SRI VENKATESWARA UNIVERSITY: TIRUPATI S.V.U COLLEGE OF SCIENCES DEPARTMENT OF CHEMISTRY

Course M.Sc. PHYSICAL CHEMISTRY

Choice Based Credit System (CBCS)

Academic Year 2017 – 18

Vision

Impart quality education & training in the field of chemistry to enable successful careers for the post graduate students in the field of research, education & industry applications of chemical sciences.

Mission

The Department of Chemistry strives:

- To get an ideal balance between knowledge creation and knowledge dissemination in the chemical sciences with a focus to train and mentor students to become responsible scientists and scientifically literate professionals to attain National and International impact.
- To contribute to the improvement of scientific and technological literacy, and the development of
 critical-thinking and problem-solving skills of all students in order to compete for the world of
 work and responsible citizenship

PROGRAM EDUCATIONAL OBJECTIVES:

At the end of the program, the student wills be able to:

PEO1	To demonstrate broad knowledge of descriptive chemistry.
PEO2	To impart basic analytical and technical skills to work effectively in various fields of chemistry.
PEO3	To motivate critical thinking and analysis skills to solve complex problems viz., analysis of data, synthetic logistics, spectroscopy, structure and modeling, team based problem solving etc.
PEO4	To demonstrate an ability to conduct experiments in the above sub disciplines with mastery of appropriate techniques and proficiency using core chemical instrumentation and modeling method
PEO5	To develop laboratory competence in relating chemical structure to spectroscopic phenomena.
PEO6	To demonstrate the ability to synthesize, separate and characterize compounds using published reactions, protocols, standard laboratory equipment and modern instrumentation.

PROGRAM OUTCOMES: On completion of M.Sc. Chemistry programme, graduates will be able to –

PO1	Have a firm foundation in the fundamentals and application of current chemical and scientific theories in different areas of chemistry <i>viz.</i> , Analytical, Environmental, Inorganic, Organic and Physical.
PO2	Understands the background of organic reaction mechanisms, complex chemical structures, and instrumental methods of chemical analysis, molecular rearrangements and separation techniques.
PO3	Familiarize with the importance of various elements present in the periodic table, coordination chemistry and structure of molecules, properties of compounds, structural determination of complexes using theories and instruments.
PO4	Understand about the physical aspects of atomic structure, dual behavior, reaction pathways with respect to time, various energy transformations, molecular assembly in nano-level, significance of electrochemistry, molecular segregation using their symmetry.
PO5	Create awareness and sense of responsibilities towards environment and apply knowledge to solve the issues related to Environmental pollution.

PO6	Continue to acquire relevant knowledge and skills appropriate to professional activities and demonstrate highest standards of ethical issues in the subject concerned. Ability to identify unethical behavior such as fabrication, falsification or misrepresentation of data and adoptive objective, unbiased and truthful actions in all aspects.
PO7	Be skilled in problem solving, critical thinking and analytical reasoning as applied to scientific problems.
PO8	Clearly communicate the results of scientific work in oral, written and electronic formats.
PO9	Explore new areas of research in both chemistry and allied fields of science and technology.
PO10	Design, analyze and carry out scientific experiments and interpret data to provide solutions to different industrial problems.
PO11	Independently carry out research to solve practical problems and present a substantial technical report.
PO12	Ability to think, acquire knowledge and skills through logical reasoning and to inculcate the habit of self-learning throughout life, through self- paced and self- directed learning aimed at personal development, and adapting to change academic demands of work place through knowledge/ skill development/ reskilling.

PROGRAM SPECIFIC OUTCOMES: At the end of the program, the student will be able to:

PSO1	Scientific Problem solving skills : Deep knowledge of the topic which can develop the problem solving skills using chemical principles.
PSO2	Analytical skills : Develop analytical skills such as synthesizing, separating, characterizing chemical compounds and chemical reactions with the help of sophisticated instruments
PSO3	Research skills : Develop research skills through dissertation/project work in different fields of chemistry such as organic, inorganic, analytical, physical and environmental.
PSO4	Learning skills on life processes : Acquire advanced level of knowledge in natural products as well as biological systems from the chemistry point of view.

SEMESTER-I

Sl. No.	Cours e Code	Components of Study	Title of the Course	No. of Credits	IA Marks	End SEM Exam Marks	Total
1	CHE- 101	Core-Theory	Inorganic Chemistry- I	4	20	80	100
2	CHE- 102	Core-Theory	Organic Chemistry I	4	20	80	100
3	CHE- 103	Core-Theory	Physical Chemistry- I	4	20	80	100
4	CHE- 104	Core-Practical	Inorganic Practical- I	2	-	-	50
5	CHE- 105	Core-Practical	Organic Practical-I	2	-	-	50
6	CHE- 106	Core-Practical	Physical Practical I	2	-	-	50
7	CHE- 107	Compulsory Foundation	General Chemistry-I	2	10	40	50
6	CHE- 108	Elective Foundation	an Values and Professional Ethics – I	4	20	80	100
		Total		24			600

SEMESTER-II

Sl.	Cours	Components of		No. of	IA	End	Total
No.	e Code	Ŝtudy	Title of the Course	Credits	Marks	SEM	
		•				Exam	
						Marks	
1	CHE-	Core-Theory	Inorganic Chemistry- II	4	20	80	100
	201						
2	CHE-	Core-Theory	Organic Chemistry -II	4	20	80	100
	202						
3	CHE-	Core-Theory	Physical Chemistry- II	4	20	80	100
	203						
4	CHE-	Core-Practical	Inorganic Practical- II	2	-	-	50
	204						
5	CHE-	Core-Practical	Organic Practical-II	2	-	-	50
	205						
6	CHE-	Core-Practical	Physical Practical -II	2	-	-	50
	206						
7	CHE-	Compulsory	General Chemistry-II	2	10	40	50
	207	Foundation					
6	CHE-	Elective	an Values and Professional	4	20	80	100
	208	Foundation	Ethics – II				
		Total		24			600

SEMESTER-III

	Course Code	Components of Study	Title of the Course	No. of Credits	IA Marks	End SEM Exam Marks	Total
1	CHE-PC- 301	Core-Theory	Physical Chemistry III	4	20	80	100
2	CHE-PC- 302	Core-Theory	Organic Spectroscopy	4	20	80	100
3	CHE-PC- 303	Core-Practical	Practical-III	4	ı	-	100
4	CHE-PC- 304	Core-Practical	Practical- III	4	ı	-	100
5	CHE-305	Generic Elective*	(a) Organic Chemistry III	4	20	80	100
		(Related to subject)	(b) Inorganic Spectroscopy & Thermal Methods of Analysis (c)Green Chemistry	4	20	80	100
6	CHE-306	Open Elective (For other departments)	(a) Spectral Techniques or (b) Chromatographic Techniques	4	20	80	100
		Total		24			600

*Among the Generic Elective a student shall choose any two. SEMESTER-IV

			SEMIESTEK-IV				
	Course Code	Components of Study	Title of the Course	No. of Credits	IA Marks	End SEM Exam	Total
	Code	Study	The of the Course	Credits	Marks	Marks	
1	CHE-PC- 401	Core-Theory	Electrochemistry	4	20	80	100
2	CHE-PC- 402	Core-Theory	Thermodynamics, Polymers and Solid state Chemistry	4	20	80	100
3	CHE-PC- 403	Core-Practical	PRACTICAL-I	4	-	-	100
4	CHE-PC- 404	Core-Practical/ Project work	Project work	4	-	-	100
5	CHE-405	Generic Elective*	CHEMICAL KINETICS	4 4	20 20	80 80	100 100
		(Related to subject)	(b) Bioinorganic, Bioorganic & Biophysical				
			(c) Chemistry of Nanomaterials & Functional meterials				
6	CHE-406	Open Elective* (For other departments)	(a)Drug Chemistry or (b) Electro analytical Techniques	4	20	80	100
		Total		24			600

^{*}Among the Generic Elective a student shall choose any two.

			INORGANIC CHEISTRY I L-5,T-1,P-0 4Credits											
Pre-req	Pre-requisite: Understanding of graduate level chemistry													
Cou	ırse Obje	ctives:												
• Con	nprehend	the key	features o	f coordin	ation con	npounds,	Crystal Fi	eld Theory	, differei	nt proper	ties and	bonding		
by s	by spectroscopic techniques													
• Stud														
	• Understand the basics of reaction mechanism and the mechanistic concepts of Dissociative (Id) and Associative													
inte	rchange N	1echanisi	n (Ia), Ta	ube's clas	ssification	n, Trans et	ffect and I	Electron Tra	ansfer Re	actions				
• Fam	niliarize w	ith the n	nethods of	synthesi	s of meta	l carbony	ls and me	tal nitrosyls	s, Synerg	sistic effe	ct, EAN	and 18-		
elec	tron rule.													
Course	Outcome	s: At the	end of the	e course	the studer	nt will be	able							
CO1								al Field Th	eory, ma	gnetic pr	operties	and		
			ion metal			1	, ,		3,		1			
CO2	To learn	about the	e polymor	phic form	ns of Carb	on, Sulph	ur and Ph	osphorus, s	ynthesis	and prop	erties of	,		
	sulphur-1	nitrogen (compound	ls, borane	s, carbide	es, silicate	s and to k	now Wades	s rules.					
CO3	-		-	-				and Crystal	Field the	eories, Ta	aube's			
			ns effect											
CO4		knowledg	ge on synt	hesis and	structure	s of differ	ent metal	carbonyls,	synergist	ic effect	and 18 e	lectron		
	rule.													
								ram outco		Т	1 1			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	-	3		2	1	1		2		1		
CO2	3	1	2	3	-	2	-	2	1	1	-	1		
CO3	3	2	-	3	2		1		2	1	1	1		
CO4	3	1	1	3	1	1	-	2	1	-	2	1		

CHE 101: INORGANIC CHEISTRY I

UNIT-I: CO-ORDINATION COMPOUNDS

15 Hrs

Introduction to Crystal field Theory, CFSE and its calculation, Paring energy, Splitting of 'd' orbitals in Trigonal bi pyramidal, square planar, square pyramid and pentagonal bipyramidal geometries, Jahn –Teller effect, Application of CFT, OSSE, site Selection in Spinels, Short comings of CFT, Evidence for covalency –Nephelauxetic effect. MOT of co-ordinate bonds –M.O. Diagrams for octahedral, tetrahedral and square planar complexes. Experimental evidences for π - bonding – Crystallography, Infrared spectroscopy and Photoelectron spectroscopy.

UNIT-II: CHEMISTRY OF NON-TRANSITION ELEMENTS 15 Hrs

General characteristics of the non-transition elements special features of individual elements; Synthesis' properties and structure of their Halides and Oxides, Polymorphism of Carbon, Phosphorus and Sulphur, Synthesis, properties and structure of boranes, Carboranes, borazines, Silicates, Carbides, Sulphur-nitrogen compounds. Electron counting in boranes, Wades rules (Poly hedral skeletal electron pair theory), Isopopoly and hetero poly acids.

UNIT-III: REACTION MECHANISMS IN COMPLEXES 15 Hrs

Reactivity of metal complexes. Inert and Labile complexes. Concept of Labile and Inert complexes in terms of Valence bond and Crystal Field theories. Taube's classification of complexes as labile and inert complexes. Dissociative (D) and Dissociative interchange Mechanism (Id) & Associative (A) and Associative interchange Mechanism (Ia). Substitution reactions in octahedral complexes- Acid Hydrolysis -factors affecting Acid Hydrolysis - Base Hydrolysis-conjugate Base Mechanisms - Anation Reactions -Substitution Reactions in Square Planar complexes- Trans effect – Mechanisms of Trans effect: polarization and π -bonding theories. Electron Transfer Reaction-Inner Sphere and outer Sphere Mechanisms- Marcus theory.

UNIT-IV: METAL πCOMPLEXES-I

15 Hrs

Nature of π bonding, Classification of π ligands, π donor ligands and π -acceptor ligands.

Metal Carbonyls: Synthesis of metal carbonyls, Structures of metal carbonyls of the types M(CO)n (M= Cr, Fe, Ni; n=4-6), $M_2(CO)n$ (M=Co, Fe, Mn; n=8-10), $M_3(CO)_{12}$ (M=Fe, Ru and Os), $M_4(CO)_{12}$ (M=Co, Rh, Ir). IR Spectraof metal carbonyls (i) Detection of bridging and terminal CO ligand, (ii) Synergistic effect, EAN and 18-electron rule. Electron counting methods (i) Oxidation state method and (ii) Neutral Atom method.

Metal Nitrosyls: Synthesis of metal Nitrosyls, bonding, Electron donation by nitric oxide, Models for NO bonding (i) Covalent model and (ii) Ionic models, Structures of metal nitrosyls (1) $[Fe_4S_3(NO)]$ (2) $[Fe_2(NO)_2I_2]$ (3) $[(\phi_3P)_2Ir(CO)Cl(NO)]^+$ (4) $[(\phi_3P)_2Ru(NO)_2Cl]$, Detection of bridging NO ligand, Applications of metal nitrosyls.

Books Suggested

- 1. F.A.Cotton and G. Wilkinson, Advanced In-organic chemistry VI Edition, 1999. John wiley & sons. Inc., New York.
- 2. James E. Huheey, Inorganic chemistry- Principles of structure and reactivity, VI Edition 1993. Harper Collins College Publishers, New York.
- 3. J.D. Lee: Concise Inorganic Chemistry (Blackwell)
- 4. Gary Wolfsburg: Inorganic Chemistry (5th Ed. (Viva Books)
- 5. W.L. Jolly: Modern Inorganic Chemistry (McGraw-Hill)
- 6. B.N Figgis: Introduction to Ligand Fields (John-Willey)
- 7. S.F.A. Kettle: Coordination compounds.
- 8. Coordination Chemistry. Bassalo & Jahnson.

Pre-req	uisite: U	nderstand	ing of gra	aduate lev	el Organ	ic Chemis	stry						
Course	Course Objectives:												
	sify mole			reochemic	cal aspect	s study o	n optical	and geom	etrical is	omerism	by the app	plication	
	of Cahn-Ingold-Prelog rules.												
• Familiarize with different types of substitution reactions, able to predict products, including stereochemistry in													
aliphatic and aromatic nucleophilic substitution reactions, effect of neighboring group participation													
• Understand thermodynamic and kinetic requirements, kinetic and thermodynamic control, potential energy diagrams, transition states and intermediates, methods of determining mechanisms, isotope effects in reactive													
_		nsition st	ates and	intermed	iates, me	thods of	determin	ing mech	ianisms,	isotope e	effects in	reactive	
	mediates		isolotio		es satablic		d armth oa	is of motor	سما مسمطیر	ata tamaan	oida		
	y about o							is of natu	rai produ	cis-terpen	ioias.		
Course	Juttonic	.s. At the	cha or th	e course,	ine stude	iii wiii 0C	aoic						
	CO1	To de	tect stere	ochemica	1 structur	es of the t	nolecules	stereose	lective ar	nd stereoc	ontrolled		
•	.01	reacti		ochemica	1 Siluctur	28 OI IIIC I	Holecules	, siereose	iective ai	ia siereoc	onnonea		
	102			a starana	hamistm	of the pro	duota wit	h the offe	at of nois	ghbouring	orolla.		
•	CO2				•					on reaction			
		-	anism and				types of t	iromatic t	aosiitati	on reaction	no, men		
	CO3	To kn	ow the co	oncept of	isotope e	ffects, pot	tential end	ergy diagi	ams and	transition	states in		
			ent intern		•			<i>c, c</i>					
	CO4	To fa	miliarize :	with stere	eospecific	synthesis	of natur	ally occur	ring terne	enoids and	d degrada	tion	
	.04		cts of ter		оврести	synthesis	or nature	iny occur	ing terpe	onords un	a degrada		
		1		•	irse outc	omes wit	h the pro	gram ou	tcomes				
	DO1	DO2				1			1	DO10	DO11	DO12	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	1	3	1	-	1	2	1	-	2	-	
CO2	3	2	2	3		1	-	1	2	1	1	2	
CO3	3	1	2	3	1	1	1	2		1	-	-	
CO4	3	2	2	3	2	2	-	2	-	1	-	2	

L-3,T-1,P-2

4Credits

CHE102: Organic Chemistry I

UNIT-I: Stereochemistry

CHE-102

Sereoisomerism-Stereoisomers Classification – Configuration and conformation.

