Minutes of the Local BOS Meaning Daved 151 July, 2019 The File NO B-X(V/2019 dated 2019, we cortect - the Local Bos itee Big chamber of at 11 am. The following resolutions and lecompendations are It's sublued 1. to modify the syllabul in CHF 4-06(a) chelmotherapy in UNIT-Natural products 3. to soxogopala ONITIV drugg in the existing syllabor in with it and modefred as Conditionsular and Ansi oflammatory duys and bolochoology as UNIT TV Per. N. Y. Seedhae Chairman Ped. N.V.S. Nasda. Ped V. Padmavathi Membes C Surosb Roddy Member. æeel 15.03.00

19-20

2 Minutes of 1t Local BOS Meeting. Daled: 20-08-2019
Dalch: 20-08-2019
It is resolved to introduce
 1. Pharmaceuticals
2. Forentic and Biomedicals
3 Food and Beverages
as value added courses with effect from
is from July 2019 to October 2019.
1100) 150 2011 50 2000 50
prof. N.y. Greedhar Bos chairman N.Y. Sal
prof N.V.S. Naidu Head Cleb
prof. v. Padmavalli Member V. la Durantin
prof. C. Sween Rodd, Member. C. Dunds
 3.
Ce so
Ce 20-
Co so -
Ce se of majority
CO LO TRANS
Co so majajus

Minutes of the Loc.	Dorte	1 03.1	2.2019	2.22
with referen	in to the	Ele I	Un B-XC	1)/201
dated 05-11-2019,	Ne Con	duct-	tu loca	é Bos
mecting on 03-12	- 20/9 A	n the	ham be	-6
Head of the Depost	ment	F 11.3	0 1114.	Le
bellowing recomm	sen an	ms and	mace	
It is resolved	that the	Syllas	y for 1	he two
question Pager cale	NOS A-	206-0	04-	62
and B-206-0C-	04-02	y sa	me tu	rther
it is observed that	Quell.	on Dat	en in	dame.
Hence we Recom	mend	the cer	versity	
Hence, we he com	ntider	favour	rably in	1 this
rigard.			+	
N. 4 Say				
00000			N.	
V. la Quaratte				
of an avalor				
of for and the				
of for and the			20 000)
V. la Que avalto		C	०० ०० ०० ००)
of for and the		C	०० ००० ०० ०००) 2/2013
of for and the		C	<u>०० ००</u> ०) 2/2019
of for and the			a e 080	2 /2013
of for and the		C	2 2 2 2 3 3 1 1) 2/2013
of for and the			0000 2000) 2/3013

Programm e Cod e	Progra mm ena me	Yearof Introduction	Statusof implementati onof CBCS/ Elective CourseSyste m (ECS)	Yearof impleme ntation of CBCS/E CS	Yearofrevision (ifany)	Ifrevisionhas beencarriedout inthesyllabus duringthelast5 years, Percentageof contentaddedor replaced	Linktothe relevant documents
206 AC 206 EC	Analytical Chemistry Environm	2010	CBCS: Yes ECS:Yes	CBCS: 2010 ECS:	CBCS: 2019	CBCS: 25% added (2019) ECS:	CBCS: ECS (Enclos
200 LC	ental			ECS.	ECS:	ECS.	ed):
206 IC	Chemistry						
206.00	Inorganic						
206 OC	Chemistry Organic						
206 PC	Chemistry						
	Physical						
	Chemistry						

SRI VENKATESWARA UNIVERSITY:: TIRUPATI SVU COLLEGE OF SCIENCES DEPARTMENT OF CHEMISTRY

Syllabus for M.Sc. CHEMISTRY
Choice Based Credit System (CBCS)
(w.e.f. the Academic Year 2019-2020)

Vision

Impart quality education & training in the field of chemistry to enable successful careers for the post graduate students in the field of research, education & industry applications of chemical sciences.

Mission

The Department of Chemistry strives:

- To get an ideal balance between knowledge creation and knowledge dissemination in the chemical sciences with a focus to train and mentor students to become responsible scientists and scientifically literate professionals to attain National and International impact.
- To contribute to the improvement of scientific and technological literacy, and the development of critical-thinking and problem-solving skills of all students in order to compete for the world of work and responsible citizenship

PROGRAM EDUCATIONAL OBJECTIVES:

At the end of the program, the student wills be able to:

PEO1	To demonstrate broad knowledge of descriptive chemistry.
PEO2	To impart basic analytical and technical skills to work effectively in various fields of chemistry.
PEO3	To motivate critical thinking and analysis skills to solve complex problems viz., analysis of data, synthetic logistics, spectroscopy, structure and modeling, team based problem solving etc.
PEO4	To demonstrate an ability to conduct experiments in the above sub disciplines with mastery of appropriate techniques and proficiency using core chemical instrumentation and modeling method
PEO5	To develop laboratory competence in relating chemical structure to spectroscopic phenomena.
PEO6	To demonstrate the ability to synthesize, separate and characterize compounds using published reactions, protocols, standard laboratory equipment and modern instrumentation.

PROGRAM OUTCOMES: On completion of M.Sc. Chemistry programme, graduates will be able to –

PO1	Have a firm foundation in the fundamentals and application of current chemical and					
	scientific theories in different areas of chemistry viz., Analytical, Environmental,					
	Inorganic, Organic and Physical.					
PO2	Understands the background of organic reaction mechanisms, complex chemical					
	structures, and instrumental methods of chemical analysis, molecular rearrangements					
	and separation techniques.					
PO3	Familiarize with the importance of various elements present in the periodic table,					
	coordination chemistry and structure of molecules, properties of compounds,					
	structural determination of complexes using theories and instruments.					
PO4	Understand about the physical aspects of atomic structure, dual behavior, reaction					
	pathways with respect to time, various energy transformations, molecular assembly					
	in nano-level, significance of electrochemistry, molecular segregation using their					

	symmetry.
PO5	Create awareness and sense of responsibilities towards environment and apply knowledge to solve the issues related to Environmental pollution.
PO6	Continue to acquire relevant knowledge and skills appropriate to professional activities and demonstrate highest standards of ethical issues in the subject concerned. Ability to identify unethical behavior such as fabrication, falsification or misrepresentation of data and adoptive objective, unbiased and truthful actions in all aspects.
PO7	Be skilled in problem solving, critical thinking and analytical reasoning as applied to scientific problems.
PO8	Clearly communicate the results of scientific work in oral, written and electronic formats.
PO9	Explore new areas of research in both chemistry and allied fields of science and technology.
PO10	Design, analyze and carry out scientific experiments and interpret data to provide solutions to different industrial problems.
PO11	Independently carry out research to solve practical problems and present a substantial technical report.
PO12	Ability to think, acquire knowledge and skills through logical reasoning and to inculcate the habit of self-learning throughout life, through self- paced and self-directed learning aimed at personal development, and adapting to change academic demands of work place through knowledge/ skill development/ reskilling.

PROGRAM SPECIFIC OUTCOMES: At the end of the program, the student will be able to:

PSO1	Scientific Problem solving skills: Deep knowledge of the topic which can develop
	the problem solving skills using chemical principles.
PSO2	Analytical skills: Develop analytical skills such as synthesizing, separating,
	characterizing chemical compounds and chemical reactions with the help of
	sophisticated instruments
PSO3	Research skills: Develop research skills through dissertation/project work in
	different fields of chemistry such as organic, inorganic, analytical, physical and
	environmental.
PSO4	Learning skills on life processes: Acquire advanced level of knowledge in natural
	products as well as biological systems from the chemistry point of view.

S.V. UNIVERSITY, TIRUPATI SVU COLLEGE OF SCIENCES

M.Sc., CHEMISTRY CBCS Pattern (With effect from 2019-20) The course of Study and Scheme of Examinations

SEMESTER-I

Sl. No.	Course Code	Components of Study	Title of the Course	No. of Credits	IA Marks	End SEM Exam Marks	Total
1	CHE- 101	Core-Theory	Inorganic Chemistry- I	4	20	80	100
2	CHE- 102	Core-Theory	Organic Chemistry I	4	20	80	100
3	CHE- 103	Core-Theory	Physical Chemistry- I	4	20	80	100
4	CHE- 104	Core-Practical	Inorganic Practical- I	2	-	-	50
5	CHE- 105	Core-Practical	Organic Practical-I	2	-	-	50
6	CHE- 106	Core-Practical	Physical Practical I	2	-	-	50
7	CHE- 107	Compulsory Foundation	General Chemistry-I	2	10	40	50
6	CHE- 108	Elective Foundation	nan Values and Professional Ethics – I	4	20	80	100
		Total		24			600

Sl. No.	Course Code	Components of Study	Title of the Course	No. of Credits	IA Marks	End SEM Exam Marks	Total
1	CHE- 201	Core-Theory	Inorganic Chemistry- II	4	20	80	100
2	CHE- 202	Core-Theory	Organic Chemistry -II	4	20	80	100
3	CHE- 203	Core-Theory	Physical Chemistry- II	4	20	80	100
4	CHE- 204	Core-Practical	Inorganic Practical- II	2	-	-	50
5	CHE- 205	Core-Practical	Organic Practical-II	2	-	-	50
6	CHE- 206	Core-Practical	Physical Practical -II	2	-	-	50
7	CHE- 207	Compulsory Foundation	General Chemistry-II	2	10	40	50
6	CHE- 208	Elective Foundation	nan Values and Professional Ethics – II	4	20	80	100
		Total		24			600

M Sc., (ANALYTICAL CHEMISTRY) SEMESTER-III

	Course Code	Components of Study	Title of the Course	No. of Credits	IA Marks	End SEM Exam Marks	Total
1	CHE- AC-301	Core-Theory	Inorganic Spectroscopy & Thermal Methods of Analysis	4	20	80	100
2	CHE- AC -302	Core-Theory	Organic Spectroscopy	4	20	80	100
3	CHE- AC-303	Core-Practical	Classical Methods of Analysis	4	-	-	100
4	CHE- AC-304	Core-Practical	Instrumental Methods of Analysis-I	4	-	ı	100
5	CHE- 305	Generic Elective* (Related to	(a) Organic Chemistry III	4	20	80	100
		subject)	(b)Physical Chemistry III (c)Green Chemistry	4	20	80	100
6	CHE- 306	Open Elective (For other departments)	(a) Spectral Techniques or (b) Chromatographic Techniques	4	20	80	100
		Total		24			600

^{*}Among the Generic Elective a student shall choose any two.

	Course Code	Components of Study	Title of the Course	No. of Credits	IA Marks	End SEM Exam Marks	Total
1	CHE- AC-401	Core-Theory	Quality control and General principles	4	20	80	100
2	CHE- AC-402	Core-Theory	Instrumental Methods of Analysis	4	20	80	100
3	CHE- AC-403	Core-Practical	Instrumental Methods of Analysis-II	4	-	-	100
4	CHE- AC-404	Core-Practical/ Project work	Project work	4	-	1	100
5	CHE- 405	Generic Elective* (Related to subject)	(a) Applied and Environmental aspects	4 4	20 20	80 80	100 100
		, ,	(b) Bioinorganic, Bioorganic & Biophysical Chemistry				
			(c) Chemistry of Nanomaterials & Functional meterials				
6	CHE- 406	Open Elective* (For other departments)	(a)Drug Chemistry or (b) Electroanalytical Techniques	4	20	80	100
		Total		24			600

^{*}Among the Generic Elective a student shall choose any two.

M Sc., (ENVIRONMENTAL CHEMISTRY) SEMESTER-III

	Course Code	Components of Study	Title of the Course	No. of Credits	IA Marks	End SEM Exam	Total
						Marks	
1	CHE- EC-301	Core-Theory	Physical Chemistry III	4	20	80	100
2	CHE- EC-302	Core-Theory	Spectroscopy Applications	4	20	80	100
3	CHE- EC-303	Core-Practical	Water Analysis	4	-	-	100
4	CHE- EC-304	Core-Practical	Instrumental Methods of Analysis-I	4	-	-	100
5	CHE- 305	Generic Elective* (Related to	(a) Organic Chemistry III	4	20	80	100
		subject)	Inorganic Spectroscopy & Thermal Methods of Analysis (c) Green Chemistry	4	20	80	100
6	CHE- 306	Open Elective (For other departments)	(a) Spectral Techniques or (b) Chromatographic Techniques	4	20	80	100
		Total		24			600

^{*}Among the Generic Elective a student shall choose any two.

	Course Code	Components of Study	Title of the Course	No. of Credits	IA Marks	End SEM Exam Marks	Total
1	CHE-EC- 401	Core-Theory	Water pollution Monitoring and Environment laws	4	20	80	100
2	CHE-EC- 402	Core-Theory	Air pollution, control Methods- Noise and Thermal pollution	4	20	80	100
3	CHE-EC- 403	Core-Practical	Instrumental Methods of analysis-II	4	-	ı	100
4	CHE-EC- 404	Core-Practical/ Project work	Project work	4	-	-	100
5	CHE-405	Generic Elective* (Related to subject)	(a) Energy, Environment and Soils (b) Bioinorganic, Bioorganic & Biophysical	4 4	20 20	80 80	100
			(c) Chemistry of Nanomaterials & Functional meterials				
6	CHE-406	Open Elective* (For other departments)	(a)Drug Chemistry or (b) Electroanalytical Techniques	4	20	80	100
		Total		24			600

^{*}Among the Generic Elective a student shall choose any two.

M Sc., (INORGANIC CHEMISTRY) SEMESTER-III

	Course	Components of		No. of	IA	End	Total
	Code	Study	Title of the Course	Credits	Marks	SEM	
						Exam Marks	
1	CHE-IC- 301	Core-Theory	Inorganic Spectroscopy & Thermal Methods of Analysis	4	20	80	100
2	CHE-IC- 302	Core-Theory	Organic Spectroscopy	4	20	80	100
3	CHE-IC- 303	Core-Practical	Preparation of Inorganic complexes and characterization	4	-	-	100
4	CHE-IC- 304	Core-Practical	Instrumental Methods of Analysis-I	4	-	-	100
5	CHE-305	Generic Elective*	(a) Organic Chemistry III	4	20	80	100
		(Related to subject)	(b)Physical Chemistry III	4	20	80	100
	GYF 20.6	0 71	(c)Green Chemistry		20	0.0	100
6	CHE-306	Open Elective (For other	(a) Spectral Techniques or	4	20	80	100
		departments)	(b) Chromatographic Techniques				
		Total		24			600

^{*}Among the Generic Elective a student shall choose any two.

	Course	Components of		No. of	IA	End SEM	Total
	Code	Study	Title of the Course	Credits	Marks	Exam	
		-				Marks	
1	CHE-IC-	Core-Theory	Coordination compounds,	4	20	80	100
	401	-	Organo metallic chemistry &				
			Chemistry of non-transition				
			elements				
2	CHE-IC-	Core-Theory	Instrumental Methods of	4	20	80	100
	402		Analysis				
3	CHE-IC-	Core-Practical	Instrumental Methods of	4	-	-	100
	403		Analysis-II				
4	CHE-IC-	Core-Practical/	Project work	4	-	-	100
	404	Project work					
5	CHE-405	Generic	(a) Solid state and Photo	4	20	80	100
		Elective*	Chemistry	4	20	80	100
		(Related to	(h) Diainanania				
		subject)	(b) Bioinorganic,				
			Bioorganic & Biophysical				
			(c) Chemistry of Nanomaterials				
			& Functional meterials				
6	CHE-406	Open Elective*	(a)Drug Chemistry	4	20	80	100
		(For other	or				
		departments)	(b) Electroanalytical				
			Techniques				
		Total	Canaric Flactiva a student shall (24			600

^{*}Among the Generic Elective a student shall choose any two.

