram. Types ofCurrents : Residual, Migration, Limiting. Two and Three electrode assemblies. Ilkovic equation(derivation not necessary) and its consequences. Types of limiting Currents: Adsorption, Diffusion, Kinetic. Applications of polarography in qualitative and quantitative analysis. Analysis of mixtures. Application to inorganic and organic compounds. Determination of stability constants of complexes.

**Unit III:** (i) A.C. polarography (ii) Square-wave polarography (iii) Pulse polarography (iv) Differential pulse polarography(V) Cyclic Voltammetry: Principle, instrumentation, reversible and irreversible cyclic voltammograms.

**Unit IV: Ion selective electrodes:** Ion-sensitive electrodes –types of ion sensitive electrodes –metal based cation and anion sensitive electrodes, solid membrane electrodes. Liquid ion-exchange electrodes, gas sensing membrane electrodes.

#### **Books Suggested**

1. H.W. Willard, LL. Merrit and J.A. Dean: Instrumental Methods of Analysis. Affiliated East-West).

- 2. G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denny. Vogel's Text Book of Quantitative Chemical Analysis (ELBS).
- 3. D.A. Skoog and D.M. West: Principles of Instrumental Analysis (Holt, Rinehart and Wilson).
- 4. J.G. Dick : Analytical Chemistry (Mc Graw Hill).