Organic Chemistry I

Molecular Three dimensional representations: Wedge, Fischer, Newman and Saw-horse formulae, their description and interconversions.

Molecular Symmetry & Chirality: Symmetry operations and symmetry elements (Cn & Sn). Criteria for Chirality. Dissymmetrization.

Optical isomerism: Molecular Symmetry and Chirality-Cahn-Ingold-Prelog rules R, S-nomenclature, stereoisomerism resulting from more than one chiral center, meso and pseudoasymmetric compounds - **Axial Chirality** - Stereochemistry of allenes spiranes - biphenyl derivatives and atropisomerism - **Planar chirality** - Ansa compounds and trans - Cycloalkenes - **Helicity**. Helically chiral compounds

Geometrical isomerism - E, Z - nomenclature - Physical and Chemical methods of determining the configuration of geometrical isomers-Stereoisomerism in 3, 4 and 5-membered cyclic compounds.

UNIT-II: Substitution Reactions

i) Aliphatic Nucleophilic Substitutions: The S_N2 , S_N1 , mixed S_N1 and S_N2 , SET mechanisms. Reactivity- effects of substrates, attacking nucleophiles, leaving groups and reaction medium. Common carbocation rearrangements – primary, secondary and tertiary. The neighbouring group participation (NGP) -anchimeric assistance, NGP by σ and π - bonds, phenonium ions, norbornyl and norbornenyl systems, Classical and nonclassical carbocations, NGP by halogens and heteroatoms (O,N,S)

The S_N¹ and S_N2' mechanisms. Nucleophilic substitution at an allylic, and vinylic carbons.

ii. Aromatic Nucleophilic Substitution: The S_NAr , S_N1 , benzyne and $S_{RN}1$ mechanisms. Reactivity - effect of substrate, structure, leaving group and attacking nucleophile. The von Richter, Sommelet - Hauser and Smiles rearrangements.

UNIT-III: Reactive Intermediates

Types of reactions, types of bond cleavage mechanisms, generation, structure, stability and reactivity of carbocations, carbanions, free radicals, carbenes, nitrenes and arynes. Thermodynamic and kinetic requirements, kinetic and thermodynamic control, potential energy diagrams, transition states and intermediates, methods of determining mechanisms, isotope effects.

UNIT-IV: Terpenoids

Classification of terpenoids, occurrence, isolation, general methods of structure determination. Isoprene and special isoprene rule. Structure determination and synthesis of the following representative molecules: Farnesol, Zingeberine, Cadinene and Abietic acid.

Books Suggested:

- 1. Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, John Wiley.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J Sundberg, Plenum.
- 3. Structure and Mechanism in Organic Chemistry C.K. Inglod, Cornell University Press.
- 4. Organic Chemistry, R.T Morrison and R.N. Boyd, Prentice Hall.
- 5. Principles of Organic Synthesis, R.O.C Norman and J. M. Coxon, Blackie Academic.
- 6. Stereochemistry, P.S. Kalsi, Wiley Eastern.
- 7. Text book of Organic Chemistry, M.C. Murry
- 8. Organic Chemistry, Vol I, I.L. Finar, ELBS Eds.

CHE-10)3		Ph	ysical Ch	emistry	I	L-:	5,T-1,P-6		40	Credits		
Pre-req	Pre-requisite: Basic knowledge about Physical Chemistry												
Course	Course Objectives:												
• Acqu	Acquire knowledge in Quantum Chemistry, postulates of Quantum Mechanics., Applications of Schrodinger wave												
equa	equation and Born-Oppenheimer approximation												
Stud	• Study on Chemical Dynamics and theories in unimolecular, chain and fast reactions and determination of reaction												
rates	rates.												
• Fami	iliarize w	vith conc	epts of 7	Γhermody	namics a	and statis	stical the	rmodynar	nics, Gib	bs- Duh	em equat	ion and	
Sack	ur-Tetrad	le equatio	n										
• Knov	w about	Thermo	dynamic	and Kin	etic con	cept of	Electroch	emistry	and con	ductance,	conduct	ivity of	
	rolytes												
Course	Outcome	es At the	end of the	course, t	he studen	it will be a	able to						
CO1	To kno	w the con	cepts suc	h as Oper	ator algel	ora, Eigen	values a	nd Eigen	functions	, Degener	acy, Schr	odinger	
	wave e	quation a	nd the pos	stulates of	f Quantun	n Mechan	ics.						
CO2	To lear	n about th	neories of	reaction	rates, Lin	demann, l	Lindeman	ın-Hinshe	l wood, a	nd RRKN	A theories	3.	
CO3	To kno	w about 7	Thermody	namic co	ncepts an	d entropy	change in	n reversib	le proces	s and irre	versible p	rocess.	
					-	nodynami	_		1		1	,	
CO4			_			-			and the o	lerivation	of Debye	-Huckle	
			Verificati					1			·		
			Mappi	ing of cou	ırse outc	omes wit	h the pro	gram ou	tcomes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	1	3	2	1	-	2	1	2	1	1	
CO2	3	1	2	3	1	1	1	-	2	1	-	1	
CO3	3	2	1	3	2			3		1	2	2	
CO4	3	2	2	3	-	1	1	-	1	2	-	2	
			CHE	102. Db	sical Che			l		l			

CHE-103: Physical Chemistry I

UNIT-I: Quantum Chemistry-I

(A)Introduction to Exact Quantum Mechanical Results

Operator algebra, Eigen values and Eigen functions, Operators for momentum and energy, Degeneracy, Linear combination of Eigen functions of an operator, well behaved wave functions, Normalized and orthogonal functions, The schrodinger wave equation and the postulates of Quantum Mechanics, (B) **Applications of Schrodinger wave equation:** Particle in one dimensional and three dimensional box, harmonic oscillator, rigid rotor, hydrogen atom and its applications. Hydrogen like wave function, hydrogen like orbitals and their representation, polar plots, contour plots and boundary diagram. (C)**Approximate Methods:** The variation Theorem, Linear variation principle, perturbation Theory (first Order and non-degenerate), Application of variation Method and perturbation theory to the helium atom, The Born-Oppenheimer approximation.

UNIT-II: Chemical Dynamics

- (A)**Theories of reaction rates:** Collision theory, steric factor. Theory of Absolute Reaction Rates-Reaction coordinate, activated complex and the transition state. Thermodynamic formiulation of reacton rates.
- (B) **Unimolecular reactions:** Lindemann, Lindemann-Hinshel wood, and RRKM theories. Termolecular reactions. Complex reactions-Rate expressions for opposing, parallel and consecutive reaction (all first order type) (C) **Chain reactions:** Dynamic chain, hydrogen-bromine reaction, pyrolysis of acetaldehyde, decomposition of ethane, photochemical reactions- H₂-Br₂, H₂-Cl₂ reactions, Autocatalysis, H₂-O₂ reaction explosion limits. (D) **Fast Reactions:** Flow system Temperature and pressure Jump Methods Relaxation Techniques.

UNIT - III: Thermodynamics

(A) **Brief review of Thermodynamic concepts:** Enthalpy, entropy, free energy. Concept of Entropy –Entropy as a state function –Entropy change in reversible process and irreversible process – Temperature – Entropy diagrams – Entropy change and phase change – Entropy of mixing – Entropy and disorder. (B) **Statistical thermodynamics:** Partial molar properties: their significance and determination of partial molar properties, fugacity and its determination. Concept of distribution, thermodynamic probability and most probable Distribution, Ensemble averaging, postulates of ensemble averaging, canonical, grand canonical and micro- canonical ensembles, partition functions, translational, rotational, vibrational and electronic partition functions, Gibbs- Duhem equation, calculation of thermodynamic properties in terms of partition functions, Entropy of monatomic gases (Sackur-Tetrade equation)

UNIT-IV: Electrochemistry I

(A) Thermodynamic and Kinetic concept of Electrochemistry

Thermodynamic and Kinetic Derivation of Nernst Equation, Chemical and Concentration Cells with and without Transference, Liquid Junction Potential, Derivation of the Expression for Liquid Junction Potentials-its determination and elimination, Applications of EMF Measurements: (i)Solubility product, (ii)pH Determination, (iii) Potentiometric Titrations.; (B)Conductivity: Theory of Electrolytic Conductance, Derivation of Debye-Huckle Equation and its Verification, Debye-Falkenhagen Effect, and Wein Effect, kohlrausch law. Calculation of Solubility of Sparingly soluble Salt from Conductance Measurements.

Conductometric Titrations: Titration of Strong Acid Vs Strong Base (HCl vs NaoH); Titration of Weak Acid Vs Strong Base (AcoH vs NaoH); Titration of mixture of Strong and Weak Acids vs Strong Base; Precipitation Titrations.

Books Suggested

- 1. Physical Chemistry, P. W. Atkins (ELBS)
- 2. Quantum Chemistry, Ira N. Levine (Prentice Hall)
- 3. Atomic Structure and Chemical bond, Manas Chandra.
- 4. Chemical Kinetics, K.J. Laidler (Mc Graw Hill)
- 5. Kinetics and Mechanism of Chemical Transformations, J. Rajaraman and J. Kuriacose (Mcmilan)
- 6. Thermodynamics for chemists, S. Glasstone
- 7. Chemical thermodynamics, I.M. Klotz
- 8. Statistical Thermodynamics, M. Dole
- 9. Modern Electrochemistry, Vol. I & II, J.O. M. Bockris and A.K.N. Reddy (plen
- 10. An Introduction to Electrochemistry (3rded.), S. Glasstone (Affiliated East-West).

CHE 10)4			Core pra			L-:	5,T-1,P-0		2	Credits			
					Chemistry									
Pre-req	Pre-requisite: Understanding of graduate level Inorganic Chemistry practical.													
SEMI N	SEMI MICRO QUALITATIVE ANALYSIS													
•]	Basic laboratory techniques of titration and analysis.													
	 Quantitative estimation of inorganic compounds through volumetric techniques. 													
	Quantitative estimation of morganic compounds unough volunicate techniques.													
Course	Course Outcomes: At the end of the course, the student will be able													
CO1	To demo	istrate m	astery of	basic sen	ni-micro o	nualitative	analysis	of simple	salts and	interpret	s analytic	al data		
	and will i		•			-	•	-	barts are	· micrproc	s anary tro	ar aata		
	and will i	nane ser		inis that t	по вирро	rica oy in	0 00001 14							
CO2	To famili	arize wit	h techniq	ues of titi	ation and	calculation	on of erro	ors						
CO2														
CO3														
CO4														
			Mappi	ing of cou	ırse outc	omes wit	h the pro	gram out	comes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	2	3	2	-	1	1	-	1	2	-		
CO2	3	2	2	3	1	1	-	1	2	1	1	2		
CO3														
CO4														

CHE 104: Core practical I: Inorganic Chemistry

Semi Micro Qualitative Analysis

I. Qualitative Analysis of a mixture containing four cations including two less common cations (viz., W, Mo, Se, Te, V, Ce, Th, Zr, Li and U).

C	HE 105			Core pr	actical I	:		L-5,T-1,	P-0		2 Cre	dits	
			(Organic (CheImist	ry							
Pre-rec	quisite: U	nderstand	ing of gra	aduate lev	el Organi	ic Chemist	ry practi	cal.					
Course	Objectiv	es:											
• Iden	tification	of single	organic c	omponen	t by syste	matic qua	litative a	nalysis					
• Sing	gle step pr	eparation	S										
Course	Outcome	es: At the	end of th	e course,	the stude	nt will be	able						
CO1	To famil	liarize the	systema	tic proced	dures of a	analysis of	organic	compone	ents, conf	formation	al tests fo	r various	
	function	al groups.											
CO2	To understand the mechanisms and familiarize with methodologies to prepare biologically important												
	molecule	es.											
CO3													
CO4													
			Mapp	ing of cou	ırse outc	omes with	the pro	gram out	tcomes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	2	3	1	2	2	1	2	-	2	-	
CO2	3	2	2	3	2	2	-	1	1	2	-	2	
CO3													
CO4													

CHE: 105: PRACTICAL – II: ORGANIC CHEMISTRY

Identification of single organic component by systematic qualitative analysis.

Aromatic acids

Phenols

Neutral compounds

Esters

Carbonyl compounds etc.

- b) Single step preparations.

 1. Preparation of aspirin

 - 2. Preparation of p-nitroacetanilide
 - 3. Preparation of p-bromoacetanilide
 - 4. Hydrolysis

Cl	HE 106]	-	actical I: CheImist			L-5,T-1,	P-0		2 Cre	dits		
Pre-req	uisite: U	nderstand	ling of gra	aduate lev	el Physic	al Chemi	stry pract	ical.	•					
	Objective		al solution	ı temnera	ture eute	etic comr	osition a	nd temper	ature of h	inary sys	tem			
Bette	Timmation	i or critici	ur sorution	тетрега	iture, eute	etie comp	osition a	id temper	arare or c	mary sys	tem.			
Course	Outcome	es: At the	end of th	e course,	the stude	nt will be	able							
CO1	To study	the deter	mination	of critica	l solution	temperat	ure, eutec	tic compo	osition, di	stribution	oefficie	ent,		
	adsorption	adsorption of different												
CO2	To calibrate the statistical data													
CO3														
CO4														
			Mappi	ing of cou	ırse outc	omes wit	h the pro	gram out	comes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	2	3	-	2	2	1	-	2	1	1		
CO2	3	2	2	2	1	2	-	1	1	2	-	2		
CO3														
CO4														

CHE: 106: PRACTICAL – III: Physical Chemistry

Syllabus

- Calibration of volumetric apparatus and statistical analysis of the data.
- Determination of critical solution temperature of phenol-water system and study the effect of electrolyte on CST.
- Determination of Eutectic composition and temperature of binary system
- Determination of distribution coefficient of benzoic acid between water and benzene.
- Study the adsorption of acetic acid on charcoal and analysis of the data on the basis of Langmuir and Freundlich adsorption isotherms.
- Determination of rate constant of acid hydrolysis of an ester and investigate the effect of catalyst concentration, reactant concentration and temperature.