M Sc., (ORGANIC CHEMISTRY) SEMESTER-III

	Course Code	Components of Study	Title of the Course	No. of Credits	IA Marks	End SEM Exam Marks	Total
1	CHE-OC- 301	Core-Theory	Organic Chemistry III	4	20	80	100
2	CHE-OC- 302	Core-Theory	Organic Spectroscopy & Applications	4	20	80	100
3	CHE-OC- 303	Core-Practical	Organic Estimations	4	-	-	100
4	CHE-OC- 304	Core-Practical	Multistep preparations	4	-	ı	100
5	CHE-305	Generic Elective*	(a) Inorganic Spectroscopy & Thermal Methods of Analysis	4	20	80	100
		(Related to subject)	(b)Physical Chemistry III (c)Green Chemistry	4	20	80	100
6	CHE-306	Open Elective (For other departments)	(a) Spectral Techniques or (b) Chromatographic Techniques	4	20	80	100
		Total		24			600

^{*}Among the Generic Elective a student shall choose any two.

	Course Code	Components of Study	Title of the Course	No. of Credits	IA Marks	End SEM Exam Marks	Total
1	CHE-OC- 401	Core-Theory	Organic synthesis -I	4	20	80	100
2	CHE-OC- 402	Core-Theory	Organic Synthesis- II	4	20	80	100
3	CHE-OC- 403	Core-Practical	Spectral Identification of organic compounds	4	-	ı	100
4	CHE-OC- 404	Core-Practical/ Project work	Project work	4	-	-	100
5	CHE-405	Generic Elective* (Related to subject)	Heterocycles & Natural products (b) Bioinorganic, Bioorganic & Biophysical Chemistry (c) Chemistry of Nanomaterials & Functional meterials	4 4	20 20	80 80	100
6	CHE-406	Open Elective* (For other departments)	(a)Drug Chemistry or (b) Electro analytical Techniques	4	20	80	100
		Total	Consider Floriday and all and all all	24			600

^{*}Among the Generic Elective a student shall choose any two.

M Sc., (PHYSICAL CHEMISTRY) SEMESTER-III

	Course Code	Components of Study	Title of the Course	No. of Credits	IA Marks	End SEM Exam	Total
						Marks	
1	CHE-PC- 301	Core-Theory	Physical Chemistry III	4	20	80	100
2	CHE-PC- 302	Core-Theory	Organic Spectroscopy	4	20	80	100
3	CHE-PC- 303	Core-Practical	Practical-III	4	-	-	100
4	CHE-PC- 304	Core-Practical	Practical- III	4	-	-	100
5	CHE-305	Generic Elective*	(a) Organic Chemistry III	4	20	80	100
		(Related to subject)	(b) Inorganic Spectroscopy & Thermal Methods of Analysis (c)Green Chemistry	4	20	80	100
6	CHE-306	Open Elective (For other departments)	(a) Spectral Techniques or (b) Chromatographic Techniques	4	20	80	100
		Total		24			600

^{*}Among the Generic Elective a student shall choose any two.

			SEMIES LEK-LV				
	Course Code	Components of	Title of the Course	No. of Credits	IA Marks	End SEM Exam	Total
	Code	Study	Title of the Course	Credits	Marks	Marks	
1	CHE-PC- 401	Core-Theory	Electrochemistry	4	20	80	100
2	CHE-PC- 402	Core-Theory	Thermodynamics, Polymers and Solid state Chemistry	4	20	80	100
3	CHE-PC- 403	Core-Practical	PRACTICAL-I	4	-	-	100
4	CHE-PC- 404	Core-Practical/ Project work	Project work	4	-	-	100
5	CHE-405	Generic Elective* (Related to subject)	CHEMICAL KINETICS (b) Bioinorganic, Bioorganic & Biophysical	4 4	20 20	80 80	100 100
			(c) Chemistry of Nanomaterials & Functional meterials				
6	CHE-406	Open Elective* (For other departments)	(a)Drug Chemistry or (b) Electro analytical Techniques	4	20	80	100
		Total		24			600

^{*}Among the Generic Elective a student shall choose any two.

• Co	mprehend the key features of coordination compounds, Crystal Field Theory, different properties I bonding by spectroscopic techniques											
	Study the polymorphic forms of non-transition elements and their synthesis and properties											
	•	•						•			•	(Id) and
									-			Transfer
	actions				(1),	100000						110,210,101
• Far	miliarize	with th	e metho	ods of sv	ynthesis	of meta	al carbon	vls and r	netal ni	trosyls, S	Synergist	ic effect,
	N and 1			•	,			J		<i>3</i> /	, ,	ĺ
Cours	e Outco	mes: A	t the end	l of the	course, 1	the stude	ent will b	e able				
CO1	To und	erstand	the key	features	of coor	dination	compou	ınds, Cry	stal Fie	ld Theor	y, magne	tic
	properties and bonding in transition metal complexes.											
CO2	To learn about the polymorphic forms of Carbon, Sulphur and Phosphorus, synthesis and											
	propert	ies of su	ılphur-n	itrogen	compou	ınds, boı	ranes, car	rbides, si	licates a	and to kn	ow Wade	es rules.
CO3	To exp	lain the	reactivi	ty of co	mplexes	in term	s of Vale	ence bond	d and C	rystal Fie	ld theori	es,
	Taube'	s classif	ication,	Trans e	ffect and	d Electro	on Trans	fer React	ions.	•		
CO4	To gair	n knowl	edge on	synthes	is and st	tructures	of diffe	rent meta	al carbo	nyls, syn	ergistic e	ffect
	and 18	electror	rule.									
	Mapping of course outcomes with the program outcomes											
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											
CO1	3	2	-	3	-	2	1	1	-	2	-	1
CO2	3	1	2	3	-	2	-	2	1	1-	-	1
CO3	3	2	-	3	2		1		2	1	1	1
CO4	3	1	1	3	1	1	-	2	1	-	2	1

INORGANIC CHEISTRY I

Pre-requisite: Understanding of graduate level chemistry

CHE 101: INORGANIC CHEISTRY I

UNIT-I: CO-ORDINATION COMPOUNDS

CHE-101

Course Objectives:

15 Hrs

L-5,T-1,P-0

4Credits

Introduction to Crystal field Theory, CFSE and its calculation, Paring energy, Splitting of 'd' orbitals in Trigonal bi pyramidal, square planar, square pyramid and pentagonal bipyramidal geometries, Jahn – Teller effect, Application of CFT, OSSE, site Selection in Spinels, Short comings of CFT, Evidence for covalency –Nephelauxetic effect. MOT of co-ordinate bonds –M.O. Diagrams for octahedral, tetrahedral and square planar complexes. Experimental evidences for π - bonding – Crystallography, Infrared spectroscopy and Photoelectron spectroscopy.

UNIT-II: CHEMISTRY OF NON-TRANSITION ELEMENTS 15 Hrs

General characteristics of the non-transition elements special features of individual elements; Synthesis' properties and structure of their Halides and Oxides, Polymorphism of Carbon, Phosphorus and Sulphur, Synthesis, properties and structure of boranes, Carboranes, borazines, Silicates, Carbides, Sulphurnitrogen compounds. Electron counting in boranes, Wades rules (Poly hedral skeletal electron pair theory), Isopopoly and hetero poly acids.

UNIT-III: REACTION MECHANISMS IN COMPLEXES 15 Hrs

Reactivity of metal complexes. Inert and Labile complexes. Concept of Labile and Inert complexes in terms of Valence bond and Crystal Field theories. Taube's classification of complexes as labile and inert complexes. Dissociative (D) and Dissociative interchange Mechanism (Id) & Associative (A) and

Associative interchange Mechanism (Ia). Substitution reactions in octahedral complexes- Acid Hydrolysis -factors affecting Acid Hydrolysis - Base Hydrolysis-conjugate Base Mechanisms - Anation Reactions -Substitution Reactions in Square Planar complexes- Trans effect – Mechanisms of Trans effect: polarization and π -bonding theories. Electron Transfer Reaction-Inner Sphere and outer Sphere Mechanisms- Marcus theory.

UNIT-IV: METAL π COMPLEXES-I 15 Hrs

Nature of π bonding, Classification of π ligands, π donor ligands and π -acceptor ligands.

Metal Carbonyls: Synthesis of metal carbonyls, Structures of metal carbonyls of the types M(CO)n (M=Cr, Fe, Ni; n=4-6), $M_2(CO)n$ (M=Co, Fe, Mn; n=8-10), $M_3(CO)_{12}$ (M=Fe, Ru and Os), $M_4(CO)_{12}$ (M=Co, Rh, Ir). IR Spectraof metal carbonyls (i) Detection of bridging and terminal CO ligand, (ii) Synergistic effect, EAN and 18-electron rule. Electron counting methods (i) Oxidation state method and (ii) Neutral Atom method.

Metal Nitrosyls: Synthesis of metal Nitrosyls, bonding, Electron donation by nitric oxide, Models for NO bonding (i) Covalent model and (ii) Ionic models, Structures of metal nitrosyls (1) [Fe₄S₃(NO)] (2)[Fe₂(NO)₂I₂] (3) [$(\phi_3P)_2$ Ir(CO)Cl(NO)]⁺ (4) [$(\phi_3P)_2$ Ru(NO)₂Cl], Detection of bridging NO ligand, Applications of metal nitrosyls.

Books Suggested

- 1. F.A.Cotton and G. Wilkinson, Advanced In-organic chemistry VI Edition, 1999. John wiley & sons. Inc., New York.
- 2. James E. Huheey, Inorganic chemistry- Principles of structure and reactivity, VI Edition 1993. Harper Collins College Publishers, New York.
- 3. J.D. Lee: Concise Inorganic Chemistry (Blackwell)
- 4. Gary Wolfsburg: Inorganic Chemistry (5th Ed. (Viva Books)
- 5. W.L. Jolly: Modern Inorganic Chemistry (McGraw-Hill)
- 6. B.N Figgis: Introduction to Ligand Fields (John-Willey)
- 7. S.F.A. Kettle: Coordination compounds.
- 8. Coordination Chemistry. Bassalo & Jahnson.

Pre-re	Pre-requisite: Understanding of graduate level Organic Chemistry											
Cours	e Objec	tives:										
• Clas	ssify mo	lecules	based o	n stereo	chemica	al aspec	ts study	on option	cal and g	geometr	ical isor	nerism
by t	he appli	cation c	of Cahn-	Ingold-	Prelog r	ules.	•	-	·			
• Fan	niliarize	with d	ifferent	types o	f substi	itution r	eactions	s, able t	o predi	ct produ	acts, inc	cluding
ster	eochemi	istry in	alipha	itic and	l aroma	atic nu	cleophil	ic subs	titution	reaction	ns, eff	ect of
	ghboring											
											namic c	
								rmediate	es, met	hods o	f deteri	mining
	chanisms											
• Stud	dy abou	t occuri	rence, is	solation	, structu	ıre estal	olishme	nt and s	synthesi	s of nat	ural pro	oducts-
	enoids.											
Cours	e Outco	mes: A	t the end	d of the	course,	the stud	ent will	be able				
C	: 01	To d	etect ste	reocher	nical str	uctures	of the m	olecule	s, stereo	selectiv	e and	
		stere	ocontro	lled read	ctions.							
C	CO2	To a	scertair	the ste	reochem	nistry of	the prod	ducts wi	th the e	ffect of	neighbo	uring
		grou	p partici	ipation a	and to fa	ımiliariz	e the va	rious ty	pes of a	romatic	substitu	tion
		_		-				substitu	-			
C	203							ential en		agrams a	and	
				-		interme	-		- 6,	.6		
	CO4							of notice	ally occ	urring t	erpenoio	de and
					_	_	111115318	or matur	any occ	uiiiig t	cipenoi	is and
	degradation products of terpenoids											
	Mapping of course outcomes with the program outcomes											
	PO1	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12										
CO1	3	2	1	3	1	-	1	2	1	-	2	-
CO2	3	2	2	3		1	-	1	2	1	1	2
CO3	3	1	2	3	1	1	1	2		1	_	_

Organic Chemistry I

4Credits

L-3,T-1,P-2

CHE102: Organic Chemistry I

UNIT-I: <u>Stereochemistry</u>

CO4

CHE-102

Sereoisomerism-Stereoisomers Classification – Configuration and conformation.

Molecular Three dimensional representations: Wedge, Fischer, Newman and Saw-horse formulae, their description and interconversions.

Molecular Symmetry & Chirality: Symmetry operations and symmetry elements (Cn & Sn). Criteria for Chirality. Dissymmetrization.

Optical isomerism: Molecular Symmetry and Chirality-Cahn-Ingold-Prelog rules R, S-nomenclature, stereoisomerism resulting from more than one chiral center, meso and pseudoasymmetric compounds - **Axial Chirality** - Stereochemistry of allenes spiranes - biphenyl derivatives and atropisomerism - **Planar chirality** - Ansa compounds and trans - Cycloalkenes - **Helicity**. Helically chiral compounds **Geometrical isomerism** - E, Z - nomenclature - Physical and Chemical methods of determining the configuration of geometrical isomers-Stereoisomerism in 3, 4 and 5-membered cyclic compounds.

- i) Aliphatic Nucleophilic Substitutions: The S_N2 , S_N1 , mixed S_N1 and S_N2 , SET mechanisms. Reactivity- effects of substrates, attacking nucleophiles, leaving groups and reaction medium. Common carbocation rearrangements primary, secondary and tertiary. The neighbouring group participation (NGP) -anchimeric assistance, NGP by σ and π bonds, phenonium ions, norbornyl and norbornenyl systems, Classical and nonclassical carbocations, NGP by halogens and heteroatoms (O,N,S) The S_N^i and S_N^i 2 mechanisms. Nucleophilic substitution at an allylic, and vinylic carbons.
- ii. Aromatic Nucleophilic Substitution: The S_NAr , S_N1 , benzyne and $S_{RN}1$ mechanisms. Reactivity effect of substrate, structure, leaving group and attacking nucleophile. The von Richter, Sommelet Hauser and Smiles rearrangements.

UNIT-III: Reactive Intermediates

Types of reactions, types of bond cleavage mechanisms, generation, structure, stability and reactivity of carbocations, carbanions, free radicals, carbenes, nitrenes and arynes. Thermodynamic and kinetic requirements, kinetic and thermodynamic control, potential energy diagrams, transition states and intermediates, methods of determining mechanisms, isotope effects.

UNIT-IV: Terpenoids

Classification of terpenoids, occurrence, isolation, general methods of structure determination. Isoprene and special isoprene rule. Structure determination and synthesis of the following representative molecules: Farnesol, Zingeberine, Cadinene and Abietic acid.