					•			, ,					
Pre-re	quisite: U	nderstand	ing of gra	aduate lev	el Chemi	stry							
Course	e Objectiv	es:											
• Gain	knowledg	e on prec	ision and	accuracy	, Limit o	f detection	n, Limit	of determ	nination,	Sensitivit	ty and sel	ectivity,	
	tical evalu												
	liarize wit		les and co	oncepts o	of flame e	emission s	pectrosc	opy and a	ntomic ab	sorption	spectrosc	opy and	
their	application	1S .											
Course	e Outcom	es: At the	end of th	e course,	the stude	nt will be	able						
CO1	To know	about me	an and m	edian val	ues, stand	lard devia	tion and	coefficien	t of varia	tion.			
	, and the second												
CO2	To acquire knowledge on principle and instrumentation of AAS and difference between flame AAS and												
	furnace AAS.												
CO3													
CO4													
	1		Mappi	ing of cou	irse outc	omes with	the pro	gram out	comes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
G01	2	2	1	2	1	2.		2.		1	1	2	
CO1	3	2	1	3	1	2	-	_	-	1	1	_	
CO2	3	2	2	3	1	-	2	1	-	2	-	2	
CO3													
CO4													
					CITETA	7. Conoro		4 T					

L-5,T-1,P-0

2 Credits

CHE107: General Chemistry I

UNIT-I: TREATMENT OF ANALYTICAL DATA

15 Hrs

Precision and accuracy —mean and median values —Standard deviation — coefficient of variation, Types of errors: Determinate and indeterminate errors, confidence limits, significant figures, computations, minimization of errors, statistical evaluation of data —T-test ,F- test , and X^2 —test. Correlation coefficient and coefficient of determination; Limit of detection (LOQ); Limit of determination(LOD) Sensitivity and selectivity of an analytical method.

UNIT-II: FLAME EMISSION AND ATOMIC ABSORPTION SPECTROSCOPY 15 Hrs

General Chemistry I

- (a) Flame Emission Spectroscopy: Principles, chemical reactions in flames, Interferences, evaluation methods, flame photometer and experimental technique, procedure for determinations, limitations and disadvantages. Applications
- (b)Atomic Absorption Spectroscopy: Flame AAS: Principle, Instrumentation Sources of radiation (HCL and EDL), Different types of burners, Interferences- Physical, Chemical, spectral and back ground correction, and methods of minimization
- GF AAS: Principle and technique –Comparison between Flame AAS and furnace AAS, Applications of AAS, Comparison between Atomic Absorption & Flame Photometry.

Books Suggested

CHE-107

- 1. H.W. Willard, LL. Merritt and J.A. Dean: Instrumental Methods of Analysis
- 2. Vogel's Text book of Quantitative Inorganic Analysis.
- 3. Analytical Chemistry
- 4. Instrumental Methods of Analysis H. Kaur

СН	E 108	Hum	an Value	es and Pr	ofessiona	l Ethics-	L-	3,T-1,P-2			4 Credits	S	
Pre-req	uisite: U	nderstand	ing of gra	iduate lev	el Human	ı Values a	nd profe	ssional eth	nics				
Course	Objectiv	es:											
• Anal	yze value	s in vario	us ethical	profession	ons								
• Unde	erstand m	oral conc	epts, char	acter and	conduct 1	nultiple							
• Cond	cept of eth	nical valu	es with re	spect to i	ndividual	and socie	ety						
			e in area	l-world si	tuation o	r practice	and ass	ess own e	thical va	lues with	respect t	o social	
	ext and pr		1 01										
Course	Outcome	es: At the	end of th	e course,	the studer	nt will be	able to						
	Т												
CO1	To know about the needs and importance of professional ethics.												
CO2	To analyze nature of Values, basic Moral Concepts character and Conduct.												
CO3	To gain	knowled	ge on ind	ividual aı	nd society	ethical v	alues, ah	imsa, saty	a and bra	hmachary	a.		
CO4	To und	erstand va	alues of B	hagavd C	ita, vario	us religio	ns, religi	ous tolere	nce, Gand	lhian ethi	cs.		
							_						
			Mappi	ng of cou	rse outco	omes witl	the pro	gram out	comes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
	101	102	103	101	103	100	107	100	10)	1010	1011	1012	
CO1	3	-	1	3	2	1	1	2	3	-	1	2	
CO2	3	-	2	3	1	2		2	3	2	-	2	
CO3	3	1		3	2		1				1	3	
CO4	3	1	2	3		2	2	2.	2	2		3	

CHE 107: ELECTIVE FOUNDATION (HUMAN VALUES AND PROFESSIONAL ETHICS – I)

Chapter I: Definition and Nature of Ethics – Is relation to Religion, Politics, Business, Law, Medicine and Environment. Need and Importance of Professional Ethics – Goals – Ethical Values in Various Professions.

Chapter II: Nature of Values – Good and Bad, Ends and Means, Actual and Potential Values, Objective and Subjective Values, Analysis of Basic Moral Concepts – Right, Ought, Duty, Obligation, Justice, Responsibility and Freedom, Good Behavior and Respect for Elders, Character and Conduct.

Chapter III: Individual and Society: Ahimsa (Non-Violence), Satya (Truth), Brahmacharya (Celibacy), Asteya (Non Possesion) and Aparigraha (Non-stealing). Purusharthas (Cardinal virtues) - Dharma (Righteousness), Artha (Wealth), Kama (Fulfillment Bodily Desires), Moksha (Liberation), Crime and Theories of Punishment – (a) Reformative, Retributive and Deterrent, (b) Views on Manu and Yajnavalkya

Chapter IV: Bhagavd Gita – (a) Niskama Karma, (b) Buddhism – The Four Nobel Truths – Arya astanga marga, (c) Jainism - Mahavratas and Anuvratas. Values Embedded in Various Religions, Religious Tolerence, Gandhian Ethics.

Books for study:

- 1. Johns S Mackenjie: A Manual of ethics
- 2. "The Ethics of Management" by Larue Tone Hosmer, Richard D. Irwin Inc.
- 3. "Ethics in Management" by S.A. Shelekar, Himalaya Publishing House.
- 4. Harold H. Titus: Ethics for Today
- 5. Maitra, S.K: Hindu Ethics
- 6. William Lilly: Introduction to Ethics
- 7. Manu: Manava Dharma Sastra or the Institute of Manu: Comprising the Indian System of Duties: Religious and Civil (ed) G.C. Haughton.
- 8. Sasruta Samhita: Tr. Kaviraj Kunjanlal, Kunjanlal Brishagratha, Chowkamba Sanskrit Series, Vol I,II and III, Varanasi, Vol I PP, 16-20, 21-32 and 74-77 only.
- 9. Charaka Samhita: Tr. Dr. Ram Karan Sarma and Vaidya Bhagavan Dash, Chowkambha Sanskrit Series Office. Varanasi I, II, III Vol I PP 183-191.
- 10. Ethics, Theory and Contemporary Issues. Barbara Mackinnon, Wadsworth/Thomson Learning, 2001.
- 11. Analyzing Moral Issues, Judith A. Boss, Mayfield Publishing Company, 1999.
- 12. I.C. Sharma Ethical Philosophy of India. Nagin& Co Julundhar.

Pre-req	nicita. I Ir				stry II			L-5, T-1	, 1 -0	_	Credits		
Pre-requisite: Understanding of graduate level chemistry													
Co	urse Obj	jectives:											
	Jnderstan synthesis.	_	tic prope	rties of tr	ansition	metal co	omplexes	and variou	s reactio	ns on liga	ands with	respect to	
• (Gain knov	wledge or	electroni	c spectra o	of compl	ex moleci	ules of oc	tahedral and	l tetrahed	ral geome	try		
J •	Understan	ıd magne	tic prope	rties viz.,	diamag	netism ar	nd parama	agnetism aı	nd other	related pr	roperties o	f complex	
n	nolecules	1											
• F	Familiariz	ze with di	fferent ca	talytic read	tions of	complex	molecule	s and factor	s effectin	g the react	tions.		
Course	Outcome	es: At the	end of the	e course, tl	ne studer	nt will be	able						
CO1	To familiarize with the general methods of complex preparations and properties, nature of bonding and structural												
	features of metal complexes.												
CO2	To know	about R	ussel-Sau	nders coup	ling, spl	itting of e	nergy lev	els in octah	edral fiel	d and diffe	erentiate be	tween	
	Orgel dia	agrams aı	nd Tanabe	-Sugano d	iagrams								
CO3	To under	rstand abo	out the lav	vs of Hund	ls, Curie	and Weis	ss, magne	tism and ma	agnetic su	sceptibilit	ty determin	ation by	
			y method										
CO4	To gain l	knowledg	ge on Indu	ced reaction	ons, Free	radical r	eactions,	Thermal de	compositi	ion reactio	ons, Chain 1	reactions.	
			Maj	pping of c	ourse ou	itcomes v	vith the p	rogram ou	tcomes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	2	3	-	2	1	2	-	2	-	1	
CO2	3	1	1	3	1	2	-	2	-	1	-	1	
CO3	3	-	2	3	-	2	1	-	2	1	1	-	
CO4	3	1	1	3	1	2	-	1	-	1	-	1	

CHE 201: INORGANIC CHEISTRY II

UNIT - I: TRANSITION METAL II - COMPLEXES П

15 Hrs

Transition metal π – complexes with unsaturated organic molecules – alkenes, alkynes, diene, dienyl and Cyclopentadienyl complexes and arene complexes-general methods of preparation, properties, nature of bonding and structural features – Important reactions relating to Nucleophilic and Electrophilic attack on ligands and to organic synthesis.

UNIT - II: ELECTRONIC SPECTRA OF COMPLEXES

Russel-Saunders coupling - Spectroscopic term symbols- Derivation of term symbols of p² and d² configuration, Hole Formulation, Energy ordering of terms (Hund's Rules), Splitting of energy levels and spectroscopic states in Octahedral field, Selection rules - Break - down of selection rules, Orgel diagrams, Definition and utility-Orgel Diagrams for d¹ to d⁹ configurations in Octahedral and tetrahedral fields. Interpretation of electronic spectra of high spin octahedral and tetra hedral complexes of Ti(III), V(III), Cr(III), Mn(II), Mn(II), Fe(III), Co(III), Co(III), Ni(II) and Cu(II) complexes, Calculation of Dq and B¹ parameters for Cr(III) and Ni(II) complexes. Tanabe – Sugano diagrams, Differences between Orgel diagrams diagrams of d² to d⁶ and d⁸ configurations. Charge transfer spectra- LMCT and Tanabe – Sugano diagrams, Tanabe – Sugano and MLCT.

UNIT - III: MAGNETIC PROPERTIES OF TRANSITION METAL COMPLEXES 15 Hrs

Diamagnetism and paramagnetism-orbital and spin contributions, spin-orbit coupling, Hunds third rule and Energies of J levels - Curie law and Curie - Weiss law- Ferromagnetism and antiferromagnetism - Temperature independent magnetism Magnetic susceptibility and its determination by Gouy's and Faraday methods. Calculation of magnetic moment from magnetic susceptibility, spin-only formula, Orbital contribution to magnetic moment (Oh and Td Complexes) -Paramagnetism and crystalline fields - Ti (III), V (III), VO²⁺, Cr (III), Mn (II), Fe (III), Co(II), Ni (II) and Cu (II). Magnetic Exchange in copper acetate and other dimmers – spin cross over in complexes.

UNIT-IV: CATALYSIS

Homogeneous catalysis, Metal ion catalyzed reactions - Redox potentials and processes - Mechanism of redox processes involving ligands - Factors affecting redox potentials - other types of metal catalyzed reactions - Reactions involving Ag (I), Cu (II) and Os (VIII) - Reactions of Oxyanions - Factors affecting rate (General discussion only) - Induced reactions - Free radical reactions – Thermal decomposition of peroxy disulphate – Fe(III) –S₂O₈ reactions – chain reactions – H-Br reactions, H₂O₂ – S₂O₈reactions.

Books Suggested

- 1. Inorganic Chemistry principles of Structure and Reactivity 6th Edition. James E. Huheey.
- 2. Organometallic Chemistry: R.C. Mehrotra and Singh.
- 3. R. S. Drago: Structural methods in Inorganic Chemistry.
- 4. H. H. Willard, L. L. Merritt, Jr., J. A. Dean and F. A. Settle, Jr.: Instrumental Methods of Analysis (CBS Publishers).
- 5. R. L. Carlin: Magnetic Chemistry. R. L. Datta and A. Syamal: Elements of Magnetic Chemistry.

CHE-202	Organic Chemistry II	L-3, T-1, P-2	4 Credits

Pre-requisite: Understanding of Organic Chemistry

Course Objectives:

- Able to recognize, classify, explain, and apply fundamental organic reactions such as E₂, E₁, E_{1CB}.
- Familiar with molecular rearrangements involving electron deficient carbon, nitrogen and oxygen atoms and electron rich carbon atom.
- Provide Hantzsch-Widmann nomenclature for the three and four membered heterocycles. Be able to predict synthetic routes and chemical reactions of these heterocycles.
- Be familiar with occurrence, isolation, structural elucidation and synthesis of natural products- alkaloids

Course	Course Outcomes: At the end of the course, the student will be able CO1 To familiarize the mechanisms of E ₁ , E ₂ and E _{1CB} reactions, steroselectivity and synpyrolytic												
CO1	To fan	niliarize t	he mech	anisms o	f E ₁ , E ₂	and E _{1CB}	reaction	s, sterose	lectivity	and s	ynpyroly	tic	
	elimina	tions and	use of ise	otopes, ch	nemical tr	apping ar	d crossov	er experi	ments.				
CO2	To lea	rn the rea	arrangem	ents invo	lving elec	ctron defi	cient carb	on, nitro	gen and	oxygen at	oms and	electron	
	rich car	rich carbon atom and familiarize with the limitations and applications of reactions.											
CO3	To lear	To learn the synthesis of three and four membered heterocycles, mechanism of ring opening reactions and											
	the effe	he effect of electron donating and withdrawing substituents in selectivity of ring opening reactions.											
CO4	To und	To understand the structural elucidation and synthesis of alkaloids using specific reagents.											
		Mapping of course outcomes with the program outcomes											
			Mappi	ing of col	irse outc	omes wit	n tne pro	gram out	comes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	2	2	3	-	2	1	1	2	-	1	
CO2	3	3	2	2	3	2	2	-	1	-	1	1	
CO3	3	3	2	2	3	2	2	1	1	1	2		
CO4	3	3	2	2	3	-	2	-	1	1	-	1	

CHE- 202 : ORGANIC CHEMISTRY II

UNIT-I: Reaction mechanism-I

15 Hrs

Electrophilic addition to carbon carbon double bond: Stereoselective addition to carbon carbon double bond; anti addition-Bromination and epoxidation followed by ring opening. Syn addition of OsO₄ and KMnO₄.

Elimination reactions Elimination reactions E_2 , E_1 , E_{1CB} mechanisms. Orientation and stereoselectivity in E_2 eliminations. Pyrolytic syn elimination and α -elimination, elimination Vs substitution. Facors influencing the elimination reactions

Determination of reaction mechanism: Determination of reaction mechanism: Energy profiles of addition and elimination reactions, transition states, product isolation and structure of intermediates, use of isotopes, chemical trapping, crossover experiments. Use of IR and NMR in the investigation of reaction mechanism.