Books Suggested:

- 1. Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, John Wiley.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J Sundberg, Plenum.
- 3. Structure and Mechanism in Organic Chemistry C.K. Inglod, Cornell University Press.
- 4. Organic Chemistry, R.T Morrison and R.N. Boyd, Prentice Hall.
- 5. Principles of Organic Synthesis, R.O.C Norman and J. M. Coxon, Blackie Academic.
- 6. Stereochemistry, P.S. Kalsi, Wiley Eastern.
- 7. Text book of Organic Chemistry, M.C. Murry
- 8. Organic Chemistry, Vol I, I.L. Finar, ELBS Eds.

CHE-1												
Pre-re	Pre-requisite: Basic knowledge about Physical Chemistry											
Course Objectives:												
-	• Acquire knowledge in Quantum Chemistry, postulates of Quantum Mechanics., Applications of											
			equation									
	•		•		nd theor	ries in	unimole	ecular, c	chain a	nd fast	reaction	ns and
			action ra									
			-		-	mics an	d statist	tical the	rmodyn	amics,	Gibbs- 1	Duhem
			r-Tetrac									
					d Kine	tic con	cept of	Electro	ochemis	try and	condu	ctance,
-			trolytes									
Course	Course Outcomes At the end of the course, the student will be able to											
CO1	To know the concepts such as Operator algebra, Eigen values and Eigen functions,											
	Degeneracy, Schrodinger wave equation and the postulates of Quantum Mechanics.											
COA												
CO2				es of rea	ction rat	tes, Lind	lemann,	Linden	iann-Hi	nshel w	ood, and	1
	RRKN	M theori	es.									
CO3				•			_			ersible p		
										ynamic		
CO4								of Nerr	ıst Equa	ition and	the de	rivation
	of Del	•	kle Equ									
Mapping of course outcomes with the program outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	3	2	1	-	2	1	2	1	1
CO2	3											
CO3		3 2 1 3 2 1 3 2 2										
CO4	O4 3 2 2 3 - 1 1 - 1 2 - 2											
	CHE 102 Ph. 1 - I Charles I											

CHE-103: Physical Chemistry I

UNIT-I: Quantum Chemistry-I

(A)Introduction to Exact Quantum Mechanical Results

Operator algebra, Eigen values and Eigen functions, Operators for momentum and energy, Degeneracy, Linear combination of Eigen functions of an operator, well behaved wave functions, Normalized and orthogonal functions, The schrodinger wave equation and the postulates of Quantum Mechanics, (B) **Applications of Schrodinger wave equation:** Particle in one dimensional and three dimensional box, harmonic oscillator, rigid rotor, hydrogen atom and its applications. Hydrogen like wave function, hydrogen like orbitals and their representation, polar plots, contour plots and boundary diagram. (C)**Approximate Methods:** The variation Theorem, Linear variation principle, perturbation Theory (first Order and non-degenerate), Application of variation Method and perturbation theory to the helium atom, The Born-Oppenheimer approximation.

UNIT-II: Chemical Dynamics

(A)**Theories of reaction rates:** Collision theory, steric factor. Theory of Absolute Reaction Rates-Reaction coordinate, activated complex and the transition state. Thermodynamic formiulation of reacton rates.

(B) **Unimolecular reactions:** Lindemann, Lindemann-Hinshel wood, and RRKM theories. Termolecular reactions. Complex reactions-Rate expressions for opposing, parallel and consecutive

reaction (all first order type) (C) **Chain reactions:** Dynamic chain, hydrogen-bromine reaction, pyrolysis of acetaldehyde, decomposition of ethane, photochemical reactions- H₂-Br₂, H₂-Cl₂ reactions, Autocatalysis, H₂-O₂ reaction explosion limits. (D) **Fast Reactions:** Flow system – Temperature and pressure Jump Methods – Relaxation Techniques.

UNIT – III : Thermodynamics

(A) **Brief review of Thermodynamic concepts:** Enthalpy, entropy, free energy. Concept of Entropy –Entropy as a state function –Entropy change in reversible process and irreversible process – Temperature – Entropy diagrams – Entropy change and phase change – Entropy of mixing – Entropy and disorder. (B) **Statistical thermodynamics:** Partial molar properties: their significance and determination of partial molar properties, fugacity and its determination. Concept of distribution, thermodynamic probability and most probable Distribution, Ensemble averaging, postulates of ensemble averaging, canonical, grand canonical and micro- canonical ensembles, partition functions, translational, rotational, vibrational and electronic partition functions, Gibbs-Duhem equation, calculation of thermodynamic properties in terms of partition functions, Entropy of monatomic gases (Sackur-Tetrade equation)

UNIT-IV: Electrochemistry I

(A) Thermodynamic and Kinetic concept of Electrochemistry

Thermodynamic and Kinetic Derivation of Nernst Equation, Chemical and Concentration Cells with and without Transference, Liquid Junction Potential, Derivation of the Expression for Liquid Junction Potentials-its determination and elimination, Applications of EMF Measurements: (i)Solubility product, (ii)pH Determination, (iii) Potentiometric Titrations.; (B)Conductivity: Theory of Electrolytic Conductance, Derivation of Debye-Huckle Equation and its Verification, Debye- Falkenhagen Effect, and Wein Effect, kohlrausch law. Calculation of Solubility of Sparingly soluble Salt from Conductance Measurements.

Conductometric Titrations: Titration of Strong Acid Vs Strong Base (HCl vs NaoH); Titration of Weak Acid Vs Strong Base (AcoH vs NaoH); Titration of mixture of Strong and Weak Acids vs Strong Base; Precipitation Titrations.

Books Suggested

- 1. Physical Chemistry, P. W. Atkins (ELBS)
- 2. Quantum Chemistry, Ira N. Levine (Prentice Hall)
- 3. Atomic Structure and Chemical bond, Manas Chandra.
- 4. Chemical Kinetics, K.J. Laidler (Mc Graw Hill)
- 5. Kinetics and Mechanism of Chemical Transformations, J. Rajaraman and J. Kuriacose (Mcmilan)
- 6. Thermodynamics for chemists, S. Glasstone
- 7. Chemical thermodynamics, I.M. Klotz
- 8. Statistical Thermodynamics, M. Dole
- 9. Modern Electrochemistry, Vol. I & II, J.O. M. Bockris and A.K.N. Reddy (plen
- 10. An Introduction to Electrochemistry (3rded.), S. Glasstone (Affiliated East-West).

CHE 104	Core practical I: Inorganic Chemistry	L-5,T-1,P-0	2 Credits				
Pre-requisite: Understanding of graduate level Inorganic Chemistry practical.							

SEMI MICRO QUALITATIVE ANALYSIS Basic laboratory techniques of titration and analysis. Quantitative estimation of inorganic compounds through volumetric techniques. **Course Outcomes:** At the end of the course, the student will be able To demonstrate mastery of basic semi-micro qualitative analysis of simple salts and interprets analytical data and will make scientific claims that are supported by the observations. CO₂ To familiarize with techniques of titration and calculation of errors CO₃ **CO4** Mapping of course outcomes with the program outcomes PO3 PO5 PO6 PO7 PO8 PO1 PO₁ PO2 PO4 PO9 PO₁ PO₁ 0 1 2 **CO1** 3 2 2 3 2 1 1 1 2 3 2 CO₂ 3 2 2 1 1 2 CO3 CO₄

CHE 104: Core practical I: Inorganic Chemistry

Semi Micro Qualitative Analysis

I. Qualitative Analysis of a mixture containing four cations including two less common cations (viz., W, Mo, Se, Te, V, Ce, Th, Zr, Li and U).

CHE 105	Core practical I: Organic CheImistry	L-5,T-1,P-0	2 Credits				
Pre-requisite: Understanding of graduate level Organic Chemistry practical.							

Course Objectives:

- Identification of single organic component by systematic qualitative analysis
- Single step preparations

Course Outcomes: At the end of the course, the student will be able												
CO1	To familiarize the systematic procedures of analysis of organic components, conformational											
	tests fo	r variou	s function	onal gro	ups.							
CO2	To und	erstand	the me	chanism	s and fa	amiliariz	ze with	method	ologies	to prepa	are biol	ogically
	importa	ant mole	cules.									
CO3												
CO4												
		Ma	apping	of cours	se outco	mes wit	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1
										0	1	2
CO1	3	2	2	3	1	2	2	1	2	-	2	-
CO2	3	2	2	3	2	2	1	1	1	2	1	2
CO3	3											
CO4												

CHE: 105: PRACTICAL - II: ORGANIC CHEMISTRY

a) Identification of single organic component by systematic qualitative analysis.

Aromatic acids

Phenols

Neutral compounds

Esters

Carbonyl compounds etc.

- b) Single step preparations.
 - 1. Preparation of aspirin
 - 2. Preparation of p-nitroacetanilide
 - 3. Preparation of p-bromoacetanilide
 - 4. Hydrolysis

CHE 106	Core practical I: Physical CheImistry	L-5,T-1,P-0	2 Credits
---------	--	-------------	-----------

Pre-requisite: Understanding of graduate level Physical Chemistry practical.

Course Objectives:

• Determination of critical solution temperature, eutectic composition and temperature of binary system.

Course Outcomes: At the end of the course, the student will be able

CO1	To stud	To study the determination of critical solution temperature, eutectic composition,											
	distribu	distribution coefficient, adsorption of different											
CO2	To cali	To calibrate the statistical data											
CO3													
CO4													
		Ma	apping o	of cours	se outco	mes wit	th the p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	
										0	1	2	
CO1	3	2	2	3	İ	2	2	1	1	2	1	1	
CO2	3	2	2	2	1	2	1	1	1	2	-	2	
CO3													
CO4													

CHE: 106: PRACTICAL – III: Physical Chemistry

Syllabus

- Calibration of volumetric apparatus and statistical analysis of the data.
- Determination of critical solution temperature of phenol-water system and study the effect of electrolyte on CST.
- Determination of Eutectic composition and temperature of binary system
- Determination of distribution coefficient of benzoic acid between water and benzene.
- Study the adsorption of acetic acid on charcoal and analysis of the data on the basis of Langmuir and Freundlich adsorption isotherms.
- Determination of rate constant of acid hydrolysis of an ester and investigate the effect of catalyst concentration, reactant concentration and temperature.

CHE-107	General Chemistry I	L-5,T-1,P-0	2 Credits
Pre-requisite: U	Inderstanding of graduate level Chemis	try	
Course Objecti	VES.		_

- Gain knowledge on precision and accuracy, Limit of detection, Limit of determination, Sensitivity and selectivity, statistical evaluation of data
- Familiarize with principles and concepts of flame emission spectroscopy and atomic absorption spectroscopy and their applications.

Course Outcomes: At the end of the course, the student will be able

CO1 To know about mean and median values, standard deviation and coefficient of variation.

CO ₂	To acquire knowledge on principle and instrumentation of AAS and difference between												
	flame A	flame AAS and furnace AAS.											
CO3													
CO4													
		Ma	apping o	of cours	se outco	mes wit	th the p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	1	3	1	2	ı	2	ı	1	1	2	
CO ₂	3	2	2	3	1	-	2	1	1	2	ı	2	
CO3													
CO4													

CHE107: General Chemistry I

UNIT-I: TREATMENT OF ANALYTICAL DATA

15 Hrs

Precision and accuracy –mean and median values –Standard deviation – coefficient of variation, Types of errors: Determinate and indeterminate errors, confidence limits, significant figures, computations, minimization of errors, statistical evaluation of data –T-test ,F- test , and X^2 –test. Correlation coefficient and coefficient of determination; Limit of detection (LOQ); Limit of determination(LOD) Sensitivity and selectivity of an analytical method.

UNIT-II: FLAME EMISSION AND ATOMIC ABSORPTION SPECTROSCOPY 15 Hrs

- (a) **Flame Emission Spectroscopy**: Principles, chemical reactions in flames, Interferences, evaluation methods, flame photometer and experimental technique, procedure for determinations, limitations and disadvantages. Applications
- (b)**Atomic Absorption Spectroscopy: Flame AAS:** Principle, Instrumentation Sources of radiation (HCL and EDL), Different types of burners, Interferences- Physical, Chemical, spectral and back ground correction, and methods of minimization
- GF AAS: Principle and technique –Comparison between Flame AAS and furnace AAS, Applications of AAS, Comparison between Atomic Absorption & Flame Photometry.

Books Suggested

- 1. H.W. Willard, LL. Merritt and J.A. Dean: Instrumental Methods of Analysis
- 2. Vogel's Text book of Quantitative Inorganic Analysis.
- 3. Analytical Chemistry
- 4. Instrumental Methods of Analysis H. Kaur

CH	E 108	Human Values and Professional L-3,T-1,P-2 4 Credits Ethics-I												
				Ethi	ics-I									
Pre-re	quisite:	Unders	tanding	of grad	uate leve	el Huma	ın Value	es and p	rofessio	nal ethic	es			
Course	e Objec	tives:												
• Ana	lyze val	ues in v	arious e	thical p	rofessio	ns								
• Und	erstand	rstand moral concepts, character and conduct multiple												
• Con	cept of	ept of ethical values with respect to individual and society												
• ethic	cal inter	ests at s	stake in	areal-w	orld situ	ation of	r practio	ce and a	ssess o	wn ethic	al value	s with		
resp	ect to so	cial co	ntext and	d proble	ms									
Course	e Outco	mes: A	t the end	of the	course, 1	the stude	ent will	be able	to					
CO1	To kno	ow abou	it the ne	eds and	importa	nce of p	rofessio	onal ethi	cs.					
CO2	To ana	ılyze na	ture of V	Values,	basic M	oral Cor	ncepts c	haracter	and Co	nduct.				
CO3	To gai	n know	ledge or	individ	lual and	society	ethical	values, a	ahimsa,	satya an	nd			
	brahm	acharya												
CO4	To und	derstand	l values	of Bhag	avd Git	a, variou	ıs religi	ons, reli	gious to	lerence,	, Gandhi	ian		
	ethics.													
	1	Ma	apping o	of cours	e outco	mes wit	h the p	rogram	outcon	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	-	1	3	2	1	1	2	3	-	1	2		
CO2	3	-	2	3	1	2		2	3	2	-	2		
CO3	3	1		3	2		1				1	3		
CO4	3	1	2	3		2	2	2	2	2	-	3		

CHE 107: ELECTIVE FOUNDATION (HUMAN VALUES AND PROFESSIONAL ETHICS

-I

Chapter I: Definition and Nature of Ethics – Is relation to Religion, Politics, Business, Law, Medicine and Environment. Need and Importance of Professional Ethics – Goals – Ethical Values in Various Professions.

Chapter II: Nature of Values – Good and Bad, Ends and Means, Actual and Potential Values, Objective and Subjective Values, Analysis of Basic Moral Concepts – Right, Ought, Duty, Obligation, Justice, Responsibility and Freedom, Good Behavior and Respect for Elders, Character and Conduct.

Chapter III: Individual and Society: Ahimsa (Non-Violence), Satya (Truth), Brahmacharya (Celibacy), Asteya (Non Possesion) and Aparigraha (Non-stealing). Purusharthas (Cardinal virtues) - Dharma (Righteousness), Artha (Wealth), Kama (Fulfillment Bodily Desires), Moksha (Liberation), Crime and Theories of Punishment – (a) Reformative, Retributive and Deterrent, (b) Views on Manu and Yajnavalkya

Chapter IV: Bhagavd Gita – (a) Niskama Karma, (b) Buddhism – The Four Nobel Truths – Arya astanga marga, (c) Jainism - Mahavratas and Anuvratas. Values Embedded in Various Religions, Religious Tolerence, Gandhian Ethics.

Books for study:

- 1. Johns S Mackenjie: A Manual of ethics
- 2. "The Ethics of Management" by Larue Tone Hosmer, Richard D. Irwin Inc.
- 3. "Ethics in Management" by S.A. Shelekar, Himalaya Publishing House.

- 4. Harold H. Titus: Ethics for Today
- 5. Maitra, S.K: Hindu Ethics
- 6. William Lilly: Introduction to Ethics
- 7. Manu: Manava Dharma Sastra or the Institute of Manu: Comprising the Indian System of Duties: Religious and Civil (ed) G.C. Haughton.
- 8. Sasruta Samhita: Tr. Kaviraj Kunjanlal, Kunjanlal Brishagratha, Chowkamba Sanskrit Series, Vol I,II and III, Varanasi, Vol I PP, 16-20, 21-32 and 74-77 only.
- 9. Charaka Samhita: Tr. Dr. Ram Karan Sarma and Vaidya Bhagavan Dash, Chowkambha Sanskrit Series Office. Varanasi I, II, III Vol I PP 183-191.
- 10. Ethics, Theory and Contemporary Issues. Barbara Mackinnon, Wadsworth/Thomson Learning, 2001.
- 11. Analyzing Moral Issues, Judith A. Boss, Mayfield Publishing Company, 1999.
- 12. I.C. Sharma Ethical Philosophy of India. Nagin& Co Julundhar.

	Understand magnetic properties of transition metal complexes and various reactions on ligands with respect to synthesis.												
		•	•		specti	ra of co	omplex	molecule	es of o	ctahedra	l and te	trahedral	
	geometr	_					· r						
•	Underst	and ma	gnetic	propertie	es viz.	, diama	agnetism	and pa	ıramagr	netism a	nd other	related	
	properties of complex molecules												
•	Familia	Familiarize with different catalytic reactions of complex molecules and factors effecting the											
		eactions.											
Cours	e Outco	mes: A	t the end	l of the c	ourse, 1	the stude	ent will b	e able					
CO1	To fam	iliarize	with the	general	method	ds of cor	nplex pr	eparation	s and p	roperties	, nature o	f	
	bondin	g and st	ructural	features	of meta	al comp	lexes.						
CO2	To kno	w about	t Russel-	-Saunder	s coupl	ling, spli	itting of	energy le	vels in	octahedra	al field aı	nd	
	differe	ntiate be	etween C	Orgel dia	grams a	and Tana	abe-Suga	ano diagr	ams.				
CO3	To und	lerstand	about th	e laws o	f Hund	s, Curie	and Wei	ss, magn	etism a	nd magne	etic susce	eptibility	
	determ	ination 1	by Gouy	's and F	arady n	nethods.							
CO4	To gain	n knowle	edge on	Induced	reactio	ns, Free	radical	reactions	, Therm	al decon	position		
	reaction	ns, Chai	n reactio	ons.									
		I	Mappin	g of cou	rse out	comes v	with the	program	outco	mes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	2	3	-	2	1	2	-	2	-	1	
CO ₂	_	1	1	3	1	2	-	2	-	1	-	1	
CO3		-	2	3	-	2	1	-	2	1	1	-	
CO4	3	1	1	3	1	2	-	1	-	1	-	1	

L-5, T-1, P-0

4 Credits

Inorganic Chemistry II

Pre-requisite: Understanding of graduate level chemistry

CHE 201: INORGANIC CHEISTRY II

UNIT – I: TRANSITION METAL II – COMPLEXES II

CHE - 201

Course Objectives:

15 Hrs

Transition metal π – complexes with unsaturated organic molecules – alkenes, alkynes, diene, dienyl and Cyclopentadienyl complexes and arene complexes-general methods of preparation, properties, nature of bonding and structural features – Important reactions relating to Nucleophilic and Electrophilic attack on ligands and to organic synthesis.

UNIT – II: ELECTRONIC SPECTRA OF COMPLEXES

15 Hrs

Russel-Saunders coupling – Spectroscopic term symbols- Derivation of term symbols of p² and d² configuration, Hole Formulation, Energy ordering of terms (Hund's Rules), Splitting of energy levels and spectroscopic states in Octahedral field, Selection rules – Break – down of selection rules, Orgel diagrams, Definition and utility–Orgel Diagrams for d¹ to d9 configurations in Octahedral and tetrahedral fields. Interpretation of electronic spectra of high spin octahedral and tetra hedral complexes of Ti(III), V(III), Cr(III), Mn(III), Mn(III), Fe(II), Fe(III), Co(III), Co(II), Ni(II) and Cu(II) complexes, Calculation of Dq and B¹ parameters for Cr(III) and Ni(II) complexes. Tanabe – Sugano diagrams, Differences between Orgel diagrams and Tanabe – Sugano diagrams, Tanabe – Sugano diagrams of d² to d6 and d8 configurations. Charge transfer spectra- LMCT and MLCT.

Diamagnetism and paramagnetism-orbital and spin contributions, spin-orbit coupling, Hunds third rule and Energies of J levels – Curie law and Curie – Weiss law- Ferromagnetism and antiferromagnetism – Temperature independent magnetism Magnetic susceptibility and its determination by Gouy's and Faraday methods. Calculation of magnetic moment from magnetic susceptibility, spin-only formula, Orbital contribution to magnetic moment (Oh and Td Complexes) –Paramagnetism and crystalline fields – Ti (III), V (III), VO²⁺, Cr (III), Mn (II), Fe (III), Co(II), Ni (II) and Cu (II). Magnetic Exchange in copper acetate and other dimmers – spin cross over in complexes.

UNIT -IV: CATALYSIS 15 Hrs

Homogeneous catalysis, Metal ion catalyzed reactions – Redox potentials and processes – Mechanism of redox processes involving ligands – Factors affecting redox potentials - other types of metal catalyzed reactions – Reactions involving Ag (I), Cu (II) and Os (VIII) – Reactions of Oxyanions – Factors affecting rate (General discussion only) – Induced reactions – Free radical reactions – Thermal decomposition of peroxy disulphate – Fe(III) –S₂O₈ reactions – chain reactions – H-Br reactions, H_2O_2 –S₂O₈ reactions.

Books Suggested

- 1. Inorganic Chemistry principles of Structure and Reactivity 6th Edition. James E. Huheey.
- 2. Organometallic Chemistry: R.C. Mehrotra and Singh.
- 3. R. S. Drago: Structural methods in Inorganic Chemistry.
- 4. H. H. Willard, L. L. Merritt, Jr., J. A. Dean and F. A. Settle, Jr.: Instrumental Methods of Analysis (CBS Publishers).
- 5. R. L. Carlin: Magnetic Chemistry. R. L. Datta and A. Syamal: Elements of Magnetic Chemistry.

			Ü		•								
Pre-re	quisite:	Unders	standing	of Orga	nic Che	emistry	•		•				
Course Objectives:													
	• Able to recognize, classify, explain, and apply fundamental organic reactions such as E ₂ , E ₁ ,												
	E _{1CB} .												
• Fam	amiliar with molecular rearrangements involving electron deficient carbon, nitrogen and												
oxy	ygen atoms and electron rich carbon atom.												
	vide Hantzsch-Widmann nomenclature for the three and four membered heterocycles. Be												
	e to predict synthetic routes and chemical reactions of these heterocycles.												
	Be familiar with occurrence, isolation, structural elucidation and synthesis of natural products-												
	alkaloids												
	Course Outcomes: At the end of the course, the student will be able												
CO1													
	synpyrolytic eliminations and use of isotopes, chemical trapping and crossover												
	experiments.												
CO2	To learn the rearrangements involving electron deficient carbon, nitrogen and oxygen												
										itions an			
	of read										11		
CO3			synthesi	is of th	ree and	four m	embered	d hetero	cycles	mechan	ism of	ring	
			•						•	wing sul		_	
	_	_	ring ope			ciccuon	donath	ig and	withdia	wing su	ostitucii	ts III	
CO4	1	•				on and a	wnthosi	c of allse	loide ne	sing spec	oific roo	ganta	
CO4	10 un										ciric rea	gents.	
		Ma	apping o	of cours	se outco	mes wit	th the p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	2	2	3	-	2	1	1	2	-	1	
CO2	3	3	2	2	3	2	2	_	1	_	1	1	
CO3	3	3	2	2	3	2	2	1	1	1	2		
CO4	3	3	2	2	3	-	2	-	1	1	-	1	
												•	

L-3, T-1, P-2

4 Credits

Organic Chemistry II

CHE-202: ORGANIC CHEMISTRY II

UNIT-I: Reaction mechanism-I

CHE-202

15 Hrs

Electrophilic addition to carbon carbon double bond: Stereoselective addition to carbon carbon double bond; anti addition- Bromination and epoxidation followed by ring opening. Syn addition of OsO₄ and KMnO₄.

Elimination reactions Elimination reactions E_2 , E_1 , E_{1CB} mechanisms. Orientation and stereoselectivity in E_2 eliminations. Pyrolytic syn elimination and α -elimination, elimination Vs substitution. Facors influencing the elimination reactions

Determination of reaction mechanism: Determination of reaction mechanism: Energy profiles of addition and elimination reactions, transition states, product isolation and structure of intermediates, use of isotopes, chemical trapping, crossover experiments. Use of IR and NMR in the investigation of reaction mechanism.

UNIT-II: Molecular Rearrangements:

15 Hrs

Rearrangements to electron deficient Carbon atom:

Pinacol-Pinacolone, Wagner-Meerwein, Dienone-Phenol and Demjonove Rearrngements

Rearrangements to electron deficient Nitrogen atom:

Hofmann, Curtius, Schimidt and Beckmann Rearrangements.

Rearrangements to electron deficient Oxygen atom: Baeyer-Villiger and Dakins Rearrangements

Rearrangements to electron rich Carbon atom: Favorski and Neber Rearrangements Aromatic and Sigmatropic Rearrangements: Fries and Claisen Rearrangements

UNIT III: Three and four membered heterocycles:

15 Hrs

Systematic nomenclature (Hantzsch-Widmann system) and Replacement nomenclature for monocyclic heterocycles (Three and four membered rings). Synthesis and chemical reactions of aziridines, oxiranes, thiiranes, azetidines, oxetanes, and thietanes.

UNIT-IV: Alkaloids 15 Hrs

Occurrence, isolation, general methods of structure elucidation and physiological action, degradation, classification based on nitrogen heterocyclic ring, structure elucidation and synthesis of the following: Atropine, Papaverine and Quinine.

Books Suggested:

- 1. Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, John Wiley.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J Sundberg, Plenum.
- 3. Structure and Mechanism in Organic Chemistry C.K. Inglod, Cornell University Press.
- 4. Organic Chemistry, R.T Morrison and R.N. Boyd, Prentice Hall.
- 5. Modern Organic Reactions, H.O. House, Benjamin.
- 6. Principles of Organic Synthesis, R.O.C Norman and J. M. Coxon, Blackie Academic.
- 7. Stereochemistry, P.S. Kalsi, Wiley Eastern.
- 8. Text book of Organic Chemistry, M.C. Murry
- 9. Text book of Organic Chemistry, Fessendon and Fessendon.
- 10. Text book of Organic Chemistry, T.W. Solomon,
- 11. Organic Chemistry, Vol II, I.L. Finar, ELBS Eds.
- 12. Heterocyclic chemistry T.L Gilchrist, Longman Scientific Technical
- 13. An Introduction to the Heterocyclic compounds, R M Acheson, John Wiley.

CHE -203	Physical chemistry II	L-5,T-1,P-6	4 Credits
Pre-requisite: Ba	asic knowledge about Physical Chemis	stry	

Course Objectives:

- Learn Angular momentum and Molecular Orbital Theory and application of Huckel theory to organic molecules.
- Know about concepts in Surface Chemistry, concept of electric double layer model and Micelles.
- Get knowledge on symmetry and group theory their use in spectroscopy, Mulliken character tables.
- Understand Irreversible Electrode phenomenon controlled potential electrolysis and polarography.

Course Outcomes At the end of the course, the student will be able

- **CO1** To know about Pauli Exclusion principle and Slater determinant, atomic orbitals, Simple molecular orbitals and Huckel theory of conjugated systems.
- CO2 To learn Gibbs adsorption isotherm, BET equation and correlate limitations, critical micellar concentration (CMC) and factors affecting the CMC of surfactants.
- CO3 To identify Relation between order of a finite group and its sub-group, conjugacy, Symmetry point group (MLS, MHS and MSS) and orthogonality theorem.
- CO4 To acquire knowledge on DC-Polarography, AC-Polarography, Controlled Potential Electrolysis, to derive equation for Tafel plots, half-wave potentials for reversible system.

	Mapping of course outcomes with the program outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	3	-	2	1	1	-	1	1	1
CO2	3	2	2	3	2	2	2	-	2	-	2	-
CO3	3	2	2	3	-	-	1	1	-	1	1	1
CO4	3	2	_	2	2	1	1	_	2	1	1	1

CHE-AC-203 Physical Chemistry III

UNIT-I: Quantum Chemistry-II

15 Hrs

- (A) Angular momentum: Angular momentum, Rotations and angular momentum, Eigen functions and Eigen values of angular momentum, Ladder operator, addition of angular momenta, spin, antisymmetry and pauli Exclusion principle. Slater determinant.;
- (B) Molecular Orbital TheoryAtomic Orbitals, Simple Molecular Orbitals, Hybrid Atomic Orbitals, Shapes and energies of Molecular Orbital, Systems of Organic Molecules (Ex: Methane, Ethylene, Acetylene). Huckel theory of conjugated systems, Π-bond order and charge density calculations, application of Huckel theory to ethylene, butadiene and benzene.

UNIT-II: Surface Chemistry

15 Hrs

Surface tension, capillary action, pressure difference across curved surface, (Laplace equation), vapour pressure of droplets (Kelvin equation), Gibbs adsorption isotherm, BET adsorption isotherm, derivation of BET equation, limitations of BET equation, estimation of surface area from BET equation, Surface films on liquids. Concept of electric double layer model- Helmholtz perrin, Gouy- Chapman and stern models (no derivation)

Micells: Surface active agents, classification of surface active agents micellisation, hydrophobic interaction, critical micellar concentration (CMC), factors affecting the CMC of surfactants, thermodynamics of micellisation, emulsions, reverse micelles.

UNIT-III: SYMMETRY AND GROUP THEORY

15 Hrs

Definition of a group, rules that are set for a group, sub-group, order of a group, Relation between order of a finite group and its sub-group, conjugacy relation and class of a group, symmetry elements and symmetry operation. Symmetry point group (MLS, MHS and MSS), Schoenflies symbols - Representation of groups

by matrices (representation for C_n , C_{nv} , D_{nh} etc. groups to be worked out explicitly), character of a representation, group multiplication tables, reducible - irreducible representations The great orthogonality theorem (without proof) - character tables (H_2O,NH_3) and their use in spectroscopy, Mulliken character tables.