UNIT-II: Molecular Rearrangements:

15 Hrs

Rearrangements to electron deficient Carbon atom:

Pinacol-Pinacolone, Wagner-Meerwein, Dienone-Phenol and Demjonove Rearrngements

Rearrangements to electron deficient Nitrogen atom:

Hofmann, Curtius, Schimidt and Beckmann Rearrangements.

Rearrangements to electron deficient Oxygen atom: Baeyer-Villiger and Dakins Rearrangements

Rearrangements to electron rich Carbon atom: Favorski and Neber Rearrangements

Aromatic and Sigmatropic Rearrangements: Fries and Claisen Rearrangements

UNIT III: Three and four membered heterocycles:

15 Hrs

Systematic nomenclature (Hantzsch-Widmann system) and Replacement nomenclature for monocyclic heterocycles (Three and four membered rings). Synthesis and chemical reactions of aziridines, oxiranes, thiiranes, azetidines, oxetanes, and thietanes.

UNIT-IV: Alkaloids 15 Hrs

Occurrence, isolation, general methods of structure elucidation and physiological action, degradation, classification based on nitrogen heterocyclic ring, structure elucidation and synthesis of the following: Atropine, Papaverine and Quinine.

Books Suggested:

- 1. Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, John Wiley.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J Sundberg, Plenum.
- 3. Structure and Mechanism in Organic Chemistry C.K. Inglod, Cornell University Press.
- 4. Organic Chemistry, R.T Morrison and R.N. Boyd, Prentice Hall.
- 5. Modern Organic Reactions, H.O. House, Benjamin.
- 6. Principles of Organic Synthesis, R.O.C Norman and J. M. Coxon, Blackie Academic.
- 7. Stereochemistry, P.S. Kalsi, Wiley Eastern.
- 8. Text book of Organic Chemistry, M.C. Murry
- 9. Text book of Organic Chemistry, Fessendon and Fessendon.
- 10. Text book of Organic Chemistry, T.W. Solomon,
- 11. Organic Chemistry, Vol II, I.L. Finar, ELBS Eds.
- 12. Heterocyclic chemistry T.L Gilchrist, Longman Scientific Technical
- 13. An Introduction to the Heterocyclic compounds, R M Acheson, John Wiley.

CHE -	203		Ph	ysical ch	emistry l	I	L-	5,T-1,P-6		4	Credits		
Pre-re	quisite: B	asic know	ledge abo	out Physic	al Chemi	stry			_				
Cours	e Objectiv	es:											
• Lea	ırn Angula	r moment	tum and N	/lolecular	Orbital T	heory and	d applicat	tion of Hu	ckel theo	ry to orga	nic mole	cules.	
• Kn	ow about c	oncepts i	n Surface	Chemistr	y, concep	ot of elect	ric double	e layer mo	odel and l	Micelles.			
• Get	knowledg	e on sym	metry and	l group th	eory their	r use in sp	pectrosco	py, Mullik	cen char	acter tabl	es.		
	derstand Ir							ectrolysis	and pola	rography.			
Cours	e Outcome	es At the	end of the	course, t	he studen	t will be	able						
CO1													
	Huckel theory of conjugated systems.												
CO2	To learn Gibbs adsorption isotherm, BET equation and correlate limitations, critical micellar concentration												
	(CMC) and factors affecting the CMC of surfactants.												
CO3	To identi	fy Relation	on betwee	n order o	f a finite g	group and	l its sub-g	group, con	jugacy, S	ymmetry	point gro	oup (MLS,	
	N	IHS and I	MSS) and	orthogor	ality theo	orem.							
CO4	To acqui	re know	ledge on	DC-Pola	rography,	, AC-Pol	arograph	y, Contro	lled Pote	ntial Ele	ctrolysis,	to derive	
	equation	for Tafel	plots, hal	f-wave po	otentials f	or reversi	ible syste	m.					
		M	apping	of cour	se outco	omes wi	ith the j	progran	n outco	mes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	-	3	-	2	1	1	-	1	1	1	
CO2	3	2	2	3	2	2	2	-	2	-	2	-	
CO3	3	2	2	3	-	-	1	1	-	1	1	1	
CO4	3	2	-	2	2	1	1	-	2	1	1	1	

CHE-AC-203 Physical Chemistry III

UNIT-I: Quantum Chemistry-II

15 Hrs

- (A) Angular momentum: Angular momentum, Rotations and angular momentum, Eigen functions and Eigen values of angular momentum, Ladder operator, addition of angular momenta, spin, antisymmetry and pauli Exclusion principle. Slater determinant.;
- (B) Molecular Orbital TheoryAtomic Orbitals, Simple Molecular Orbitals, Hybrid Atomic Orbitals, Shapes and energies of Molecular Orbital, Systems of Organic Molecules (Ex: Methane, Ethylene, Acetylene). Huckel theory of conjugated systems, Π-bond order and charge density calculations, application of Huckel theory to ethylene, butadiene and benzene.

UNIT-II: Surface Chemistry

15 Hrs

Surface tension, capillary action, pressure difference across curved surface, (Laplace equation), vapour pressure of droplets (Kelvin equation), Gibbs adsorption isotherm, BET adsorption isotherm, derivation of BET equation, limitations of BET equation, estimation of surface area from BET equation, Surface films on liquids. Concept of electric double layer model-Helmholtz perrin, Gouy- Chapman and stern models (no derivation)

Micells: Surface active agents, classification of surface active agents micellisation, hydrophobic interaction, critical micellar concentration (CMC), factors affecting the CMC of surfactants, thermodynamics of micellisation, emulsions, reverse micelles.

UNIT-III: SYMMETRY AND GROUP THEORY

15 Hrs

Definition of a group, rules that are set for a group, sub-group, order of a group, Relation between order of a finite group and its sub-group, conjugacy relation and class of a group, symmetry elements and symmetry operation. Symmetry point group (MLS, MHS and MSS), Schoenflies symbols - Representation of groups by matrices (representation for C_n , C_{nv} , D_{nh} etc. groups to be worked out explicitly), character of a representation, group multiplication tables, reducible - irreducible representations The great orthogonality theorem (without proof) - character tables ($H_2O_1NH_3$) and their use in spectroscopy, Mulliken character tables.

UNIT-IV: ELECTROCHEMISTRY-II

15 Hrs

Irreversible Electrode phenomenon: Reversibility and irreversibility, Dissolution and deposition potentials, Decomposition voltage, overvoltage, diffusion overvoltage, charge transfer overvoltage, concentration overvoltage-hydrogen and oxygen overvoltages, Tafel plots, Exchange current density and Transfer coefficient, Butler-Volmer equation for one electron transfer processes.

Polarography: Theory, classification, principle, Instrumentation of Polarography, DME, HMDE diffusion current, Ilkovic equation, DC-Polarography, AC-Polarography, Controlled Potential Electrolysis, Millicoulometry, Equation for half-wave potentials, for reversible system when oxidant alone, reductant alone and both are present.

Books Suggested

- 1. P.W. Atkins: Physical Chemistry (ELBS).
- 2. Ira N. Levine: Quantum Chemistry (Prentice Hall).
- 3. R. Mcweeny: Coulson's Valence (ELBS).
- 4. J.O.M. Bockris and A.K.N. Reddy, Modern Electrochemistry, vol.I & II (Plenum).
- 5. S. Glasstone; An Introduction to Electrochemistry (3rd ed.)(Affiliated East-West).
- 6. V. Moroi: Micelles, theoretical and applied aspects (Plenum).
- 7. Maron and prutton: principles of physical Chemistry.
- 8. Silbey, Alberty, Bawendi. Physical Chemistry. Jhon-Wiley & Sons. 4th edition-2006.
- 9. D.N. Bajpai: Advanced physical Chemistry: S. Chand & Company, 1998.

CHE 2	04			Core pra	actical I:		L	-5,T-1,P-	0	2	Credits		
			In	organic	Chemisti	ry							
Pre-rec	quisite: U	nderstan	ding of g	raduate le	evel Inorg	anic Che	mistry pra	actical.					
SEMI	MICRO (QUALIT	TATIVE	ANALY	SIS								
	Separatio Preparation				two comp	onent mi	xtures.						
Course	Course Outcomes: At the end of the course, the student will be able												
CO1	1												
CO2	CO 2: To acquire knowledge in the preparation of metal complexes												
CO3													
CO4													
			Марр	oing of co	ourse out	comes w	ith the pi	ogram o	utcomes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	2	3	2	1	-	2	-	3	3	1	
CO2	3	2	2	3	-	1	2	-	2	3	3	1	
CO3													
CO4													

CHE 204: Core practical I: Inorganic Chemistry

I. Quantitative Analysis:

Separation and determination of two component mixtures:

- (i) Separation of Al(III) and Determination of Fe (III)
- (ii) Separation of Cu(II) and Determination of Zn (II)
- (iii) Separation of Ca(II) and Determination of Mg (II)
- (iv) Separation of Cu(II) and Determination of Ni (II)
- (v) Determination of Ferrocyanide and Ferricyanide

II. Preparation of Metal Complexes:

- (i) Tetra(ammine) copper (II) sulphate.
- (ii) Mercury tetra(thiocyanato) cobaltate(II).
- (iii) Hexa(ammine) Nickel (II) chloride.
- (iv) Tris(acetylacetonato) Manganese (III) chloride.
- (v) Tris (ethylenediammine) Nickel (II) thiosulpha

Cl	HE 106			-	actical II			L-5,T-1,	P-0		2 Cre	dits	
			•	Organic (CheImist	ry							
Pre-req	juisite: Ui	nderstand	ing of gra	aduate lev	el Organi	ic Chemis	try practi	cal.					
Course	Objectiv	es:											
• Fam	iliarize wi	th two co	mponent	mixture s	separation	n and iden	tification						
• prep	aration of	derivativ	es and pu	ırification	by differ	ent metho	ods						
Course	Outcome	s: At the	end of th	e course,	the stude	nt will be	able						
CO1	To familiarize with binary mixture separation and to gain hands-on-experience in purification of the												
CO2	To get knowledge about the chemical behavior of different components and mechanisms.												
CO3													
CO4													
			Mappi	ing of cou	ırse outc	omes wit	h the pro	gram out	tcomes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	2	3	2	-	1	2	-	1	1	1	
CO2	3	2	2	3	-	2	ı	1	2	1	-	2	
CO3		•											
CO4													

CHE: 205: PRACTICAL - II: ORGANIC CHEMISTRY

Separation and Identification of two component organic mixture by systematic qualitative analysis.

Binary mixture of

Acid + Neutral

Phenol + Neutral

Base + Neutral

Acid + Ether insoluble component

Phenol + Ether insoluble component

Base + Ether insoluble component

CI	HE 206			Core pr	actical II	:		L-5,T-1,	P-0		2 Cr	edits		
]	Physical (CheImist	ry								
Pre-req	uisite: U	nderstand	ing of gra	aduate lev	el Physic	al Chemi	stry pract	ical.	•					
Course	Objectiv	es:												
• Fam	iliarize w	ith condu	ctometric	, potentio	metric an	d redox n	nethods o	f analysis						
• Colo	rometric	and pHm	etric metl	nods of an	alysis									
Course	Outcome	es: At the	end of th	e course,	the stude	nt will be	able							
CO1	To study the determination of cell constant and verification of Onsagar equation, strength of strong													
CO2	To get knowledge on the applications of conductometry, potentiometry, coulometry and pH metry.													
CO3														
CO4														
			Mappi	ing of cou	ırse outc	omes wit	h the pro	gram out	comes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	2	3	3	1	1	2	-	1	1	1		
CO2	3	2	2	3	2	1	1	-	2	1	-	2		
CO3														
CO4														

CHE: 106: PRACTICAL – III: Physical Chemistry

Syllabus

1. Conductometry:

- (a) Getermination of cell constant
- (b) Verification of Onsagar equation
- (c) Determination of dissociation constant of a weak acid
- (d) Titration of a strong acid with a strong base
- (e) Titration of a weak acid with a strong base

2. Potentiometry:

- (a) Titration of a strong acid with a strong base
- (b) Titration of a weak acid with a strong base
- (c) Redox titration
- 3. Coulometry: Estimation of Manganese
- 4. pH metry: Strong acid, Strong base titrations.

CHE-	207		Gei	neral Cho	emistry I	I	L-	5,T-1,P-0		2	Credits			
Pre-req	uisite: Ur	nderstand	ing of gra	duate lev	el Chemi	stry	•		•					
Course	Objective	es:												
		_			ferent elec	ctro analy	tical metl	hods.						
• Fan	niliarize w	vith chron	natograpł	nic techni	ques.									
Course	Outcome	es: At the	end of th	e course,	the stude	nt will be	able							
CO1	To acquire knowledge on ion selective electrodes, solid membrane electrodes and glass electrodes and													
CO2	To learn general principles and classifications of chromatographic separations and applications of TLC, GLC													
CO3														
CO4														
	<u> </u>		Manni	na of oor			h 4ha mua	gram out	taamaa					
			Mappi	ng or cot	irse outco	omes wit	n the pro	gram out	comes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	2	3	1	2	-	2	2	-	1	1		
CO2	3	-	2	3	1	2	1	2	-	2	1	1		
CO3														
CO4					204 4 6									

CHE 204-A: General Chemistry II

UNIT-I: ELECTRO ANALYTICAL METHODS

Theory of potentiometry, calculation electrode potential at the equivalence. Finding of equivalence volume, derivative and linear titration plots. Ion-sensitive electrodes –types of ion sensitive electrodes –metal based cation and anion sensitive electrodes, solid membrane electrodes, glass electrodes. Liquid ion-exchange electrodes, gas sensing membrane electrodes, Amperometric titrations - Anodic stripping voltammetry, chronoamperometry, chronopotentiometry, Cyclic Voltammetry, Differential Pulse Polarography, linear sweep voltammetry, square wave voltammetry.

UNIT-II: CHROMATOGRAPHY

CHE 207

General principles and classifications of chromatographic separations

Thin layer chromatography: Classification, principle, experimental technique, sample application, development of plate, retardation factor.

Gas liquid chromatography: Gas liquid chromatography - instrumentation (columns and detectors), retention time and retention volume. Chromatographic behaviour of solutes, column efficiency and resolution, column processes and band broadening, time of analysis and resolution, Van-Deemter equation.

High performance liquid chromatography: Theory and instrumentation-column performance, gradient elution, delivery system, sample introduction, separation columns, detectors and applications of HPLC.

Books Suggested

- 1. H.W. Willard, LL. Merrit and J.A.Dean: Instrumental Methods of Analysis. Affiliated East-West).
- 2. G.H. Jeffery J. Bassett, J. Mendham and R.C. Denny. Vogel"s Text Book of Quantitative Chemical Analysis (ELBS).
- 3. D.A. Skoog and D.M. West: Principles of Instrumental Analysis (Holt, Rinehart and Wilson).
- 4. J.G. Dick: Analytical Chemistry (McGraw Hill).
- 5. D. Midgley and K. Torrance: potentiometric Water Analysis (John Wiley).

CHE	CHE 208 Human Values and professional ethics- L-3,T-1,P-2 4						Credits					
Pre-rec	quisite: U	nderstand	ling of Hu	ıman Val	ues and p	rofessiona	l ethics					
Course	Objectiv	es:										
• Gair	n knowled	lge on val	ue educat	tion, fami	ly values	and adjust	ability					
• Dev	elop ethic	s towards	medical,	health ca	re profes	sionals an	d ethical	issues in	genetic ei	ngineering	9	
• Uno	derstand t	the impor	tance of	social eth	ics towar	rds organ	trade, hu	ıman traf	fic king l	numan rig	ghts viola	tion and
soci	al dispari	ties.										
• Kno	w about e	environme	ental ethic	s, ecolog	ical crises	s, pollution	and pro	tection of	f environr	nent		
Course	Outcom	es: At the	end of th	e course,	the stude	nt will be	able to					
CO1	To und		ne concep	ts of hum	an values	, responsil	oilities o	f family v	alues and	status of	women ii	n family
CO2	To acq	uire know	vledge on	different	medical e	ethics the v	views of	charaka a	nd sushru	ita on moi	ral respon	sibilities
		ical pract										
CO3	To gain	n knowled	lge on soo	cial ethics	and unde	erstand the	characte	eristics of	ethical p	roblems ii	n manage	ment.
CO4	To fam	niliarize en	nvironme	ntal ethics	s, ethical	theory and	ecologi	cal crisis.				
	Mapping of course outcomes with the program outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	3	1	2	1	-	3	1	1	1
CO2	3	1	1	3	-	2	-	3	3	1	1	1
CO3	3	2	2	3	2	2	2	2	2	3	-	1
CO4	3	1	1	3	1	2	-	-	2	3	1	1

CHE 207: ELECTIVE FOUNDATION (HUMAN VALUES AND PROFESSIONAL ETHICS-II)

Chapter I: Value Education – Definition – Relevance to present day – Concept of human values - Self introspection – Self-esteem. Family values-Components, Structure and responsibilities of family Neutralization of anger – Adjustability – Threats of family life – Status of women in family and society – Caring for needy and elderly – Time allotment for sharing ideas and concerns.

Chapter II: Medical ethics – Views of Charaka, Sushruta and Hippocratus on moral responsibility of medical practitioners. Code of ethics for medical and healthcare professionals. Euthanasia, Ethical obligation to animals, Ethical issues in relation to health care professionals and patients. Social justice in health care, human cloning, problem of abortion. Ethical issues in genetic engineering and Ethical issues raised by new biological technology or knowledge.

Chapter III: Social ethics – Organ trade, Human trafficking, Human rights violation and social disparities, Feminist ethics, Surrogacy/pregnancy. Ethics of media – Impact of Newspapers, Television, Movies and Internet, Business ethics – Ethical standards of business – Immoral and illegal practices and their solutions. Characteristics of ethical problems in management, ethical theories, causes of unethical behavior, Ethical abuses and work ethics.

Chapter IV: Environmental ethics – Ethical theory, man and nature - Ecological crisis, Pest control, Pollution and waste, Climate change, Energy and pollution, Justice and environmental health.

Books for study:

- 1. Johns S Mackenjie: A Manual of ethics
- 2. "The Ethics of Management" by Larue Tone Hosmer, Richard D. Irwin Inc.
- 3. Management Ethics Integrity at work by Joseph A. Petrick and John F. Quinn, Response Books, New Delhi.
- 4. "Ethics in Management" by S.A. Shelekar, Himalaya Publishing House.
- 5. Harold H. Titus: Ethics for Today
- 6. Maitra, S.K: Hindu Ethics
- 7. William Lilly: Introduction to Ethics
- 8. Sinha: A Manual of Ethics
- 9. Manu: Manava Dharma Sastra or the Institute of Manu: Comprising the Indian System of Duties: Religious and Civil (ed) G.C. Haughton.
- 10. Sasruta Samhita: Tr. KavirajKunjanlal, KunjanlalBrishagratha, Chowkamba Sanskrit Series, Vol I,II and III, Varanasi, Vol I PP, 16-20, 21-32 and 74-77 only.

- 11. Charaka Samhita: Tr. Dr. Ram Karan Sarma and Vaidya Bhagavan Dash, Chowkambha Sanskrit Series Office. Varanasi I, II, III Vol I PP 183-191.
- 12. Ethics, Theory and Contemporary Issues. Barbara Mackinnon, Wadsworth/Thomson Learning, 2001.
- 13. Text Book for Intermediate First Year Ethics and Human Values, Board of Intermediate Eduction Telugu Academy, Hyderabad.
- 14. I.C. Sharma Ethical Philosophy of India. Nagin& Co Julundhar.

CHE-P	C-301		Ph	ysical Cl	nemistry	III	L-:	5,T-1,P-0		4 Credits					
Pre-re	quisite: U	nderstand	ling of gra	aduate lev	el Physic	al Chemi	stry								
	e Objectiv														
	rn applica olications														
	niliarize w									Raman sı	pectrosco	py.			
	knowledg	ge on co	ncept of	Thermod	ynamics	of polym	er dissol	ution and	l Flory-H	luggins th	neory of	polymer			
	itions.	A1	1 0.1		.1 . 1	4 211.1	11 /								
Course	e Outcom														
CO1						dinate of	C ₂ V poin	it group b	ased on 3	N Coordi	nates and	to			
604			xclusion]			T	1 1 D	.1 1	L D. 1	2 1	.1 1 (137			
CO2			g conditio of crystal		Indices-	Laue met	hod, Brag	gg method	l, Debye S	Scherrer r	nethod of	X-ray			
CO3					k effect, v	/ibration-	rotation s	pectrosco	pv. POR	branches,	selection	rules			
			l- rotation						137	,					
CO4							ution the	ory, Hilde	brand so	lubility pa	arameter,				
	concept of	of Flory-F	Huggins tl	neory of p	oolymer s	olutions									
			Manni	ing of cor	irse outc	omes wit	h the pro	gram out	tcomes						
					,	,			,						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	2	2	3	-	2	2	1	1	-	2	2			
CO2	3	2	2	3	2	2	1	2	2	2	-	1			
CO3	3	2	2	3	2	2	-	2	-	1	2	2			
CO4	3	2	2	3	-	2	2	-	2	2	-	2			

CHE-PC-301 CORE-THEORY PHYSICAL CHEMISTRY III

UNIT-I Applications of Group Theory

15 Hrs

Construction of reducible and irreducible representations, Determination of Character Co-ordinate of C₂V point group based on 3N Coordinates. Standard reduction formula, Determination of normal modes of vibrations of SO₂, NH₃, POCl₃, PtCl₄²⁻·H₂O₂ molecules. Mutual exclusion Principle, Direct Product, Accidental Degeneracy and Fermi resonance Group Theory and Spectroscopy: IR Spectral activity of NH₃ molecule, selection rules, symmetry Criteria for optical activity, symmetry restrictions on dipole moments, symmetry and stereo isomerism. Prediction of IR and Raman Spectral activity of H₂O and CO₂.

UNIT-II: X-ray Diffraction:

15 Hrs

- (A) Solid State Chemistry
 Dislocation of Solids, Schottky and Frenkeldefects, insulaters, a,d semiconductors, Band theory of solids, solid state reactions.
- **(B)** Bragg conditions-Miller Indices- Laue method, Bragg method, Debye Scherrer method of X-ray structural analysis of crystals. Index reflections, identification of unit cells from systematic absences in diffraction pattern- structure of simple lattices and X-ray intensities- structure factor and its relation to intensity and electron density- Description of procedure for X-ray structure analysis (NaCl and KCl).
- **(C)** Electron Diffraction: Scattering intensity Vs scattering angle, Wierlequation, and its importance. Measurement techniques, Elucidation of structures of simple gas phase molecules, Low energy electron diffraction (LEED) for the study of surfaces.

UNIT-III: SPECTROSCOPHY

5 Hrs

Microwave spectroscopy: classification of molecules, rigid rotator model, effect of isotopic substitution on the transition frequencies, intensities- stark effect.

Infrared spectroscopy: Linear harmonic oscillator, zero point energy, anharmonity, Mores potential energy diagram, fundamental and overtone transitions, hot bands and combinations bands. Vibration-rotation spectroscopy, PQR branches, selection rules, factors affecting the band positions and intensities for IR region. **Raman spectroscopy:** Classical and quantum theories of Raman effect, pure rotational, pure vibrational Raman spectroscopy, selection rules, mutual exclusion principle, resonance Raman spectroscopy and coherent antistokes Raman spectroscopy. Vibrational- rotational Raman spectroscopy.

UNIT-IV: POLYMER SOLUTIONS

15 Hrs

Thermodynamics of polymer dissolution, effect of molecular weight on solubility, solubility of crystalline and amorphous polymer, heat of dissolution, regular solution theory, Hildebrand solubility parameter, Flory-Huggins theory of polymer solutions, conformational entropy, osmotic pressure and viscosity of polymer solutions. Molecular weight determination by light scattering, ultra-centrifugation and sedimentation equilibrium method. Liquid Crystals- synthesis and applications

Books Suggested

- 1. F.A. Cotton: Introduction to Group theory for chemists.
- 2. Geroge Davidson Elsevier : Introductory Group Theory for Chemists.
- 3. Gurdeep Raj, Ajay Bhagi&Vinod Jain: Group Theory and Symmetry in Chemistry
- 4. Instrumental methods of analysis M.H. Willard, Meritt Jr. and J.A. Dean
- 5. Principles of instrumental analysis Skoog and West
- 6. F. W. Billmeyer, Jr.: Text Book of Polymer Science. Wiley Interscience.
- 7. V. R. Gowariker, N. V. Viswanathan, Jayadev Sreedhar.: polymer Science. New Age international Publishers.

СНЕ	E-PC 302		Organic Spectroscopy and Applications		d	L-5,T-1,P-0		4Credits				
Pre-requisite: Understanding of Organic Spectroscopy and Applications												
• Fam the r	nolecule	with the es.						10. 11		identifying		
			•					_		bserving a ctures of t		
										ass spectro		uies.
					se, the stud					-F 42	- F J	
CO1		t experie	nce to ca	lculate λ	max value	s for dier	nes, enon	es, polye	nes, aroma	tic and het	eroaroma	ntic
CO2	To fa	miliarize	with the	absorption	on bands of	f the mol	ecules w	ith specif	ic function	al groups		
CO3	To interpret the data to different types of protons and carbons present in a molecule so as to ascertain the structure of the molecule based on the data provided											
CO4	To ac	quire kno	wledge a	about spe	cific fragn	nentation	rules of	different	molecules	which are	unique.	
Mapping of course outcomes with the program outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	2	2	2	-	-	2	2	-
CO2	3	2	2	3	2	2	-	2	2	2	2	2
CO3	3	2	2	3	2	2	2	1	-	2	2	2
CO4	3	2	2	3	2	2	-	2	-	2	2	2

CHE-PC 302: CORE THEORY: ORGANIC SPECTROSCOPY AND APPLICATIONS

UNIT-I: ULTRAVIOLET AND VISIBLE SPECTROSCOPY:

15Hrs

Various electronic transitions (185-800 nm), effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, conjugated polyenes. Fisher-Woodward rules for conjugated dienes and carbonyl compounds, ultraviolet spectra of aromatic and heterocyclic compounds. Steric effect in biphenyls.

UNIT - II: INFRARED SPECTROSCOPY

15Hrs

Instrumentation and sample handling. Characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ether, phenols and amines. Detailed study of vibrational frequencies of carbonyl compounds (ketones, aldehydes, esters, amides, acids, anhydrides, lactones, lactams and conjugated carbonyl compounds). Effect of hydrogen bonding and solvent effect on vibrational frequencies, overtones, combination bands and fermi resonance, FT-IR

UNIT -III: NMR SPECTROSCOPY:

15Hrs

¹H NMR spectroscopy: Magnetic properties of nuclei, Principles of NMR. Instrumentation, CW and pulsed FT instrumentation, equivalent and nonequivalent protons, enantiotopic and diastereotopic protons, Chemical shifts, factors affecting the chemical shifts, electronegativity and anisotropy, shielding and deshielding effects, Signal integration, Spin-spin coupling: vicinal, germinal and long range, Coupling constants and factors affecting coupling constants.

Applications of ¹H NMR spectroscopy: Reaction mechanisms (cyclic bromonium ion, electrophilic and nucleophilic substitutions, carbocations and carbanions), E, Z isomers, conformation of cyclohexane and decalins, keto-enol tautomerism, hydrogen bonding, proton exchange processes (alcohols, amines and carboxylic acids), C-N rotation. Stereochemistry, hindered rotation, Karplus curve variation of coupling constant with dihedral angle. Simplification of complex spectra, nuclear magnetic double resonance, contact shift reagents, nuclear Overhauser effect (NOE).

¹³C NMR spectroscopy: General considerations, chemical shift (aliphatic, olefinic, alkyne, aromatic, heteroaromatic and carbonyl carbon), coupling constants. Two dimensional NMR spectroscopy-COSY.

UNIT-IV: MASS SPECTROMETRY

15Hrs

Introduction, ion production, type of ionization, EI, CI, FD, and FAB-factors affecting fragmentation, ion analysis, ion abundance. Mass spectral fragmentation of organic compounds, common functional groups, molecular-ion peak, metastable peak, Mc. Lafferty rearrangement. Nitrogen rule, isotope labeling. High resolution mass spectrometry, Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.

Books suggested:

- 1. Organic spectroscopy, W. Kemp 5th Ed, ELBS
- 2. Spectroscopy of organic compounds, RM Silversteen and others, 5th Ed, John Wiley
- 3. Spectroscopy of organic compounds, P.S. Kalsi, Wiley, 1993.
- 4. NMR in chemistry-A multi nuclear introduction, William Kemp, Mc Millan, 1986.
- 5. Spectroscopic methods in Organic chemistry, DH Williams & I Flemmi

	PC 303 & 304		Core prac Physical Chemistry-			L-5,T-1,P-0				4 Credits		
Pre-req	uisite: U	nderstand	ing of Inc	organic C	hemistry	- Practical			l			
StudyFlamFami	e photon liarize w	nical kine netry to do ith condu		lifferent o titrations	cations of mixtu	res						
			n of differ			nt will be	ahle					
CO1						solutions						
CO2	To gair	n knowled	dge on the	determin	nation of	different c	ations by	flame ph	otometry			
CO3	To und	erstand tl	ne princip	le and wo	orking asp	ects of co	nductom	etric titra	tions			
CO4	To acq	uire knov	vledge on	the imple	ementatio	n of color	ometric e	estimation	s.			
	Mapping of course outcomes with the program outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	2	-	2	-	1	2	-	2
CO2	3	2	2	3	3	2	-	2	-	2	2	2
CO3	3	3	3	2	-	2	1	-	2	-	2	2
CO4	3	2	2	3	3	2	1	2	-	2	2	2

CHE-PC-303: Core-Practical PRACTICAL-I

1. Chemical Kinetics:

- a) Study of the kinetics of halogenations of acetone.
- b) Determination of activation energy of reaction between iodide and Persulphate
- c) Determination rate constant of oxidation of iodide ion by persulphate ion and study the effect of neutral salt (KCl) on this reaction.