UNIT-IV: ELECTROCHEMISTRY-II

15 Hrs

Irreversible Electrode phenomenon: Reversibility and irreversibility, Dissolution and deposition potentials, Decomposition voltage, overvoltage, diffusion overvoltage, charge transfer overvoltage, concentration overvoltage-hydrogen and oxygen overvoltages, Tafel plots, Exchange current density and Transfer coefficient, Butler-Volmer equation for one electron transfer processes.

Polarography: Theory, classification, principle, Instrumentation of Polarography, DME, HMDE diffusion current, Ilkovic equation, DC-Polarography, AC-Polarography, Controlled Potential Electrolysis, Millicoulometry, Equation for half-wave potentials, for reversible system when oxidant alone, reductant alone and both are present.

Books Suggested

- 1. P.W. Atkins: Physical Chemistry (ELBS).
- 2. Ira N. Levine: Quantum Chemistry (Prentice Hall).
- 3. R. Mcweeny: Coulson's Valence (ELBS).
- 4. J.O.M. Bockris and A.K.N. Reddy, Modern Electrochemistry, vol.I & II (Plenum).
- 5. S. Glasstone; An Introduction to Electrochemistry (3rd ed.)(Affiliated East-West).
- 6. V. Moroi: Micelles, theoretical and applied aspects (Plenum).
- 7. Maron and prutton: principles of physical Chemistry.
- 8. Silbey, Alberty, Bawendi. Physical Chemistry. Jhon-Wiley & Sons. 4th edition-2006.
- 9. D.N. Bajpai: Advanced physical Chemistry: S. Chand & Company, 1998.

CHE 204	Core practical I: Inorganic Chemistry	L-5,T-1,P-0	2 Credits
D '4 II	1 , 1' C 1 , 1 1 T	. (1	1

Pre-requisite: Understanding of graduate level Inorganic Chemistry practical.

SEMI MICRO QUALITATIVE ANALYSIS

- Separation and determination of the two component mixtures.
- Preparation of metal complexes

Cours	Course Outcomes: At the end of the course, the student will be able											
CO1	CO1 CO 1: To separate and determine the two component mixtures.											
CO2	CO 2: To acquire knowledge in the preparation of metal complexes											
CO3												
CO4												
		Ma	apping	of cours	se outco	omes wi	th the p	rogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	2	1	-	2	_	3	3	1
CO2	3	2	2	3	_	1	2	_	2	3	3	1
CO3	03											
CO4												

CHE 204: Core practical I: Inorganic Chemistry

I. Quantitative Analysis:

Separation and determination of two component mixtures:

- (i) Separation of Al(III) and Determination of Fe (III)
- (ii) Separation of Cu(II) and Determination of Zn (II)
- (iii) Separation of Ca(II) and Determination of Mg (II)
- (iv) Separation of Cu(II) and Determination of Ni (II)
- (v) Determination of Ferrocyanide and Ferricyanide

II. Preparation of Metal Complexes:

- (i) Tetra(ammine) copper (II) sulphate.
- (ii) Mercury tetra(thiocyanato) cobaltate(II).
- (iii) Hexa(ammine) Nickel (II) chloride.
- (iv) Tris(acetylacetonato) Manganese (III) chloride.
- (v) Tris (ethylenediammine) Nickel (II) thiosulpha

CHE 106	Core practical II: Organic CheImistry	L-5,T-1,P-0	2 Credits							
Pre-requisite: Understanding of graduate level Organic Chemistry practical.										

Cours	Course Objectives:											
• Fan	• Familiarize with two component mixture separation and identification.											
 prep 	 preparation of derivatives and purification by different methods 											
Cours	Course Outcomes: At the end of the course, the student will be able											
CO1	CO1 To familiarize with binary mixture separation and to gain hands-on-experience in purification of the											
CO2	To get knowledge about the chemical behavior of different components and mechanisms.											
CO3												
CO4												
	•	Ma	apping	of cours	se outco	mes wit	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1
										0	1	2
CO1	3	2	2	3	2	1	1	2	-	1	1	1
CO2	3	2	2	3	-	2	-	1	2	1	-	2
CO3												
CO4												

CHE: 205: PRACTICAL - II: ORGANIC CHEMISTRY

Separation and Identification of two component organic mixture by systematic qualitative analysis.

Binary mixture of

Acid + Neutral

Phenol + Neutral

Base + Neutral

Acid + Ether insoluble component

Phenol + Ether insoluble component

Base + Ether insoluble component

Physical CheImistry	CHE 206 Core practical II: L-5,T-1,P-0 2 Credits
---------------------	--

Pre-requisite: Understanding of graduate level Physical Chemistry practical.

Course Objectives:

- Familiarize with conductometric, potentiometric and redox methods of analysis
- Colorometric and pHmetric methods of analysis

Course Outcomes: At the end of the course, the student will be able

CO1	To study the determination of cell constant and verification of Onsagar equation, strength of strong											
CO2	To get knowledge on the applications of conductometry, potentiometry, coulometry and pH metry.											
CO3												
CO4												
Mapping of course outcomes with the program outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	3	1	1	2	-	1	1	1
CO2	3	2	2	3	2	1	1	-	2	1	-	2
CO3												
CO4												

CHE: 106: PRACTICAL - III: Physical Chemistry

Syllabus

1. Conductometry:

- (a) Getermination of cell constant
- (b) Verification of Onsagar equation
- (c) Determination of dissociation constant of a weak acid
- (d) Titration of a strong acid with a strong base
- (e) Titration of a weak acid with a strong base

2. Potentiometry:

- (a) Titration of a strong acid with a strong base
- (b) Titration of a weak acid with a strong base
- (c) Redox titration
- 3. Coulometry: Estimation of Manganese
- 4. pH metry: Strong acid, Strong base titrations.

CHE-207	General Chemistry II L-5,T-1,P-0 2 Credits										
Pre-requisite: Understanding of graduate level Chemistry											
Course Objecti	ves:										
• Gain knowledge on the principles of different electro analytical methods.											
• Familiarize with chromatographic techniques.											
Course Outcomes: At the end of the course, the student will be able											
CO1 To acquir	11 To acquire knowledge on ion selective electrodes, solid membrane electrodes and glass electrodes										
and	and										
CO2 To learn g	general principles and classifications of ch	romatographic separati	ons and applications of								
TLC, GL		·									

CO3												
CO4												
	Mapping of course outcomes with the program outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
CO1	3	2	2	3	1	2	-	2	2	-	1	1
CO2	3	. 1	2	3	1	2	1	2	-	2	1	1
CO3												
CO4		·										

CHE 204-A: General Chemistry II

UNIT-I: ELECTRO ANALYTICAL METHODS

Theory of potentiometry, calculation electrode potential at the equivalence. Finding of equivalence volume, derivative and linear titration plots. Ion-sensitive electrodes –types of ion sensitive electrodes –metal based cation and anion sensitive electrodes, solid membrane electrodes, glass electrodes. Liquid ion-exchange electrodes, gas sensing membrane electrodes, Amperometric titrations - Anodic stripping voltammetry, chronoamperometry, chronopotentiometry, Cyclic Voltammetry, Differential Pulse Polarography, linear sweep voltammetry, square wave voltammetry.

UNIT-II: CHROMATOGRAPHY

General principles and classifications of chromatographic separations

Thin layer chromatography: Classification, principle, experimental technique, sample application, development of plate, retardation factor.

Gas liquid chromatography: Gas liquid chromatography - instrumentation (columns and detectors), retention time and retention volume. Chromatographic behaviour of solutes, column efficiency and resolution, column processes and band broadening, time of analysis and resolution, Van-Deemter equation.

High performance liquid chromatography: Theory and instrumentation-column performance, gradient elution, delivery system, sample introduction, separation columns, detectors and applications of HPLC.

Books Suggested

- 1. H.W. Willard, LL. Merrit and J.A.Dean: Instrumental Methods of Analysis. Affiliated East-West).
- 2. G.H. Jeffery J. Bassett, J. Mendham and R.C. Denny. Vogel"s Text Book of Quantitative Chemical Analysis (ELBS).
- 3. D.A. Skoog and D.M. West: Principles of Instrumental Analysis (Holt, Rinehart and Wilson).
- 4. J.G. Dick: Analytical Chemistry (McGraw Hill).
- 5. D. Midgley and K. Torrance: potentiometric Water Analysis (John Wiley).

CHE												
				ethi	cs-II							
Pre-re	equisite	: Unders	standing	of Hun	nan Valı	ues and p	professi	onal eth	ics			
Cours	Course Objectives:											
• Gai	 Gain knowledge on value education, family values and adjustability 											
• Dev	• Develop ethics towards medical, health care professionals and ethical issues in genetic											
eng	engineering											
• Un	derstand	d the in	nportanc	e of so	cial eth	ics towa	ards org	gan trad	le, huma	an traffi	c king	human
righ	ıts viola	tion and	l social o	lispariti	es.							
• Kno	ow abou	t enviro	nmental	ethics,	ecologi	cal crise	s, pollu	tion and	protect	ion of e	nvironm	ent
Cours	e Outco	omes: A	t the end	d of the	course,	the stud	ent will	be able	to			
CO1	To un	derstand	the co	ncepts o	f human	values,	respons	sibilities	of fam	ily value	es and s	tatus
	of wo	men in f	family a	nd socie	ety.							
CO2	To acc	quire kn	owledge	e on diff	erent m	edical et	hics the	e views	of chara	ka and s	sushruta	on
	moral	respons	sibilities	of med	ical prac	ctitioners	S.					
CO3	To ga	in know	ledge or	n social	ethics a	nd unde	rstand t	he chara	cteristic	s of eth	ical pro	blems
	_	nageme	_								-	
CO4	To far	niliarize	e enviro	nmental	ethics,	ethical tl	neory a	nd ecolo	gical cr	isis.		
Mapping of course outcomes with the program outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	3	1	2	1	-	3	1	1	1
CO2	3	1	1	3	_	2	-	3	3	1	1	1
CO3	3	2	2	3	2	2	2	2	2	3	_	1
CO4	3	1	1	3	1	2	-	-	2	3	1	1
			1								1	

I 2T1D2

1 Crodita

Human Values and professional

CITE 200

CHE 207: ELECTIVE FOUNDATION (HUMAN VALUES AND PROFESSIONAL ETHICS-II)

Chapter I: Value Education – Definition – Relevance to present day – Concept of human values - Self introspection – Self-esteem. Family values-Components, Structure and responsibilities of family Neutralization of anger – Adjustability – Threats of family life – Status of women in family and society – Caring for needy and elderly – Time allotment for sharing ideas and concerns.

Chapter II: Medical ethics – Views of Charaka, Sushruta and Hippocratus on moral responsibility of medical practitioners. Code of ethics for medical and healthcare professionals. Euthanasia, Ethical obligation to animals, Ethical issues in relation to health care professionals and patients. Social justice in health care, human cloning, problem of abortion. Ethical issues in genetic engineering and Ethical issues raised by new biological technology or knowledge.

Chapter III: Social ethics – Organ trade, Human trafficking, Human rights violation and social disparities, Feminist ethics, Surrogacy/pregnancy. Ethics of media – Impact of Newspapers, Television, Movies and Internet, Business ethics – Ethical standards of business – Immoral and illegal practices and their solutions. Characteristics of ethical problems in management, ethical theories, causes of unethical behavior, Ethical abuses and work ethics.

Chapter IV: Environmental ethics – Ethical theory, man and nature - Ecological crisis, Pest control, Pollution and waste, Climate change, Energy and pollution, Justice and environmental health.

Books for study:

- 1. Johns S Mackenjie: A Manual of ethics
- 2. "The Ethics of Management" by Larue Tone Hosmer, Richard D. Irwin Inc.
- 3. Management Ethics Integrity at work by Joseph A. Petrick and John F. Quinn, Response Books, New Delhi.
- 4. "Ethics in Management" by S.A. Shelekar, Himalaya Publishing House.
- 5. Harold H. Titus: Ethics for Today
- 6. Maitra, S.K: Hindu Ethics
- 7. William Lilly: Introduction to Ethics
- 8. Sinha: A Manual of Ethics
- 9. Manu: Manava Dharma Sastra or the Institute of Manu: Comprising the Indian System of Duties: Religious and Civil (ed) G.C. Haughton.
- 10. Sasruta Samhita: Tr. Kaviraj Kunjanlal, Kunjanlal Brishagratha, Chowkamba Sanskrit Series, Vol I,II and III, Varanasi, Vol I PP, 16-20, 21-32 and 74-77 only.
- 11. Charaka Samhita: Tr. Dr. Ram Karan Sarma and Vaidya Bhagavan Dash, Chowkambha Sanskrit Series Office. Varanasi I, II, III Vol I PP 183-191.
- 12. Ethics, Theory and Contemporary Issues. Barbara Mackinnon, Wadsworth/Thomson Learning, 2001.
- 13. Text Book for Intermediate First Year Ethics and Human Values, Board of Intermediate Eduction Telugu Academy, Hyderabad.
- 14. I.C. Sharma Ethical Philosophy of India. Nagin& Co Julundhar.

CHE-AC-301	Inorganic Spectroscopy and	L-5,T-1,P-0	4 Credits
	Thermal Methods of Analysis		

Pre-requisite: Understanding of Basic Inorganic Spectroscopy and Thermal Methods of Analysis **Course Objectives:** • Gain knowledge on thermal methods of analysis and principles and applications to inorganic materials. • Familiarize with basics of Mossbauer and NQR spectroscopy. • Learn the properties like g-factor, nuclear spin, hyperfine coupling constants. • Study the ESR instrumentation, various applications and photoelectron spectroscopy. **Course Outcomes :** At the end of the course, the student will be able CO₁ To know about TG and DTA and applications of different scanning calorimetry. CO₂ To gain knowledge on Doppler shift and chemical shift, basic principles and applications of NQR spectroscopy. To learn zero field splitting and Kramer's degeneracy, relaxation processes, **CO3** instrumentation and applications of ESR. To know about photoelectric effect and Koopmans theorem and impart the applications of **CO4** X-ray and UV photoelectron spectroscopy. Mapping of course outcomes with the program outcomes PO7 PO11 PO12 PO₁ PO4 PO5 PO6 PO8 PO9 PO10 PO₂ **CO1** 2 3 1 1 2 1 CO₂ 3 2 2 3 2 2 2 1 2 2 **CO3** 3 2 2 3 2 2 1 2 2 1 CO₄ 3 3

CHE-AC- 301: Inorganic Spectroscopy and Thermal Methods of Analysis

UNIT -I: THERMAL METHODS OF ANALYSIS

15 Hrs

Thermo gravimetry –Principle, Factors affecting the results, instrumentation. Application with special reference to $CuSO_45H_2O$, CaC_2O_4 $2H_2O$. Different thermal analysis – principle, instrumentation, difference between TG and DTA, applications with special reference to the clays and minerals. Different scanning calorimetry –principle, and applications to inorganic materials like chlorates and perchlorates, ammonium nitrate.

UNIT -II: MOSSBAUER SPECTROSCOPY and NQR

15 Hrs

Mossbauer spectroscopy: Basic principles, Recoil energy, Doppler shift, Chemical shift, Quadrapole effects, Magnetic effects. Instrumentation, spectral parameters and spectrum display. Aapplication of the technique to the studies of (1) bonding and structures of Fe^{2+} and Fe^{3+} compounds, (2) Sn^{2+} and Sn^{4+} compounds.