2. Flame Photometry:

- a) Determination of Na
- b) Determination of K
- c) Determination of Cu

CHE- PC-304: Core-Practical PRACTICAL-II

1. <u>Conductometry:</u>

- a) Titration of mixture of halides
- b) Titration of mixture of HCl+HOAC
- c) Saponification of an ester

2. Colorimetry:

- a) Estimation of Manganese
- b) Estimation of Iron
- c) Estimation of Phosphate
- d) Titration of copper Vs EDTA

CHE PC	305 A		Or	ganic Ch	emistry l	Ш	I	∠-3,T-1,P -	-2	40	Credits	
Pre-req	uisite: U	nderstand	ling of Or	ganic Ch	emistry		<u> </u>					
FamiStudUndoApplprod	iliarize wy the met erstand to lications ucts.	ith the ap hods of p pocity, pr of differe	reparation rochirality ent oxidiz	of differ and app auxillar and	lications or y and reareducing	of organo gent-cont agents ir	metallic r rolled me organic	nesis, Meceagents. ethods in a synthesis	ısymmetr	ic synthes	sis.	
CO1	To familiarize with the specific functions of the reagents particularly diazomethane, N-bromosuccinimide, Ziegler Natta catalyst, 1,3-dithianes and Merrifield resin in the synthesis of a variety of complex molecules.											
CO2						ent organo llic reage		reagents a	and also s	stereo and	l regio spe	ecificity
CO3	To und	erstand d	iastereose	lectivity,	stereosel	ectivity an	nd substra	ite control	lled auxil	lary contr	olled read	ctions
CO4			ses select	ive and c	omplete r	eductions	to synthe	dation in esize vario	ous comp		nds and a	also the
			Mappi	ing of cou	irse outc	omes wit	h the pro	gram out	comes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	2	2	1	2	-	2	2	2
CO2	3	2	2	3	2	2	-	2	2	2	2	2
CO3	3	2	2	3	2	2	1	1	2	-	2	-
CO4	3	2	2	3	2	2	-	2	-	2	2	1

CHE-PC-305A Core-Theory Organic Chemistry III

UNIT I: REAGENTS IN ORGANIC SYNTHESIS

15 Hrs

Use of the following reagents in organic synthesis: Anhydrous AlCl₃, Boran trifluoride, N-Bromosuccinimide, Diazomethane, Dicyclohexylcarbodiimide, Lead tetraacetate, Zieglar-Natta catalysts, DDQ, Dithianes, Merrifield resin.

UNIT-II: ORGANOMETALLIC REAGENTS

15 Hrs

Synthesis and applications of Grignard reagents, Organolithium, Zinc, Copper, Mercury, Palladium and Rhodium compounds in Organic Synthesis, Homogeneous catalytic hydrogenation and hydroformylation reactions

UNIT III: ASYMMETRIC SYNTHESIS

CHE DC 205 A

15 Hrs

1Cuadita

Topocity - Prochirality- Substrate selectivity - Diastereoselectivity and enantioselectivity-Substrate controlled methods-use of chiral substrates - examples

Auxiliary controlled methods-Use of chiral auxiliaries-Chiral enolates-alkylation of chiral imines – Stereoselective Diels-Alder reaction

Reagent controlled methods-Use of chiral reagents-Asymmetric oxidation-Sharpless epoxidation-Asymmetric reduction-Use of lithium aluminium hydride and borate reagents.

UNIT IV: METHODS OF ORGANIC SYNTHESIS

15 Hrs

- i). Oxidations: (a) Alcohols to carbonyls-Chromium (iv) oxidants-Dimethylsulfoxide oxidation, periodate xidation, Oppenauer oxidation, oxidation with manganese dioxide, oxidation with silver carbonate (b) Alkenes to epoxides-peroxide induced epoxidations. (c) Alkenes to diols-oxidation with potassium permanaganate, osmium tetraoxide, Prevost reaction (d) Ketones to esters-Bayer-Villiger oxidation (e) Oxidative bond cleavage-cleavage of alkenes by transition metals. (f) Oxidation of alkyl or alkenyl fragments-selenium dioxide and chromium trioxide oxidations.
- **ii).** Reductions: Reduction with lithium aluminium hydride, sodium borohydride, alkoxides, bis-methoxy ethoxy aluminium hydride, Boran aluminium hydride and derivatives-catalytic, hydrogenation-dissolving metal reductions, Non-Metallic reducing agents including enzymatic and microbial reductions.

Suggested Books

- 1. Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, John Wiley.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J. Sundberg, Plenum.
- 3. Structure and Mechanism in Organic Chemistry, C.K. Inglod, Cornell University Press.
- 4. Organic Chemistry, R.T Morrison and R.N. Boyd, Prentice Hall.
- 5. Name reactions and reagents in organic synthesis, B.P. Muway and M.G Ellord, John Wiley.
- 6. Principles of Organic Synthesis, R.O.C Norman and J.M Coxon, Blackie Academic & Professional.
- 7. Reaction Mechanism in Organic Chemistry, P.S. Kalsi, New Age International.
- 8. Principles of organometallic chemistry, P. Powell, ELBS.
- 9. Organo transition metal chemistry-Applications to organic synthesis, S.G. Davis, Pergmon.
- 10. Stereochemistry to Organic Compounds, D. Nasipuri, New Age International.
- 11. Stereochemistry, P.S. Kalsi, Wiley Eastern.

CHE-F	PC- 305 B	C- 305 B Inorganic Spectroscopy and Thermal L-5,T-1,P-0 4Credits Methods of Analysis												
Pre-rec	quisite: U	nderstand	ling of Ba	sic Inorg	anic Spec	troscopy	and Ther	mal Meth	ods of An	alysis				
	Objectiv													
							s and app	lications t	o inorgan	ic materia	als			
						troscopy. rfine coup	ling cons	tonto						
								spectrosc	onv					
								<u>вреснове</u>	ору.					
CO1	To know about TG and DTA and applications of different scanning calorimetry.													
CO2	To gain knowledge on Doppler shift and chemical shift, basic principles and applications of NQR													
	spectro	oscopy.												
CO3			eld splitti	ng and K	ramer's d	legenerac	y, relaxati	on proces	sses, instr	umentatio	n and app	plications		
	of ESF										0.77			
CO4			photoele	ctric effe	ct and K	oopmans	theorem	and impa	rt the app	olications	of X-ray	and UV		
	photoe	electron.												
			Mapp	ing of co	urse outc	omes wit	h the pro	gram ou	tcomes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	2	3	-	2	1	1	-	1	2	1		
CO2	3	2	2	3	2	2	2	2	1	2	2	-		
CO3	3	2	2	3	2	2	-	2	1	2	-	1		
CO4	3	2	2	3	2	1	1	-	2	-	2	1		

CHE-PC- 304: Inorganic Spectroscopy and Thermal Methods of Analysis

UNIT -I: THERMAL METHODS OF ANALYSIS

15 Hrs

Thermo gravimetry –Principle, Factors affecting the results, instrumentation. Application with special reference to CuSO₄5H₂O, CaC₂O₄ 2H₂O. Different thermal analysis – principle, instrumentation, difference between TG and DTA, applications with special reference to the clays and minerals. Different scanning calorimetry –principle, and applications to inorganic materials like chlorates and perchlorates, ammonium nitrate.

UNIT -II: MOSSBAUER SPECTROSCOPY and NOR

15 Hrs

Mossbauer spectroscopy: Basic principles, Recoil energy, Doppler shift, Chemical shift, Quadrapole effects, Magnetic effects. Instrumentation, spectral parameters and spectrum display.

Aapplication of the technique to the studies of (1) bonding and structures of Fe²⁺ and Fe³⁺ compounds, (2) Sn²⁺ and Sn⁴⁺ compounds.

NQR spectroscopy: Basic principles of NQR spectroscopy, quadrupole nuclei, quadrupole moments, electric field gradient, coupling constant and applications.

UNIT -III: ELECTRON SPIN RESONANCE SPECTROSCOPY

15 Hrs

Basic Principles, Hyper fine splitting, Factors affecting the 'g' value. Isotropic and anisotropic hyperfine coupling constants, Hamiltonian and spin densities. Zero field splitting and Kramer's degeneracy, Relaxation process and line widths. Instrumentation and Applications. The EPR spectrum of bis(salicylidimine)-copper(II) complex, study of inorganic free radicals, biological applications of Electron Spin Resonance (Study of free radicals and Iron-sulfur proteins)

UNIT -IV: PHOTO ELECTRON SPECTROSCOPY

15 Hrs

Photoelectric effect, Koopmans's theorem, ionization energy.

X-ray photoelectron spectroscopy (ESCA): Principle, Binding energies, Chemical shift, Applications of XPES to Qualitative analysis, to surface studies and structural analysis. Ultraviolet photoelectron spectroscopy- Principle, application of UPES in studying the molecular orbitals of O₂ and N₂ molecules. Block diagram of photoelectron spectrophotometer. Sources of radiation, detectors. Auger spectra – Principle, Applications of Auger spectra to surface studies and use of Auger spectra as a finger print tool.

- F.A. Cotton and G. Wilkinson, Advanced In-organic chemistry VI Edition, 1999. John wiley & sons. Inc., New York.
- 2. J.E. Huheey, E.A. Keiter and R.L. Keiter: Inorganic Chemsitry, Principles of Structure and Reactivity (4th Ed.) (Addison-Wesley)
- 3. Gary Wulfsberg: Inorganic Chemistry (5th Ed. (Viva Books)
- 4. J.D. Lee: Concise Inorganic Chemistry (Blackwell)
- 5. W.L. Jolly: Modern Inorganic Chemsitry (McGraw-Hill)
- 6. R.L. Carlin: Magneto-chemsitry (Springer-Verlag)
- 7. R.L. Dutta and A. Syamal: Elements of Magnetochemsitry (Affiliate East-West).
- 8. K. Hussain Reddy Text book of Bioinorganic chemistry

Pre-req	quisite : Ui	nderstand	ing of Sp	ectral Tec	chniques		<u> </u>		l					
• I • I • I	Course Co	e with the ecules. d IR specthe applicated the wor	e instrume etrometry ations of t king prine	and app clame ator	lications mic absor fragment	to ascertary	ain the fu etroscopy s of differ	ındament	al groups	by obse	rving abs			
CO1	CO1 To know the basic principles of spectroscopy.													
CO2	CO2 To familiarize with the analysis of various functional groups by using different spectroscopic techniques.													
CO3	To Unde	erstand the	e applicat	ions of A.	AS.									
CO4	To gain l	knowledg	ge about	Mass spe	ctral frag	mentation	of organ	ic compo	unds and	common	functiona	l groups.		
	•		Mappi	ng of cou	irse outc	omes wit	h the pro	gram out	tcomes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	1	1	3	-	2	3	2	1	-	1	1		
CO2	3	2	2	3	2	2	3	2	2	1	-	2		
CO3	3	2	-	2	2	-	2	2		2	1	-		

L-5,T-1,P-0

CHE: PC: 306(A): (OPEN ELECTIVE) SPECTRAL TECHNIQUES

UNIT - I: ULTRAVIOLET AND VISIBLE SPECTROSCOPY

15 Hrs

Various electronic transitions (185-800nm.), Beer-Lambert Law, effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, Fieser-Woodward rules for conjugated dienes and carbonyl compounds

UNIT - II: INFRARED SPECTROSCOPY

CHE PC 306 A

Spectral Techniques

15 Hrs

2

4 Credits

Instrumentation and sample handling, characteristic vibrational frequencies of alkanes, alkenes, alkenes, aromatic compounds, alcohols, ethers, phenols, amines, ketones, aldehydes, esters, amides, acids and anhydrides. Effect of hydrogen bonding.

UNIT – III: ATOMIC ABSORPTION SPECTROSCOPY: FLAME AAS:

15 Hrs

Principle, Instrumentation – Sources of radiation (HCL and EDL), Different types of burners, Interferences- Physical, Chemical, spectral and back ground correction, and methods of minimization

GF AAS: Principle and technique –Comparison between Flame AAS and furnace AAS, Applications of AAS, Comparison between Atomic Absorption & Flame Photometry.

UNIT -IV: MASS SPECTROMETRY

15 Hrs

Principle, instrumentation, different methods of ionization, EI, CI, FD and FAB, Mass spectra-molecular ion, base peak, meta-stable peak, nitrogen rule and Mc Lafferty rearrangement. Mass spectral fragmentation of organic compounds and common functional groups. Normal and branched alkanes, alkenes, cycloalkanes, benzene and its derivatives, alcohols and phenols, ethers, aldehydes and ketones, carboxylic acids and their derivatives, amines and nitro compounds. Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.

Books Suggested:

CO4

1. Organic spectroscopy, W. Kemp 5th Ed, ELBS .2.

- Spectroscopy of organic compounds, RM Silversteen and others 5th Ed, John Wiley 1991 Spectroscopy of organic compounds, PS Kalsi, Wiley, 1993
- 4. NMR in chemistry A Multi nuclear introduction, William Kemp, Mc Millan 1986
- 5. Spectroscopic methods in Organic Chemistry, DH Williams & I Flemmi TMH . 2005

CHE	PC 306 B	Chro	omatogra	phic Tec	hniques		L-3	5,T-1,P-0		40	Credits		
Pre-req	uisite: Ur	derstand	ing of gra	duate lev	el Chrom	atographi	c Technic	ques	<u> </u>				
FamUndStudUnd	Study on the applications of High-Performance Liquid Chromatography (HPLC).												
CO1	·												
CO2	To famili	arize app	olications	of differe	ent chrom	atographi	c method:	S.					
CO3	To Unde	rstand the	e principle	e of chror	natograpl	nic technic	ques.						
CO4	To gain l	nowledg	ge on the r	normal ph	ase and r	everse ph	ase.						
	•		Mappi	ing of cou	irse outc	omes wit	h the pro	gram out	tcomes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	-	2	3	-	2	3	2	2	-	1	1	
CO2	3	2	2	3	2	2	3	2	-	1	-	2	
CO3	3	2	-	2	2	-	2	-	2	-	1	-	
CO4	3	2	2	3	1	2	ı	2	-	1	-	2	

CHE PC 306 B: Chromatographic Techniques

Unit –**I:** Introduction - Classification of Chromatographic methods – Column chromatography-Adsorption phenomenon: Nature of adsorbents-Solvent systems-Differential migration-Separation of mixture of o-/p-nitro anilines (A demonstration experiment).

Unit –II: Thin-Layer Chromatography (TLC)-Coating materials and preparation of TLC plates- Solvents for development-Detection of compounds in TLC- $R_{\rm f}$ values in TLC-Applications of TLC in chemistry-Preparative TLC – Demonstration experiment in TLC.

Unit –III: High-Performance Liquid Chromatography (HPLC) - Application of HPLC- HPLC instrument-Stationary phases in HPLC-Normal and reversed phase HPLC: A comparison- Normal phase HPLC: Principle-Retention times in Normal and reversed phase HPLC- Reversed phase HPLC: Principle.

Unit –IV: Gas-Liquid Chromatography- Instruments for Gas-Liquid Chromatography- Gas-Chromatographic Columns and the Stationary Phase- Application of Gas-Liquid Chromatography- Gas-Solid Chromatography.