NQR spectroscopy: Basic principles of NQR spectroscopy, quadrupole nuclei, quadrupole moments, electric field gradient, coupling constant and applications.

UNIT –III: ELECTRON SPIN RESONANCE SPECTROSCOPY 15 Hrs

Basic Principles, Hyper fine splitting, Factors affecting the 'g' value. Isotropic and anisotropic hyperfine coupling constants, Hamiltonian and spin densities. Zero field splitting and Kramer's degeneracy, Relaxation process and line widths. Instrumentation and Applications. The EPR spectrum of bis(salicylidimine)-copper(II) complex, study of inorganic free radicals, biological applications of Electron Spin Resonance (Study of free radicals and Iron-sulfur proteins)

UNIT -IV: PHOTO ELECTRON SPECTROSCOPY

15 Hrs

Photoelectric effect, Koopmans's theorem, ionization energy.

X-ray photoelectron spectroscopy (ESCA): Principle, Binding energies, Chemical shift,

Applications of XPES to Qualitative analysis, to surface studies and structural analysis. Ultraviolet photoelectron spectroscopy- Principle, application of UPES in studying the molecular orbitals of O_2 and N_2 molecules. Block diagram of photoelectron spectrophotometer. Sources of radiation, detectors. Auger spectra – Principle, Applications of Auger spectra to surface studies and use of Auger spectra as a finger print tool.

Books Suggested

- 1. F.A. Cotton and G. Wilkinson, Advanced In-organic chemistry VI Edition, 1999. John wiley & sons. Inc., New York.
- 2. J.E. Huheey, E.A. Keiter and R.L. Keiter: Inorganic Chemsitry, Principles of Structure and Reactivity (4th Ed.) (Addison-Wesley)
- 3. Gary Wulfsberg: Inorganic Chemistry (5th Ed. (Viva Books)
- 4. J.D. Lee: Concise Inorganic Chemistry (Blackwell)
- 5. W.L. Jolly: Modern Inorganic Chemsitry (McGraw-Hill)
- 6. R.L. Carlin: Magneto-chemsitry (Springer-Verlag)
- 7. R.L. Dutta and A. Syamal: Elements of Magnetochemsitry (Affiliate East-West).
- 8. K. Hussain Reddy Text book of Bioinorganic chemistry

CHE-AC 302	Organic Spectroscopy and Applications	L-5,T-1,P-0	4Credits						
Pre-requisite: Understanding of Organic Spectroscopy and Applications									

Course Objectives:

- Familiarize with the instrumentation of UV and visible spectroscopy, applications of identifying the structures of the molecules.
- Understand IR spectrometry and applications to ascertain the fundamental groups by observing absorption bands
- Study on the applications of NMR spectroscopy in ascertaining the stereochemical structures of the molecules.
- Understand the working principle and fragmentation rules of different molecules in Mass spectroscopy

CO1 To get experience to calculate λ max values for dienes, enones, polyenes, aromatic and heteroaromatic compounds.
 CO2 To familiarize with the absorption bands of the molecules with specific functional groups
 CO3 To interpret the data to different types of protons and carbons present in a molecule so as to ascertain the structure of the molecule based on the data provided
 CO4 To acquire knowledge about specific fragmentation rules of different molecules which are

To acquire knowledge about specific fragmentation rules of different molecules which are unique.

Mapping of course outcomes with the program outcomes

	Mapping of course outcomes with the program outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	2	2	2	-	1	2	2	1
CO2	3	2	2	3	2	2	-	2	-	2	2	-
CO3	3	2	2	3	2	2	1		2	2	2	2
CO4	3	2	2	3	2	2	1	2	_	2	2	_

CHE 302: CORE THEORY: ORGANIC SPECTROSCOPY AND APPLICATIONS

UNIT-I: ULTRAVIOLET AND VISIBLE SPECTROSCOPY: 15Hrs

Course Outcomes: At the end of the course, the student will be able to

Various electronic transitions (185-800 nm), effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, conjugated polyenes. Fisher-Woodward rules for conjugated dienes and carbonyl compounds, ultraviolet spectra of aromatic and heterocyclic compounds. Steric effect in biphenyls.

UNIT – II: INFRARED SPECTROSCOPY

15Hrs

Instrumentation and sample handling. Characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ether, phenols and amines. Detailed study of vibrational frequencies of carbonyl compounds (ketones, aldehydes, esters, amides, acids, anhydrides, lactones, lactams and conjugated carbonyl compounds). Effect of hydrogen bonding and solvent effect on vibrational frequencies, overtones, combination bands and fermi resonance, FT-IR

UNIT -III: NMR SPECTROSCOPY:

15Hrs

¹H NMR spectroscopy: Magnetic properties of nuclei, Principles of NMR. Instrumentation, CW and pulsed FT instrumentation, equivalent and nonequivalent protons, enantiotopic and diastereotopic protons, Chemical shifts, factors affecting the chemical shifts, electronegativity and anisotropy, shielding and deshielding effects, Signal integration, Spin-spin coupling: vicinal, germinal and long range, Coupling constants and factors affecting coupling constants.

Applications of ¹H NMR spectroscopy: Reaction mechanisms (cyclic bromonium ion, electrophilic and nucleophilic substitutions, carbocations and carbanions), E, Z isomers, conformation of cyclohexane and decalins, keto-enol tautomerism, hydrogen bonding, proton exchange processes

(alcohols, amines and carboxylic acids), C-N rotation. Stereochemistry, hindered rotation, Karplus curve variation of coupling constant with dihedral angle. Simplification of complex spectra, nuclear magnetic double resonance, contact shift reagents, nuclear Overhauser effect (NOE).

¹³C NMR spectroscopy: General considerations, chemical shift (aliphatic, olefinic, alkyne, aromatic, heteroaromatic and carbonyl carbon), coupling constants. Two dimensional NMR spectroscopy-COSY.

UNIT-IV: MASS SPECTROMETRY

15Hrs

Introduction, ion production, type of ionization, EI, CI, FD, and FAB-factors affecting fragmentation, ion analysis, ion abundance. Mass spectral fragmentation of organic compounds, common functional groups, molecular-ion peak, metastable peak, Mc. Lafferty rearrangement. Nitrogen rule, isotope labeling. High resolution mass spectrometry, Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.

Books suggested:

- 1. Organic spectroscopy, W. Kemp 5th Ed, ELBS
- 2. Spectroscopy of organic compounds, RM Silversteen and others, 5th Ed,John Wiley
- 3. Spectroscopy of organic compounds, P.S. Kalsi, Wiley, 1993.
- 4. NMR in chemistry-A multi nuclear introduction, William Kemp, Mc Millan, 1986.
- 5. Spectroscopic methods in Organic chemistry, DH Williams & I Flemmi

CHE 2 304	AC 303		Core-Practical: L-5,T-1,P-0 4 Credits Classical Methods of Analysis									
Pre-re	quisite	Under	standing	of Ana	lytical C	Chemistr	y- Prac	tical.				
Cours	e Objec	ctives:										
• Gai	n knowl	ledge on	synthes	sis of in	organic	complex	kes.					
	Analysis of ores, alloys and water.Acquire knowledge on working principle of colorimetry.											
• Esti	mation	of meta	l ions by	comple	ex metri	c and co	lorimet	ric meth	od.			
Course Outcomes: At the end of the course, the student will be able												
CO1	To kno	w the ba	asic prin	ciples o	f instru	mental n	nethods	of analy	ysis.			
CO2	To gair	n knowl	edge on	chemist	try of al	loys.						
CO3	To Uno	derstand	the con	nplexity	, theory	and wo	rking p	rinciple	of colou	rimetry		
CO4	To fam	iliarize	with lav	vs of co	lorimetr	ic titrati	ons.					
		Ma	apping	of cours	se outco	mes wit	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	1	3		2	3	2	1	-	1	-
CO2	3	2	2	3	2	2	3	2		1	1	2
CO3	3	2		3	-	2	-	2	1	2	-	-
CO4	3											

CHE -AC -303: Core-Practical Classical Methods of Analysis PRACTICAL -I

- 1. Analysis of ores and alloys:
 - a) Brass/Bronze
 - b) Cement
 - c) Illmenite/Chalcopyrite
 - d) Dolamite
 - e) Copper and Nickel alloy

II. Water Analysis:

- a) Determination of dissolved Oxygen
- b) Determination of BOD of Waste water
- c) Determination of COD of Waste water
- d) Hardness of Water
- e) Chloride, sulphates, carbonates and bicarbonates.

CHE AC 304 Core-Practical PRACTICAL –II –Instrumental methods of analysis

- 1. Colorimetric Determinations:
 - a) Determination of manganese
 - b) Determination of nickel
 - c) Determination of iron by 1,10 Pheren-thiroline
 - d) Determination of chromium
 - e) Determination of Phosphate
 - f) Determination of Pesticides
 - g) Determination of Nitrite.

CHE-A	C-305A	\	Org	anic Ch	emistr	y III]	L-3,T-1,	,P-2	4	Credits	}
Pre-re	quisite	Unders	standing	of Org	anic Ch	emistry	l					
Cours	Course Objectives: Course Objectives:											
	• Familiarize with the applications of different reagents in organic synthesis, Mechanisms and											
	eochem	-						_				
						lications						. •
		topoci	ty, proc	chirality	, auxill	lary and	reagen	it-contro	olled m	ethods	ın asyn	nmetric
_	thesis.	s of di	fforont o	vidiain	a and n	oduoina	aganta	in orga	nia avnt	hoois w	ith roci	on and
	• Applications of different oxidizing and reducing agents in organic synthesis with region and stereo controlled products.											
				d of the	course	the stud	ent will	he able	to			
	Course Outcomes: At the end of the course, the student will be able to											
CO1	CO1 To familiarize with the specific functions of the reagents particularly diazomethane,											
	N-bromosuccinimide, Ziegler Natta catalyst, 1,3-dithianes and Merrifield resin in the synthesis of a variety of complex molecules.											
CO2						of diffe	rant are	ranamat	allia ras	aganta a	nd also	atoroo
COZ						of unite						stereo
CO3						stereose						villary
003		lled rea		21003010	ctivity,	stereose		y and s	substrate	Contro	nica aa	Airiary
CO4				e about	the rea	agents w	hich car	uses oxi	dation i	n variou	ıs comi	ounds
						ective a						
	comp						-	-		•		
		Ma	apping	of cour	se outc	omes wi	th the p	rogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	2	2	1	2	1	2	2	1
CO2	3	2	2	3	2	2	1	2	1	-	2	1
CO3	3	2	2	3	2	2	-	-	1	1	2	-
CO4	3	2	2	3	2	2	1	2	-	2	2	1

CHE-AC-303A Core-Theory Organic Chemistry III

UNIT I: REAGENTS IN ORGANIC SYNTHESIS

15 Hrs

Use of the following reagents in organic synthesis: Anhydrous AlCl₃, Boran trifluoride, N-Bromosuccinimide, Diazomethane, Dicyclohexylcarbodiimide, Lead tetraacetate, Zieglar-Natta catalysts, DDQ, Dithianes, Merrifield resin.

UNIT-II: ORGANOMETALLIC REAGENTS

15 Hrs

Synthesis and applications of Grignard reagents, Organolithium, Zinc, Copper, Mercury, Palladium and Rhodium compounds in Organic Synthesis, Homogeneous catalytic hydrogenation and hydroformylation reactions

UNIT III: ASYMMETRIC SYNTHESIS

15 Hrs

Topocity - Prochirality- Substrate selectivity - Diastereoselectivity and enantioselectivity-Substrate controlled methods-use of chiral substrates - examples

Auxiliary controlled methods-Use of chiral auxiliaries-Chiral enolates-alkylation of chiral imines - Stereoselective Diels-Alder reaction

Reagent controlled methods-Use of chiral reagents-Asymmetric oxidation-Sharpless epoxidation-Asymmetric reduction-Use of lithium aluminium hydride and borate reagents.

UNIT IV: METHODS OF ORGANIC SYNTHESIS

15 Hrs

i). Oxidations: (a) Alcohols to carbonyls-Chromium (iv) oxidants-Dimethylsulfoxide

oxidation,

periodate xidation, Oppenauer oxidation, oxidation with manganese dioxide, oxidation with silver carbonate (**b**) Alkenes to epoxides-peroxide induced epoxidations. (**c**) Alkenes to diols-oxidation with potassium permanaganate, osmium tetraoxide, Prevost reaction (**d**) Ketones to esters-Bayer-Villiger oxidation (**e**) Oxidative bond cleavage-cleavage of alkenes by transition metals. (**f**) Oxidation of alkyl or alkenyl fragments-selenium dioxide and chromium trioxide oxidations.

ii). Reductions: Reduction with lithium aluminium hydride, sodium borohydride, alkoxides, bismethoxy ethoxy aluminium hydride, Boran aluminium hydride and derivatives-catalytic, hydrogenation-dissolving metal reductions, Non-Metallic reducing agents including enzymatic and microbial reductions.

Suggested Books

- 1. Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, John Wiley.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J. Sundberg, Plenum.
- 3. Structure and Mechanism in Organic Chemistry, C.K. Inglod, Cornell University Press.
- 4. Organic Chemistry, R.T Morrison and R.N. Boyd, Prentice Hall.
- 5. Name reactions and reagents in organic synthesis, B.P. Muway and M.G Ellord, John Wiley.
- 6. Principles of Organic Synthesis, R.O.C Norman and J.M Coxon, Blackie Academic & Professional.
- 7. Reaction Mechanism in Organic Chemistry, P.S. Kalsi, New Age International.
- 8. Principles of organometallic chemistry, P. Powell, ELBS.
- 9. Organo transition metal chemistry-Applications to organic synthesis, S.G. Davis, Pergmon.
- 10. Stereochemistry to Organic Compounds, D. Nasipuri, New Age International.
- 11. Stereochemistry, P.S. Kalsi, Wiley Eastern.

CHE-A	AC-305B	3	Ph	ysical (Chemist	try III	L-	5,T-1,P	-0	4Credits					
Pre-r	equisite:	Unders	standing	of grad	uate lev	el Physi	cal Che	mistry	•						
LeaApFar	 Course Objectives: Learn applications of Group Theory, symmetry criteria and symmetry restrictions Applications of X-ray Diffraction and Electron Diffraction on solid state chemistry Familiarize with the applications of Microwave spectroscopy, infrared spectroscopy and Raman spectroscopy 														
• Ge	t knowle	edge on	_		nermody	ynamics	of pol	ymer di	issolutio	on and	Flory-H	uggins			
Cours	se Outco	mes: A	t the end	d of the	course,	the stud	ent will	be able	to						
CO1	CO1 To know the determination of Character Co-ordinate of C ₂ V point group based on 3N Coordinates and to learn the Mutual exclusion Principle.														
CO2			agg con y structi					ethod, B	ragg me	ethod, D	ebye Sc	herrer			
CO3			•					ı-rotation ectrosco		oscopy,	PQR br	anches,			
CO4		•					_	olution t of poly	•	Hildebra itions	nd				
		Ma	apping o	of cours	se outco	mes wit	th the p	rogram	outcon	nes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	2	2	3	-	2	1	-	2	1	2	1			
CO ₂	3	2	2	3	2	2	2	1	-	2	-	2			
CO ₃	3	2	2	3	2	2	1	-	2	-	2	2			
CO4	3	2	2	3	-	2		2	-	2	-	2			

CHE-AC-303B CORE-THEORY PHYSICAL CHEMISTRY III

UNIT-I Applications of Group Theory

15 Hrs

Construction of reducible and irreducible representations, Determination of Character Coordinate of C_2V point group based on 3N Coordinates. Standard reduction formula, Determination of normal modes of vibrations of SO_2 , NH_3 , $POcl_3$, $Ptcl_4^{2-}\cdot H_2O_2$ molecules. Mutual exclusion Principle, Direct Product, Accidental Degeneracy and Fermi resonance Group Theory and Spectroscopy: IR Spectral activity of NH_3 molecule, selection rules, symmetry Criteria for optical activity, symmetry restrictions on dipole moments, symmetry and stereo isomerism. Prediction of IR and Raman Spectral activity of H_2O and CO_2 .

UNIT-II: X-ray Diffraction:

15 Hrs

- (A) Solid State Chemistry: Dislocation of Solids, Schottky and Frenkel defects, insulaters, a, d semiconductors, Bandtheory of solids, solid state reactions.
- (B) Bragg conditions-Miller Indices- Laue method, Bragg method, Debye Scherrer method of X-ray structural analysis of crystals. Index reflections, identification of unit cells from systematic absences in diffraction pattern- structure of simple lattices and X-ray intensities- structure factor and its relation to intensity and electron density- Description of procedure for X-ray structure analysis (NaCl and KCl)
- **(C) Electron Diffraction:** Scattering intensity Vs scattering angle, Wierlequation, and its importance. Measurement techniques, Elucidation of structures of simple gas phase molecules, Low energy electron diffraction (LEED) for the study of surfaces.

UNIT-III: SPECTROSCOPHY

15 Hrs

Microwave spectroscopy: classification of molecules, rigid rotator model, effect of isotopic substitution on the transition frequencies, intensities- stark effect.

Infrared spectroscopy: Linear harmonic oscillator, zero point energy, anharmonity, Mores potential energy diagram, fundamental and overtone transitions, hot bands and combinations bands. Vibration-rotation spectroscopy, PQR branches, selection rules, factors affecting the band positions and intensities for IR region. Raman spectroscopy: Classical and quantum theories of Raman effect, pure rotational, pure vibrational Raman spectroscopy, selection rules, mutual exclusion principle, resonance Raman spectroscopy and coherent antistokes Raman spectroscopy. Vibrational- rotational Raman spectroscopy.

UNIT-IV: POLYMER SOLUTIONS

15 Hrs

Thermodynamics of polymer dissolution, effect of molecular weight on solubility, solubility of crystalline and amorphous polymer, heat of dissolution, regular solution theory, Hildebrand solubility parameter, Flory-Huggins theory of polymer solutions, conformational entropy, osmotic pressure and viscosity of polymer solutions. Molecular weight determination by light scattering, ultra-centrifugation and sedimentation equilibrium method. Liquid Crystals- synthesis and applications

Books Suggested

- 1. F.A. Cotton: Introduction to Group theory for chemists.
- 2. Geroge Davidson Elsevier: Introductory Group Theory for Chemists.
- 3. Gurdeep Raj, Ajay Bhagi&Vinod Jain: Group Theory and Symmetry in Chemistry
- 4. Instrumental methods of analysis M.H. Willard, Meritt Jr. and J.A. Dean
- 5. Principles of instrumental analysis Skoog and West
- 6. F. W. Billmeyer, Jr.: Text Book of Polymer Science. Wiley Interscience.
- 7. V. R. Gowariker, N. V. Viswanathan, Jayadev Sreedhar: Polymer Science. New Age international Publishers.

CHE AC 306	Spectral Techniques	L-5,T-1,P-0	4 Credits
Pre-requisite: U	Inderstanding of Spectral Techniques		

Course Objectives:

- Familiarize with the instrumentation of UV and visible spectroscopy, applications of identifying the structures of the molecules.
- Understand IR spectrometry and applications to ascertain the fundamental groups by observing absorption bands.
- Study on the applications of flame atomic absorption spectroscopy.
- Understand the working principle and fragmentation rules of different molecules in Mass spectroscopy.

	spectroscopy.											
Cours	Course Outcomes: At the end of the course, the student will able											
CO1	CO1 To know the basic principles of spectroscopy.											
	To familiarize with the analysis of various functional groups by using different spectroscopic techniques.											
CO3	CO3 To Understand the applications of AAS.											
	_	knowl nal grou	_	bout M	ass spe	ctral frag	mentati	on of org	ganic co	mpounds	s and cor	nmon
		N	Aappin	g of co	urse ou	tcomes v	with the	e prograi	m outco	omes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	CO1 3 1 - 3 - 2 3 2 1 - 1 2											
CO2	3	2	2	3	2	2	3	2	-	1	-	2

CHE: AC: 306(A): (OPEN ELECTIVE) SPECTRAL TECHNIQUES

2

UNIT - I: ULTRAVIOLET AND VISIBLE SPECTROSCOPY

15 Hrs

1

2

Various electronic transitions (185-800nm.), Beer-Lambert Law, effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, Fieser-Woodward rules for conjugated dienes and carbonyl compounds

UNIT - II: INFRARED SPECTROSCOPY

15 Hrs

Instrumentation and sample handling, characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ethers, phenols, amines, ketones, aldehydes, esters, amides, acids and anhydrides. Effect of hydrogen bonding.

UNIT – III:ATOMIC ABSORPTION SPECTROSCOPY: FLAME AAS: 15 Hrs

Principle, Instrumentation – Sources of radiation (HCL and EDL), Different types of burners, Interferences- Physical, Chemical, spectral and back ground correction, and methods of minimization

GF AAS: Principle and technique –Comparison between Flame AAS and furnace AAS, Applications of AAS, Comparison between Atomic Absorption & Flame Photometry.

UNIT –IV: MASS SPECTROMETRY

15 Hrs

Principle, instrumentation, different methods of ionization, EI, CI, FD and FAB, Mass spectramolecular ion, base peak, meta-stable peak, nitrogen rule and Mc Lafferty rearrangement. Mass spectral fragmentation of organic compounds and common functional groups. Normal and branched alkanes, alkenes, cycloalkanes, benzene and its derivatives, alcohols and phenols, ethers, aldehydes and ketones, carboxylic acids and their derivatives , amines and nitro compounds. Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.

Books Suggested:

CO₃

CO₄

- 1. Organic spectroscopy, W. Kemp 5th Ed, ELBS .2.
- 2. Spectroscopy of organic compounds, RM Silversteen and others 5th Ed, John Wiley 1991
- 3. Spectroscopy of organic compounds, PS Kalsi, Wiley, 1993
- 4. NMR in chemistry A Multi nuclear introduction, William Kemp, Mc Millan 1986
- 5. Spectroscopic methods in Organic Chemistry, DH Williams & I Flemmi TMH . 2005

CHE A	AC 306	Chr	omatog	raphic	Technic	ques	L-	5,T-1,P	-0	40	Credits	
Pre-re	quisite:	Unders	tanding	of grad	uate lev	el Chroi	natogra	phic Ted	chnique	S		
Cours	Course Objectives:											
• Fan	Familiarize with Classification of Chromatographic methods.											
• Uno	derstand	Demon	stration	experin	nent in T	ΓLC.						
• Stud	• Study on the applications of High-Performance Liquid Chromatography (HPLC).											
• Uno	Understand the working principle of gas chromatography.											
Cours	Course Outcomes: At the end of the course, the student will able to											
CO1	CO1 To know the stationary and mobile phases in chromatographic techniques.											
CO2	To fam	iliarize	applicat	ions of o	different	t chroma	atograph	nic meth	ods.			
CO3	To Unc	lerstand	the prin	ciple of	chroma	atograph	ic techn	iques.				
CO4	To gain	knowle	edge on	the nori	nal phas	se and re	everse p	hase.				
		Ma	apping o	of cours	se outco	mes wit	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	2	3	-	2	3	2	1	1	1	1
CO ₂	3	2	2	3	2	2	3	2	1	1	_	2
CO3	3	2	1	2	2	-	2		2	-	1	1
CO4	3	2	2	3	1	2	-	1	-	1	-	2

CHE AC 306: Chromatographic Techniques

Unit –**I:** Introduction - Classification of Chromatographic methods – Column chromatography-Adsorption phenomenon: Nature of adsorbents-Solvent systems-Differential migration-Separation of mixture of o-/p-nitro anilines (A demonstration experiment).

Unit –II: Thin-Layer Chromatography (TLC)-Coating materials and preparation of TLC plates-Solvents for development-Detection of compounds in TLC- R_f values in TLC-Applications of TLC in chemistry-Preparative TLC – Demonstration experiment in TLC.

Unit –III: High-Performance Liquid Chromatography (HPLC) - Application of HPLC- HPLC instrument-Stationary phases in HPLC-Normal and reversed phase HPLC: A comparison- Normal phase HPLC: Principle-Retention times in Normal and reversed phase HPLC- Reversed phase HPLC: Principle.

Unit –IV: Gas-Liquid Chromatography- Instruments for Gas-Liquid Chromatography- Gas-Chromatographic Columns and the Stationary Phase- Application of Gas-Liquid Chromatography-Gas-Solid Chromatography.

Reference Books:

- 1. Analytical chemistry: G L David Krupadanam, D. Vijaya prsad, K. Varaprasad Rao, KLN Reddy, C. Sudhakar.
- 2. Analytical chemistry: Skoog West Holler.
- 3. Modern Analytical Chemistry : David Harvey DePauw University.
- 4. J.G. Dick. Analytical Chemistry, Mc Grraw Hill, New Delhi, (1973).

CHE-EC-301 Physical Chemistry III L-5,T-1,P-0	4 Credits
---	-----------

Pre-requisite: Understanding of graduate level Physical Chemistry **Course Objectives:**

- Learn applications of Group Theory, symmetry criteria and symmetry restrictions
- Applications of X-ray Diffraction and Electron Diffraction on solid state chemistry
- Familiarize with the applications of Microwave spectroscopy, infrared spectroscopy and Raman spectroscopy
- Get knowledge on concept of Thermodynamics of polymer dissolution and Flory-Huggins theory of polymer solutions

Course Outcomes: At the end of the course, the student will be able to **CO1** To know the determination of Character Co-ordinate of C₂V point group based on 3N Coordinates and to learn the Mutual exclusion Principle. CO₂ To learn the Bragg conditions-Miller Indices- Laue method, Bragg method, Debye Scherrer method of X-ray structural analysis of crystals. To study the rigid rotator model, stark effect, vibration-rotation spectroscopy, PQR branches, CO₃ selection rules and Vibrational- rotational Raman spectroscopy. CO₄ To study the concepts on heat of dissolution, regular solution theory, Hildebrand solubility parameter, concept of Flory-Huggins theory of polymer solutions Mapping of course outcomes with the program outcomes PO3 PO9 PO₁ PO2 PO4 PO₅ PO₆ PO7 PO8 PO10 PO11 PO12 **CO1** 3 3 2 2 1 2 CO₂ 3 2 2 3 2 1 2 2 2 1 1 CO₃ 3 2 2 3 2 2 2 2 1 1 CO₄ 3 3

CHE-EC-303B CORE-THEORY PHYSICAL CHEMISTRY III

UNIT-I Applications of Group Theory

15 Hrs

Construction of reducible and irreducible representations, Determination of Character Co-ordinate of C₂V point group based on 3N Co-ordinates. Standard reduction formula, Determination of normal modes of vibrations of SO₂, NH₃, POCl₃, PtCl₄²⁻ 'H₂O₂ molecules. Mutual exclusion Principle, Direct Product, Accidental Degeneracy and Fermi resonance Group Theory and Spectroscopy: IR Spectral activity of NH₃ molecule, selection rules, symmetry Criteria for optical activity, symmetry restrictions on dipole moments, symmetry and stereo isomerism. Prediction of IR and Raman Spectral activity of H₂O and CO₂.

UNIT-II: X-ray Diffraction:

15 Hrs

- (A) Solid State Chemistry Dislocation of Solids, Schottky and Frenkeldefects, insulaters, a,d semiconductors, Band theory of solids, solid state reactions.
- **(B)** Bragg conditions-Miller Indices- Laue method, Bragg method, Debye Scherrer method of X-ray structural analysis of crystals. Index reflections, identification of unit cells from systematic absences in diffraction pattern- structure of simple lattices and X-ray intensities- structure factor and its relation to intensity and electron density- Description of procedure for X-ray structure analysis (NaCl and KCl)
- **(C) Electron Diffraction:** Scattering intensity Vs scattering angle, Wierlequation, and its importance. Measurement techniques, Elucidation of structures of simple gas phase molecules, Low energy electron diffraction (LEED) for the study of surfaces.

UNIT-III: SPECTROSCOPHY

15 Hrs

Microwave spectroscopy: classification of molecules, rigid rotator model, effect of isotopic substitution on the transition frequencies, intensities- stark effect.

Infrared spectroscopy: Linear harmonic oscillator, zero point energy, anharmonity, Mores potential energy diagram, fundamental and overtone transitions, hot bands and combinations bands. Vibration-rotation spectroscopy, PQR branches, selection rules, factors affecting the band positions and intensities for IR region. **Raman spectroscopy:** Classical and quantum theories of Raman effect, pure rotational, pure vibrational Raman spectroscopy, selection rules, mutual exclusion principle, resonance Raman spectroscopy and coherent antistokes Raman spectroscopy. Vibrational- rotational Raman spectroscopy.

UNIT-IV: POLYMER SOLUTIONS

15 Hrs

Thermodynamics of polymer dissolution, effect of molecular weight on solubility, solubility of crystalline and amorphous polymer, heat of dissolution, regular solution theory, Hildebrand solubility parameter, Flory-Huggins theory of polymer solutions, conformational entropy, osmotic pressure and viscosity of polymer solutions. Molecular weight determination by light scattering, ultra-centrifugation and sedimentation equilibrium method. Liquid Crystals- synthesis and applications

Books Suggested

- 1. F.A. Cotton: Introduction to Group theory for chemists.
- 2. Geroge Davidson Elsevier: Introductory Group Theory for Chemists.
- 3. Gurdeep Raj, Ajay Bhagi&Vinod Jain: Group Theory and Symmetry in Chemistry
- 4. Instrumental methods of analysis M.H. Willard, Meritt Jr. and J.A. Dean
- 5. Principles of instrumental analysis Skoog and West
- 6. F. W. Billmeyer, Jr.: Text Book of Polymer Science. Wiley Interscience.
- 7. V. R. Gowariker, N. V. Viswanathan, Jayadev Sreedhar.: polymer Science. New Age international Publishers.