Reference Books:

- Analytical chemistry: G L David Krupadanam, D. Vijaya prsad, K. Varaprasad Rao, KLN Reddy, C. Sudhakar.
- 2. Analytical chemistry: Skoog West Holler.
- 3. Modern Analytical Chemistry: David Harvey DePauw University.
- 4. J.G. Dick. Analytical Chemistry, Mc Grraw Hill, New Delhi, (1973).

CHE-P	200000000000000000000000000000000000000													
Pre-req	Pre-requisite: Understanding of Electrochemistry													
Course	Objective	es:												
• Study	dy industrial electrochemistry, corrosion and methods of prevention													
• Learn	arn about electrochemical batteries and cells and their performance													
• Study	Study on electro kinetics and electro capillary phenomena and electrokinetic effect													
Famili	• Familiarize polarography techniques and chemical passivity													
Course	Course Outcomes: At the end of the course, the student will be able to													
601														
CO1	of corros	-	-	JOSHIOH O	i iliciais,	unowing	power sii	Hultaneot	is dischai	ge of can	ons and n	letilous		
CO2				1 Ratterie	s fuel ce	lls and ni	ckel cadn	aium batte	eries					
CO2														
CO3	Understa	nd electr	ical doub	le layer sy	/stems, se	edimentati	ion potent	tial, null p	oints of i	netals and	l zeta pot	ential.		
CO4	Calculate	electroc	hemical p	arameter	s; familia	rize mixe	d ligand s	systems an	nd reversi	ble syster	ns.			
			Mappi	ing of cou	ırse outc	omes wit	h the pro	gram ou	tcomes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	3	3	3	2	-	2	-	-	1	2		
CO2	3	3	3	3	2	-	-	2	-	2	-	3		
CO3	3	3	3	3	3	-	-	2		-	-	2		
CO4	3	3	3	3	-	2	-	-	-	-	-	3		

CHE PC-401: CORE THEORY: ELECTROCHEMISTRY

UNIT-I: Industrial Electrochemistry

15 Hrs

Deposition of metals, Factors influencing physical nature of electrodeposited metals – current density, concentration of electrolyte, temperature, colloidal matter, electrolyte and basis metal. Throwing power, simultaneous discharge of cations. Separation of metals by electrolysis. Electrochemical passivity. Passivity and current density. Chemical passivity. Theories of passivity. Mechanical passivity. The corrosion of metals. Hydrogen evolution type of corrosion, corrosion in presence of depolarizer. Differential oxygenation corrosion. Methods of corrosion protection.

UNIT-II: Electrochemical Devices:

15 Hr

Batteries- their performance – characteristics – considerations in the selection and applications, Chemistry of primary batteries – Zinc – Carbon, Mercuric oxide, silver oxide and lithium cells – Solid electrolyte cells.

Chemistry of secondary batteries – Lead acid , Nickel cadmium batteries, Water activated batteries, Fuel cells – Their thermodynamics- performance

UNIT-III: Electrokinetic's and Electro capillary phenomena:

15 Hrs

Electrical double layer, Helmholtz – Perrin, Gouy – Chapman and Stern theories of electrical double layer. Lipmann equation.

Electrokinetic effect: Electro osmosis, Electrophoresis, streaming potential , sedimentation potential and their relation to zeta potential. Determination of zeta potential from electrophoresis measurements. Tiselius apparatus. Electro capillary curves, Null points of metals and their experimental determination.

UNIT-IV: Advances in Polarography:

15 Hrs

(A) Polarography of Metal Complexes

Reversible, Diffusion-controlled systems, Determination of Formulae and Stability, Constants of Complexed Metal Ions, Determination of Stability Constants and Coordination Numbers of metal complexes, Calculation of Individual Complex, Stability Constants, Mixed Ligand Systems- the Method of Schaap and Mcmasters

(B) Polarography of organic compounds

Structural Effects, Nature of Electroactive group, Steric Effects, substituent Effects.

- 1. S. Glasstone. An introduction to Electrochemistry. Affiliated East-West Press Pvt. Ltd.
- 2. P.T.K. Kissinger, W.R. Heinemann. Laboratory Techniques in Electro analytical Chemistry, Marsal Debber, Inc.
- 3. Willard, Merit. Instrumental methods of analysis, Welowarth Publiching Co.,
- 4. L. Antropov. Theoretical Electrochemistry. Mir Publications.
- 5. Silbey, Alberty, Bawendi. Physical chemistry. Jhon-Wiley & sons. 4th edition-2006.
- 6. V.S. Bagotsky. Fundamental of Electrochemistry. Jhon Wiley & Sons. 2nd editions-2006.
- 7. Introduction to polarography and allied Technique by Dr.K. Zutshi

СНЕ	C-PC 402	PC 402 Thermodynamics, Polymers and Solid-state L-5,T-1,P-0 4Credits Chemistry												
				Che	mistry									
Pre-re	quisite:	Understa	anding of	Thermo	dynamics,	Polymers	and So	lid-state C	hemistry					
Cou	 Course Objectives: To learn thermodynamic Properties of fluids, phase equilibria and flash calculations. 													
•			•	-					calculation	ıs.				
•	Thermodynamic properties of liquids, activity and activity coefficients.													
•	Polymer structures, morphology and properties. To get browledge on concent of solid state chemistry and super conductance.													
•	To get knowledge on concept of solid state chemistry and super conductance.													
Course	Course Outcomes: At the end of the course, the student will be able to													
Course	Course Outcomes: At the end of the course, the student will be able to													
CO1	Derive	Gibbs D	uhem eq	uation an	d to calcul	ate fugacit	ty and o	chemical p	otential.					
CO2	Calcula	ite exces	s free ene	ergy and	entropy, to	draw Hild	debranc	l curves a	nd to corre	late excess	s function	is and		
	activity	coeffici	ents											
CO3	Learn r	norpholo	ogy, Tm a	ınd Tg po	oints and to	calculate	transit	ion tempe	ratures and	d to identif	y cross li	nking in		
	polyme	ers.												
CO4	Identify	y magnet	tic proper	ties of so	lids, magn	etic mater	ials, su	percondu	ctors and E	BCS theory	7			
			Maj	pping of	course ou	tcomes wi	th the	program	outcomes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	3	3	2	-	-	-	-	1	-	3		
CO2	3	3	3	2	2	-	-	-	-	-	1	3		
CO3	3	3	2	2	2	-	=	-	-	2	-	2		
CO4	3	3	3	2	2	-	-	-	-	2	-	1		

CHE PC-402: CORE THEORY: THERMODYNAMICS, POLYMERS AND SOLID STATE CHEMISTRY UNIT-I: Thermodynamic properties of fluids: 15 Hrs

Thermodynamic relationship residual properties – systems of variable composition- ideal and non-ideal behaviour – fugacity-fugacity coefficient in solutions- Phase equilibrium of low to moderate pressures- dew point-bubble point and flash calculations.

UNIT – II: Thermodynamic properties of 'Liquid Mixtures 15 Hrs

Activity and activity coefficients-excess free energy-excess enthalpy-excess volume-excess entropy-relation between excess functions and activity coefficients –Application of Gibbs-Deuhem equation-regular solutions –van Laar theory and Scachard-Hildebrand theory.

UNIT-III: Polymers- structure and properties

Morphology and order in crystalline polymers, configuration of Polymer chains, crystal structures and polymers, Stain induced morphology, morphology of chrystalline polymers, crystallisation and melting- polymer structure and physical properties, crystalline melting point, T_m -melting point of homogeneous series, effect of chain flexibility and other steric factors- entropy and heat of fusion, the glass transition temperature, Tg, relationship between Tm and Tg effects of molecular weight, diluents, chemical structure, chain topology, branching and cross linking.

UNIT-IV: Solid State Chemistry

15 Hrs

15 Hrs

Magnetic properties of solids- Classification of magnetic materials, Magnetic Susceptibility, Langevin diamagnetism, Weiss theory of para magnetism. Electronic properties of metals, insulators and semiconductors: Electronic Structure of solids, Band theory, band Structure of metals, insulators and semiconductors. Electrons, holes and Excitons. The temperature dependence of conductivity of extrinsic semiconductors. Photo conductivity and photovoltaic effect –P-n-Junctions. Super conductivity: Occurence of superconductivity. Destruction of Superconductivity by magnetic fields-Meisner effect. Types of superconductors. Theories of super conductivity BCS theory.

- 1. J.M. Pransnitz. Molecular Thermodynamics of Fluid Phase Equilibrium. Prentice. Hall
- 2. Kuriocose and Rajram. Thermodynamics
- 3. Smith and Van Ners. Chemical Thermodynamics.
- 4. R.C. Srivastava, Subi. K. Saha. Thermodynamics-A care course. Prentice-Hall of India Pvt, Ltd,. 3rd edition-2007.
- 5. Silbey, Alberty, Bawendi. Physical chemistry. Jhon-Wiley & sons. 4th edition-2006.
- 6. F. W. Billmeyer, Jr.: Text Book of Polymer Science. Wiley Interscience.
- 7. V. R. Gowariker, N. V. Viswanathan, Jayadev Sreedhar.: polymer Science. New Age international Publishers.
- 8. Solid State chemistry by M.G. Arora.
- 9. Solid State Chemistry by Wiley.

CHE P	PC 403 Core practical I: L-5,T-1,P-0 4 Credits Inorganic Chemistry - Practical												
			Inorgan	ic Chemi	istry - Pr	actical							
Pre-rec	quisite: U	nderstand	ling of In	organic C	hemistry	- Practica	al.						
Course	Objectiv	es:											
•	Learn pot	tentiomet	ric titratic	ns of mix	ture of ac	cids							
•	Determination of electrode potential by polarography On the state of the first polarography On the state of the first polarography On the state of the st												
	out the wieds of metipication of data from high his, in 20 and 30												
•	Determination of alkanility and purity by pH metry												
Course Outcomes: At the end of the course, the student will be able													
CO1	O1 To perform titration of mixture of halides and to draw potentiometry curves												
CO2	To learn	n ampher	ometric ti	trations a	nd mixtur	es by pol	arography	y					
CO3	To Corr	elation of	data obta	ined fron	n IR, AAS	S, HPLC	and GC						
CO4	To Dete	rmination	of alkan	ility and p	ourity by 1	pH metry							
			Mapp	ing of co	urse outc	omes wit	th the pro	ogram ou	itcomes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	1	2	3	-	-	2	-	2	-	3	
CO2	3	3	3	2	3	2	-	-	-	2	3	3	
CO3	3	2	3	3	2	3	-	2	-		2	3	
CO4	3	3	3	2	3	3	-	2	-	2	-	3	

CHE PC 403: CORE PRACTICALS: PRACTICAL - I-

- 1. Potentiometry: a) Titration of mixture of acids
 - b) Titration of mixture of halides
 - c) Titration of ferrous ammonium sulphate with potassium dichromate
 - d) Redox titrations
 - e) Solubility of Sparingly soluble salt.
 - f) Formula and instability constant of a complex
 - g) Dissociation constant of acetic acid
- 2. Polarography: a) Determination of E1/2 of Zn and Cd
 - b) Determination of Zn and Cd in mixture
 - c) Amperometric titration.

II <u>DEMONSTRATION EXPERIMENTS</u>

- 1. IR Interpretation of IR spectrum of alcohols, ketones, aldehydes and other standard materials
- 2. AAS: Demonstration of AAS Determination of Zn, Cd, Pb, Mn, Fe and Ni in effluents using AAS.
- 3. Spectrofluorimetry estimation of quinine and fluoroscene
- 4. Ion selective electrodes estimation of F⁻, S²⁻ and CN⁻ in effluents using ion selective electrode meter.
- 5. Polarography and Anode stripping voltametry
- 6. Polarography and Anode stripping voltametry behavior of Cd, Zn, Pb in a mixture.
- 7. Determination of Pb and Cd in samples using Anode stripping voltametr
- 8. Gas chromatography- Determination of pesticides
- 9. HPLC- Determination of pesticides
- 10. NMR
- 11. (a)Demonstration of NMR spectrometer and study of hydrogen bonding in a given alcohol or phenol.
- 12. (b)Interpretation of NMR chemical shifts of ethyl benzene, ethyl alcohol.
- 13. TGA, DTA, DSC Demonstration of TG, DTA and DSC and study of decomposition of calcium oxalate, calcium carbonate, copper sulfate, oxalic acid.
- 14. pH metry
 - a. Determination of alkalinity in a colored effluent using pH metric end point.
 - b. Determination of purity of commercial HCl, H₂SO₄, H₃PO₄ and CH₃COOH using pH metric end point

CHE PC	404			Project V	Vork		L-3	5,T-1,P-0		4	Credits		
Pre-req	uisite: Ph	ysical Cl	nemistry I	Project W	ork								
Course	Objectiv	es:											
•	Identific	ation of p	roblem b	y literatui	re survey								
•	Carry out the problem independently												
•	Interpretation of data												
•	Communication of research results through presentations and preparation of dissertation												
Course	Course Outcomes: At the end of the course, the student will be able												
CO1	To identify research problems and to collect research literature												
CO2	To propo	se hypotl	hesis of a	research	problem								
		• • •			1								
CO3	To perfo	rm resear	ch experi	ments									
CO4	To analy	se the dat	ta and cor	clude the	research	outcome	S						
			Mappi	ing of cou	irse outc	omes wit	h the pro	gram out	comes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	3	2	2	3	2	_	_	_	3	
CO1	3	J	3	3	2	2	3	2	-	_	_	,	
CO2	3	3	3	3	3	2	3	2	-	-	2	3	
CO3	3	3	3	2	2	3	2	3	-	2	-	3	
CO4	3	3	3	3	3	3	2	2	-	2	-	3	

CHE PC 404: PRACTIAL II/ PROJECT WORK

CHE-PC	C-405A		(Chemical	Kinetics			3,T-1,P	-2	40	Credits		
Pre-req	uisite: U1	nderstand	ing of Ch	emical ki	netics								
Course	Objective	es:											
• Diffe	erentiate h	omogene	eous and l	neterogen	eous cata	lysis enzy	me cataly	ysis and a	pplication	ns			
• Lear	n photo cl	nemistry,	chemical	excitatio	ns and ra	te of phot	ochemica	l reaction	S				
• To f	amiliarize	electrocl	nemical re	elaxation	methods,	photoche	mical and	l isotope o	effects				
• Radi	cal photo	chemical	reactions	, theory a	nd applic	ations							
Course	Outcome	s: At the	end of th	e course,	the stude:	nt will be	able to						
CO1	Praw skrabal pH diagram and to separate unimolecular and bimolecular reactions												
CO2	Study lav	ws of pho	tochemis	try, to de	rive stern-	-volmer e	quation						
CO3	Identify of	chromo p	otentiom	etry point	s and to in	nvestigate	kinetic c	currents ar	nd isotopi	c effects			
CO4	Learn ph	otochemi	ical thresh	nolds, che	milumine	escence							
			Mappi	ing of cou	ırse outc	omes wit	h the pro	gram ou	tcomes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	3	2	-	-	-	-	1	2	1	
CO2	3	3	3	3		2	-	-	-	1	-	2	
CO3	3	3	3	3	2	2	-	-	=	-	-	2	
CO4	3	3	3	3	2	-	-	-	-	-	2	2	

CHE PC-405A: (GENERIC ELECTIVE): CHEMICAL KINETICS

UNIT – I: Catalysis

15 Hrs

Homogeneous catalysis: Steady state and equilibrium treatments of acid-base catalysis. Skrabal P^H diagrams, Protolytic and Prototropic mechanism. Acidity functions, Zucker, Hammett, Bunnett and Yates hypothesis in the elucidation of the mechanism. Enzyme catalysis – influence of concentration, P^H and temperature. **Heterogeneous Catalysis:** Mechanism of interface reactions, application of transition state theories to unimolecular and bimolecular surface reactions

UNIT – II: Photochemistry:

15 Hrs

Interaction of electromagnetic radiation with matter, laws of photochemistry, Quantum yield, types of excitations, Fate of excited molecule, transfer of excitation energy, kinetics of unimolecular and bimolecular photophysical process, Stern-Volmer equation, Kinetics of photochemical reaction rate constants and life times of reactive energy states, determination of rate constants of reactions, effect of light intensity on the rate of photochemical reactions.

UNIT-III: Electrochemical relaxation methods, Photochemical methods, Isoptopic effect

15 Hrs

Electrochemical relaxation methods:Introduction, advantages of Electrochemical transient (or) relaxation techniques, application of these methods, various types of perturbation of a system, pulse polarography, chronopotentiametry, investigation of kinetic currents by chronopotentiometry.

Photochemical methods: Introduction, phenomena of ISC, fluorescence and phosphorescence, experimental arrangement of fluorescence measurements. Example of quenching reactions.

Isotopic Effects: Equilibrium isotope effects, equilibria in solution, primary kinetic isotopic effects semiclassical treatments, Quantum-mechanical Tunneling, Reactions of the Type H+H₂, Transfer of H⁺, H and H⁻ reactions of Huonium, Isotope effect with Havier atoms.

Unit-IV: Photo Chemical and Radiation Chemical Reactions 15 Hrs

Photochemical reactions photochemical primary process, reactions of electronically excited states of species, photo chemical thresholds, laws of photochemical equivalence, rotating-sector technique, multi photon excitation, photosensitization, radiation chemical primary process, chemiluminiscence.

- 1. K.K. Rohatgi Mukerjee. Fundamentals of Photochemistry.
- 2. C. Kalidas. Principles of fast reactions techniques and Applications.
- 3. V. Yegnaramam, C.A. Basha And G. Prabhakar Rao : Applications of Electrochemistry.
- 4. Keith J.Laidler: Chemical Kinetics.
- 5. J. Dalton: A New System of Chemical Philosophy.
- 6. Chemical Kinetics: Keith J. Laider.

(Compulsory Foundation)

L-5,T-1,P-0

2

3

_

Bioinorganic, Bioorganic, Biophysical

				Chemis	try								
Pre-re	quisite: U	nderstand	ing of Bio	oinorganio	c, Bioorg	anic, Biop	hysical (Chemistry					
Course	e Objectiv	es:											
• Hig	ghlighten n	netal com	plexes as	oxygen ca	arriers an	d electron	transfer	in biology	7.				
• Me	etal ion tra	nsport and	d storage	in biologi	cal syster	ns and imp	ortance	of trace n	netals in b	oiology.			
• Learn physiological functions of carbohydrates, lipids, enzymes classification, stereospecificity.													
The basic concepts of biophysical chemistry in biochemical reactions, exergonic and endergonic reactions.													
1 1-7													
Course Outcomes: At the end of the course, the student will be able to													
Cours	Couttoni	cs. At the	cha or ur	c course,	ine stude	iii wiii be	aoic to						
CO1	Gain kno	CO1 Gain knowledge on metallo proteins in electron transfer processes.											
CO1	K now th			•			•		its in mad	ioina			
CO2		e applicat	tions of tr	ace metal	ions and	metal ions	s as chela	iting agen					
CO2 CO3	Achieve	e applicat	tions of tr	ace metal	ions and		s as chela	iting agen			opting		
	Achieve environr	e applicate and devenentally.	tions of tr	ace metal	ions and lective sy	metal ions	s as chela	ating agen	ds and dr	ıgs by ad			
	Achieve environr	e applicate and devenentally.	tions of tr	ace metal	ions and lective sy	metal ions	s as chela	ating agen	ds and dr	ıgs by ad		imeters.	
CO3	Achieve environr	e applicate and devenentally.	tions of tr	ace metal y stereose es of biopo	ions and lective sy olymer re	metal ions	s as chela organic	elate free	ds and dru	ıgs by ad		ameters.	
CO3	Achieve environr	e applicate and devenentally.	tions of tr	ace metal y stereose es of biopo	ions and lective sy olymer re	metal ions	s as chela organic	elate free	ds and dru	ıgs by ad		PO12	

CHE PC-405(B): (GENERIC ELECTIVE): BIOINORGANIC, BIOORGANIC, BIOPHYSICAL CHEMISTRY

2

2

UNIT-I: BIO-INORGANIC CHEMISTRY-I

3

3

2

3

3

2

3

2

3

2

2

CHE-PC-405B

CO2

CO3

CO4

3

3

3

15 Hrs

1

2

_

1

1

3

3

4 Credits

Metal complexes as oxygen carriers –Heme proteins –Hemoglobin and myoglobin –Non heme proteins –hemerythrin and hemocyanin – model synthetic complexes of iron, cobalt and copper.Co-enzymes Vitamin B_{12} , carboxy peptidase and superoxidedismutase.

Electron Transfer in Biology: Structure and functions of metalloproteins in electron transfer processes –catalase – peroxidose –cytochromes and iron –sulphur proteins –synthetic models.

UNIT – II: BIOINORGANIC CHEMISTRY- II: Metal ion transport and storage in biological systems, Metal ions in Biology, Molecular mechanism of ion transport across membranes: ionophores, photosynthesis.

Hydrolytic metalloenzymes: Carbonic anyhdrase, carboxy peptidase, calcium in control processes, calcium and muscle contraction, calcium and secretion, calcium in blood clotting mechanisms. Therapeutic uses of enzymes.

Importance of trace metals in biology: Metal ions as chelating agents in medicine, trace metal ions and metal and non-metal deficiency. Biological nitrogen fixation, in-vivo and in-vitro nitrogen fixation.

UNIT-III: BIOORGANIC CHEMISTRY

Carbohydrates: Structure and biological functions of mucopolysaccharides, glycoproteins, and glycolipids- Role of sugars in biological recognition-Blood group substances

Lipids: Essential fatty acids-structure and function of triglycerols, Glycerophospholipids, cholesterol, bile acids prostaglandins- composition and functioning of lipoproteins

Enzymes: Nomenclature and classification, properties, factors affecting enzyme catalysis, enzyme inhibition- reversible and irreversible inhibition. Uses of enzymes in food drink industry and clinical laboratories.

UNIT-IV: BIOPHYSICAL CHEMISTRY:

Standard free energy change in biochemical reactions, exergonic and endergonic reactions, hydrolysis of ATP, thermodynamics of biopolymer solutions, chain configuration of bio polymers, and calculation of average dimensions. Membrane equilibrium, ion transport through cell membrane dialosis and its function. Structure and functions of proteins, enzymes, DNA and RNA in living systems, forces involved in bio polymer interactions, electrostatic forces, hydrophobic forces, molecular expansion, and dispersion forces.

- 1. M.N. Hughes, The Inorganic chemistry of Biological Processes, John wiley and Sons, New York 2nd Edition, 1981
- 2. A Text book of Biochemistry, A.V.S.S. Rama Rao
- 3. Physical chemistry by Atkenes
- 4. Physical chemistry by Albertz.
- 5. Bio physical chemistry by Van Holde
- 6. Bio Physics by Narayanam
- 7. Organic Chemistry, Vol. 2, I. L. Finar, ELBS.
- 8. Chemistry of Natural Products, P.S. Kalsi, Kalyani Publishers.
- 9. Chemistry of Organic Natural Products, O. P. Agarwal, Vols., 1 & 2, Geol Pubs.
- 10. Natural products Chemistry K.B.G. Torssell, John Wiley, 1983.
- 11. Burger's Medicinal Chemistry, M.E. Wolff, John Wiley
- 12. Medicinal Chemistry, A. Kar, New Age International

CHE PC	2 406A		D	rug Che	mistry		L-3	3,T-1,P-2		40	Credits			
Pre-req	uisite: U	nderstand	ing of Dr	ug Chem	istry		I		L					
Cou	rse Obje	ctives:												
• '	To learn about the natural products as leads for new drugs													
•	Determination of cardiovascular drugs													
• '	To study Autacoids													
•	Interpretation of Antipyretics													
Course	Outcome	es: At the	end of th	e course,	the stude	nt will be	able to							
	Course Outcomes: At the end of the course, the student will be able to													
CO1	Know about natural products.													
CO2	Know In	terpretati	on of care	liovascula	ar drugs.									
CO3	Know th	e Analyzi	ing about	prostagla	ndins.									
CO4	Know th	e Definiti	on, Class	ification,	Nomencl	ature, Str	ucture an	d Synthes	is of anti-	-inflamma	atory drug	gs.		
			Mappi	ing of cou	ırse outc	omes wit	h the pro	gram ou	tcomes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	3	3	3	-	-	2	-	-	2	3		
CO2	3	3	3	3	-	2	-	2	=	2	-	3		
CO3	3	3		3	-	3	-	2	-	3	-	3		
CO4	3	-	3	-	3	2	-	-	-	2	-	3		

CHE: PC: 406 (A): (OPEN ELECTIVE): DRUG CHEMISTRY

UNIT - I: NATURAL PRODUCTS AS LEADS FOR NEW DRUGS

Occurrence, Structure and therapeutic uses of Drugs acting on Central Nervous System

Morphine alkaloids (morphine, codeine, thebaine, heroin, pethidine)

Cannabinoids (9-cannabinol, Tetrahydrocannabinol)

Neuromuscular Blocking Agents (Curare, Decamethonium)

Vinca Alkaloids (Vincristin and Vinblastin), Taxol and Taxotere, podophyllotoxin, Etoposide, Teniposide.

UNIT – II: CARDIOVASCULAR DRUGS

Definition, Classification, Nomenclature, Structure and Synthesis.

Cardiac glycosides (ex: Digoxin, Digitoxin);

Antihypertensive drugs (ex: Methyl dopa, Clonidene hydrochloride);

Antiarrhythmic agents (ex: Quinidine sulfate);

Antisympathetic drugs (ex: Propranolol hydrochloride, Verapamil hydrochloride);

Vasopressor drugs (ex: Prenylamine, Buphenine).

UNIT - III: AUTACOIDS

Definition, Occurrence, Isolation, Nomenclature, Classification, Synthesis, Biosynthesis and Stereochemical structures of Prostaglandins. Structural elucidation of PGE_1 , PGE_2 ; Synthesis and biosynthesis of PGE_2 , $PGF_{2\alpha}$.

Structure and Biosynthesis of Thromboxane A2 and Prostacyclin (synthesis not expected).

UNIT - IV: ANTI-INFLAMMATORY DRUGS

Definition, Classification, Nomenclature, Structure and Synthesis of Paracetamol, Aspirin (Antipyretic), Salol, Cinchophen, Antipyrene, Phenylbutazone, Indomethacin, Tolmetin, Ibuprofen, Diclofenac and Naproxen.

- 1. Medicinal Chemistry by Ashitosh Kar
- 2. Medicinal Chemistry by D. Sriram, P. Yogeeswari
- 3. Medicinal Chemistry by David A. Williams, Thomas L. Lemke
- 4. Medicinal Chemistry by V. Alagarsamy
- 5. Biochemistry by U. Satyanarayana
- 6. Natural Products Chemistry and Applications by Sujata V. Bhat, B.A. Nagasampagi, S. Meenakshi
- 7. Medicinal Chemistry by V.K. Ahluwalia, Madhu Chopra
- 8. Medicinal Chemistry by Balkishen Razdar
- 9. Advanced Practical Medicinal Chemistry by Ashutosh Kar
- 10. Chemistry of Organic Natural Products by O. P. Agarwal, Vols., 1 & 2, Geol Pubs.
- 11. Chemistry of Natural Products by S. V. Bhat, B.A. Nagasampagi, M. Sivakumar
- 12. Natural Products Chemistry by K.B.G. Torssell, John Wiley, 1983.

CHE I	PC 406 B	3	Elec	troanaly	tical Te	chniques		L-5,T-1,P	-0	4	Credits		
Pre-re	quisite: \	Jndersta:	nding of	Electroar	alytical '	Techniques	S						
	Course Objectives:												
To learn about the classification of electroanalytical methods													
Determination of types of currents													
Principle, instrumentation, reversible and irreversible cyclic voltammograms													
Interpretation of Ion selective electrodes													
Course Outcomes: At the end of the course, the student will able to													
CO1	Ability	to interp	ret poten	tiometry	and cond	luctometry	7						
CO2	Interpr	etation o	f results v	while adh	ering to	DC Polaro	graphy.						
CO3	Analys	ing and o	compiling	g the data	and resu	ılts in polaı	rography	·.					
CO4	Familia	arize Typ	es of ion	sensitive	electrod	les.							
			Maj	pping of	course o	utcomes w	vith the	program o	utcomes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	3	3	-	-	2	-	-	2	3	
CO2 3 3 3 3 - 2 - 2 - 3													
CO3	3	3	-	3	-	3	-	2	-	3	-	3	
CO4	3	-	3	-	3	2	-	-	-	2	-	3	

CHE: PC: 406 (B): (OPEN ELECTIVE): ELECTRO ANALYTICAL TECHNIQUES

Unit I: Types and Classification of Electro analytical Methods.

- i) Potentiometry- Types of electrodes, Hydrogen gas, Calomel, Quin hydrone and glasselectrodes. Determination of pH. Potentiometric titrations.
- ii) Conductometry Definition of terms conductivity, specific conductivity, cell constant. Mobility of ions, Conductometric titrations.

Unit II: D.C Polarography: Dropping mercury electrode- Instrumentation-polarogram. Types of Currents: Residual, Migration, Limiting. Two and Three electrode assemblies. Ilkovic equation(derivation not necessary) and its consequences. Types of limiting Currents: Adsorption, Diffusion, Kinetic. Applications of polarography in qualitative and quantitative analysis. Analysis of mixtures. Application to inorganic and organic compounds. Determination of stability constants of complexes.

Unit III: (i) A.C. polarography (ii) Square-wave polarography (iii) Pulse polarography (iv) Differential pulse polarography(V) Cyclic Voltammetry: Principle, instrumentation, reversible and irreversible cyclic voltammograms.

Unit IV: Ion selective electrodes: Ion-sensitive electrodes -types of ion sensitive electrodes -metal based cation and anion sensitive electrodes, solid membrane electrodes. Liquid ion-exchange electrodes, gas sensing membrane electrodes.

Books Suggested

- 1. H.W. Willard, LL. Merrit and J.A. Dean: Instrumental Methods of Analysis. Affiliated East-West).
- 2. G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denny. Vogel's Text Book of Quantitative Chemical Analysis (ELBS).
- 3. D.A. Skoog and D.M. West: Principles of Instrumental Analysis (Holt, Rinehart and Wilson).
- 4. J.G. Dick: Analytical Chemistry (Mc Graw Hill).