CHE-EC 302	Organic Spectroscopy and Applications	L-5,T-1,P-0	4Credits
Pre-requisite:	Understanding of Organic Spectroscopy	and Applications	

Course Objectives:

- Familiarize with the instrumentation of UV and visible spectroscopy, applications of identifying the structures of the molecules.
- Understand IR spectrometry and applications to ascertain the fundamental groups by observing absorption bands
- Study on the applications of NMR spectroscopy in ascertaining the stereochemical structures of the molecules.
- Understand the working principle and fragmentation rules of different molecules in Mass spectroscopy

Course Outcomes: At the end of the course, the student will be able to
 CO1 To get experience to calculate λ max values for dienes, enones, polyenes, aromatic and heteroaromatic compounds.
 CO2 To familiarize with the absorption bands of the molecules with specific functional groups
 CO3 To interpret the data to different types of protons and carbons present in a molecule so as to ascertain the structure of the molecule based on the data provided
 CO4 To acquire knowledge about specific fragmentation rules of different molecules which are unique.
 Mapping of course outcomes with the program outcomes
 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	2	2	2	1	-	2	2	1
CO2	3	2	2	3	2	2	-	2	1	2	2	1
CO3	3	2	2	3	2	2	2	-	1	2	2	2
CO4	3	2	2	3	2	2	-	2	-	2	2	2
		•	•		•	•			•	•	•	•

CHE-EC 302: CORE THEORY: ORGANIC SPECTROSCOPY AND APPLICATIONS

UNIT-I: ULTRAVIOLET AND VISIBLE SPECTROSCOPY: 15Hrs

Various electronic transitions (185-800 nm), effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, conjugated polyenes. Fisher-Woodward rules for conjugated dienes and carbonyl compounds, ultraviolet spectra of aromatic and heterocyclic compounds. Steric effect in biphenyls.

UNIT - II: INFRARED SPECTROSCOPY

15Hrs

Instrumentation and sample handling. Characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ether, phenols and amines. Detailed study of vibrational frequencies of carbonyl compounds (ketones, aldehydes, esters, amides, acids, anhydrides, lactones, lactams and conjugated carbonyl compounds). Effect of hydrogen bonding and solvent effect on vibrational frequencies, overtones, combination bands and fermi resonance, FT-IR

UNIT -III: NMR SPECTROSCOPY:

15Hrs

¹H NMR spectroscopy: Magnetic properties of nuclei, Principles of NMR. Instrumentation, CW and pulsed FT instrumentation, equivalent and nonequivalent protons, enantiotopic and diastereotopic protons, Chemical shifts, factors affecting the chemical shifts, electronegativity and anisotropy, shielding and deshielding effects, Signal integration, Spin-spin coupling: vicinal, germinal and long range, Coupling constants and factors affecting coupling constants.

Applications of ¹H NMR spectroscopy: Reaction mechanisms (cyclic bromonium ion, electrophilic and nucleophilic substitutions, carbocations and carbanions), E, Z isomers, conformation of

cyclohexane and decalins, keto-enol tautomerism, hydrogen bonding, proton exchange processes (alcohols, amines and carboxylic acids), C-N rotation. Stereochemistry, hindered rotation, Karplus curve variation of coupling constant with dihedral angle. Simplification of complex spectra, nuclear magnetic double resonance, contact shift reagents, nuclear Overhauser effect (NOE).

¹³C NMR spectroscopy: General considerations, chemical shift (aliphatic, olefinic, alkyne, aromatic, heteroaromatic and carbonyl carbon), coupling constants. Two dimensional NMR spectroscopy-COSY.

UNIT-IV: MASS SPECTROMETRY

15Hrs

Introduction, ion production, type of ionization, EI, CI, FD, and FAB-factors affecting fragmentation, ion analysis, ion abundance. Mass spectral fragmentation of organic compounds, common functional groups, molecular-ion peak, metastable peak, Mc. Lafferty rearrangement. Nitrogen rule, isotope labeling. High resolution mass spectrometry, Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.

Books suggested:

- 1. Organic spectroscopy, W. Kemp 5th Ed, ELBS
- 2. Spectroscopy of organic compounds, RM Silversteen and others, 5th Ed,John Wiley
- 3. Spectroscopy of organic compounds, P.S. Kalsi, Wiley, 1993.
- 4. NMR in chemistry-A multi nuclear introduction, William Kemp, Mc Millan, 1986.
- 5. Spectroscopic methods in Organic chemistry, DH Williams & I Flemmi.

CHE EC 303 & 304	Core practical I: Environmental Chemistry - Practical	L-5,T-1,P-0	4 Credits
Pre-requisite: Un	nderstanding of Environmental Chemis	stry- Practical.	

	e Objec											
•	Familiarize with water analysis											
•	Study o	f soil an	alysis.									
•	Know a	bout ins	trument	ation an	d analy	sis of m	ixtures t	y poten	tiometr	y		
•	Identific	cation of	f cations	by flan	ne photo	metry						
Cours	e Outco	omes: A	t the end	d of the	course,	the stud	ent will	be able				
CO1	To get a	an idea a	bout wat	er analys	sis.							
CO2	To und	erstand tl	ne basic j	principle	s of soil	analysis.	•					
CO3	To fam	iliarize w	ith instr	ımentati	on of po	tentiome	tric techi	niques.				
CO4	To gain	knowled	dge on fl	ame pho	tometry	and its a	pplication	ns.				
		Ma	apping	of cours	se outco	mes wi	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	-	2	2		2	2	-	2
CO2	3	2	2	3	3	2	3	2	_	2	2	2
CO3	CO3 3 2 3 2 3 2 - 1 - 2											
CO4	3	2	2	3	3	2	2	_	2	2	2	2

CHE- EC-303: Core-Practical PRACTICAL-I

WATER & SOIL ANALYSIS

Water Analysis

- a. Alkalinity
- b. Acidity
- c. Temporary, Permanent and total hardness
- d. Sulphate
- e. Phosphorus
- f. Nitrites
- g. Cholorides
- h. D.O, BOD and COD
- i. Insecticides

Soil Analysis:

Determination Of:

- a) pH
- **b**) Conductivity
- c) Ca
- d) Mg
- e) Heavy metals like Cr, Pb, Cd, Zn.

CHE EC-304: Core-Practical PRACTICAL-II – INSTRUMENTAL METHODS OF ANALYSIS

- 1) Potentiometry:
 - a)Mixture of Acids
 - b)Mixture of Halides
- 2) Flame Photometry: Determination of Na, K, and Li.

CHE-EC-305A	Organic Chemistry III	L-3,T-1,P-2	4Credits
Pre-requisite: U	Understanding of Organic Chemistry		

Course Objectives: Course Objectives:

- Familiarize with the applications of different reagents in organic synthesis, Mechanisms and stereochemistry.
- Study the methods of preparation and applications of organometallic reagents.

Course Outcomes: At the end of the course, the student will be able to

- Understand topocity, prochirality, auxillary and reagent-controlled methods in asymmetric synthesis.
- Applications of different oxidizing and reducing agents in organic synthesis with region and stereo controlled products.

CO1 To familiarize with the specific functions of the reagents particularly diazomethane, N-bromosuccinimide, Ziegler Natta catalyst, 1,3-dithianes and Merrifield resin in the

synthesis of a variety of complex molecules.

CO2 To gain knowledge in the synthesis of different organometallic reagents and also stereo and regio specificity and selectivity of reactions with organometallic reagents

CO3 To understand diastereoselectivity, stereoselectivity and substrate controlled auxillary controlled reactions

CO4 To acquire knowledge about the reagents which causes oxidation in various compounds and also the reagents that causes selective and complete reductions to synthesize various compounds.

Mapping of course outcomes with the program outcomes PO2 PO₃ PO11 PO₁ PO4 PO₅ PO₆ PO7 PO8 PO9 PO10 PO12 CO₁ 3 2 3 2 2 1 2 1 CO₂ 2 2 2 2 2 3 2 3 1 1 1 CO₃ 3 2 2 3 2 2 2 2 1 1 CO₄ 3 2 2 3 2 2 2 2 2

CHE-EC-305A Core-Theory Organic Chemistry III

UNIT I: REAGENTS IN ORGANIC SYNTHESIS

15 Hrs

Use of the following reagents in organic synthesis: Anhydrous AlCl₃, Boran trifluoride, N-Bromosuccinimide, Diazomethane, Dicyclohexylcarbodiimide, Lead tetraacetate, Zieglar-Natta catalysts, DDQ, Dithianes, Merrifield resin.

UNIT-II: ORGANOMETALLIC REAGENTS

15 Hrs

Synthesis and applications of Grignard reagents, Organolithium, Zinc, Copper, Mercury, Palladium and Rhodium compounds in Organic Synthesis, Homogeneous catalytic hydrogenation and hydroformylation reactions

UNIT III: ASYMMETRIC SYNTHESIS

15 Hrs

Topocity - Prochirality- Substrate selectivity - Diastereoselectivity and enantioselectivity-Substrate controlled methods-use of chiral substrates - examples

Auxiliary controlled methods-Use of chiral auxiliaries-Chiral enolates-alkylation of chiral imines – Stereoselective Diels-Alder reaction

Reagent controlled methods-Use of chiral reagents-Asymmetric oxidation-Sharpless epoxidation-Asymmetric reduction-Use of lithium aluminium hydride and borate reagents.

UNIT IV: METHODS OF ORGANIC SYNTHESIS

15 Hrs

i). *Oxidations:* (a) Alcohols to carbonyls-Chromium (iv) oxidants-Dimethylsulfoxide oxidation, periodate xidation, Oppenauer oxidation, oxidation with manganese dioxide, oxidation with silver carbonate (b) Alkenes to epoxides-peroxide induced epoxidations. (c) Alkenes to diols-

oxidation with potassium permanaganate, osmium tetraoxide, Prevost reaction (d) Ketones to esters-Bayer-Villiger oxidation (e) Oxidative bond cleavage-cleavage of alkenes by transition metals. (f) Oxidation of alkyl or alkenyl fragments-selenium dioxide and chromium trioxide oxidations.

ii). Reductions: Reduction with lithium aluminium hydride, sodium borohydride, alkoxides, bismethoxy ethoxy aluminium hydride, Boran aluminium hydride and derivatives-catalytic,hydrogenation-dissolving metal reductions, Non-Metallic reducing agents including enzymatic and microbial reductions.

Suggested Books

- 1. Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, John Wiley.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J. Sundberg, Plenum.
- 3. Structure and Mechanism in Organic Chemistry, C.K. Inglod, Cornell University Press.
- 4. Organic Chemistry, R.T Morrison and R.N. Boyd, Prentice Hall.
- 5. Name reactions and reagents in organic synthesis, B.P. Muway and M.G Ellord, John Wiley.
- 6. Principles of Organic Synthesis, R.O.C Norman and J.M Coxon, Blackie Academic & Professional.
- 7. Reaction Mechanism in Organic Chemistry, P.S. Kalsi, New Age International.
- 8. Principles of organometallic chemistry, P. Powell, ELBS.
- 9. Organo transition metal chemistry-Applications to organic synthesis, S.G. Davis, Pergmon.
- 10. Stereochemistry to Organic Compounds, D. Nasipuri, New Age International.
- 11. Stereochemistry, P.S. Kalsi, Wiley Eastern.

CHE-EC- 305B	Inorganic Spectroscopy and Thermal Methods of Analysis	L-5,T-1,P-0	4Credits							
Pre-requisite: Understanding of Basic Inorganic Spectroscopy and Thermal Methods of Analysis										

Course Objectives: • Gain knowledge on thermal methods of analysis and principles and applications to inorganic materials • Familiarize with basics of Mossbauer and NOR spectroscopy. • Learn the properties like g-factor, nuclear spin, hyperfine coupling constants • Study the ESR instrumentation, various applications and photoelectron spectroscopy. **Course Outcomes :**At the end of the course, the student will be able **CO1** To know about TG and DTA and applications of different scanning calorimetry. CO₂ To gain knowledge on Doppler shift and chemical shift, basic principles and applications of NQR spectroscopy. CO₃ To learn zero field splitting and Kramer's degeneracy, relaxation processes, instrumentation and applications of ESR. **CO4** To know about photoelectric effect and Koopmans theorem and impart the applications of X-ray and UV photoelectron spectroscopy. Mapping of course outcomes with the program outcomes PO₁ PO2 PO4 PO5 PO₆ PO7 PO8 PO9 PO10 PO11 PO12 **CO1** 2 2 3 2 2 3 1 2 1 1 CO₂ 3 2 2 3 2 2 2 2 2 2 2 CO₃ 3 2 2 3 2 1 1 1 **CO4**

CHE-EC- 301: Inorganic Spectroscopy and Thermal Methods of Analysis

UNIT -I: THERMAL METHODS OF ANALYSIS

15 Hrs

Thermo gravimetry –Principle, Factors affecting the results, instrumentation. Application with special reference to CuSO₄5H₂O, CaC₂O₄ 2H₂O. Different thermal analysis – principle, instrumentation, difference between TG and DTA, applications with special reference to the clays and minerals. Different scanning calorimetry –principle, and applications to inorganic materials like chlorates and perchlorates, ammonium nitrate.

UNIT -II: MOSSBAUER SPECTROSCOPY and NQR

15 Hrs

Mossbauer spectroscopy: Basic principles, Recoil energy, Doppler shift, Chemical shift, Quadrapole effects, Magnetic effects. Instrumentation, spectral parameters and spectrum display. Aapplication of the technique to the studies of (1) bonding and structures of Fe^{2+} and Fe^{3+} compounds, (2) Sn^{2+} and Sn^{4+} compounds.

NQR spectroscopy: Basic principles of NQR spectroscopy, quadrupole nuclei, quadrupole moments, electric field gradient, coupling constant and applications.

UNIT -III: ELECTRON SPIN RESONANCE SPECTROSCOPY

15 Hrs

Basic Principles, Hyper fine splitting, Factors affecting the 'g' value. Isotropic and anisotropic hyperfine coupling constants, Hamiltonian and spin densities. Zero field splitting and Kramer's degeneracy, Relaxation process and line widths. Instrumentation and Applications. The EPR spectrum of bis(salicylidimine)-copper(II) complex, study of inorganic free radicals, biological applications of Electron Spin Resonance (Study of free radicals and Iron-sulfur proteins)

UNIT -IV: PHOTO ELECTRON SPECTROSCOPY

15 Hrs

Photoelectric effect, Koopmans's theorem, ionization energy.

X-ray photoelectron spectroscopy (ESCA): Principle, Binding energies, Chemical shift, Applications of XPES to Qualitative analysis, to surface studies and structural analysis. Ultraviolet photoelectron spectroscopy- Principle, application of UPES in studying the molecular orbitals of O₂

and N_2 molecules. Block diagram of photoelectron spectrophotometer. Sources of radiation, detectors. Auger spectra – Principle, Applications of Auger spectra to surface studies and use of Auger spectra as a finger print tool.

Books Suggested

- 1. F.A. Cotton and G. Wilkinson, Advanced In-organic chemistry VI Edition, 1999. John wiley & sons. Inc., New York.
- 2. J.E. Huheey, E.A. Keiter and R.L. Keiter: Inorganic Chemsitry, Principles of Structure and Reactivity (4th Ed.) (Addison-Wesley)
- 3. Gary Wulfsberg: Inorganic Chemistry (5th Ed. (Viva Books)
- 4. J.D. Lee: Concise Inorganic Chemistry (Blackwell)
- 5. W.L. Jolly: Modern Inorganic Chemsitry (McGraw-Hill)
- 6. R.L. Carlin: Magneto-chemsitry (Springer-Verlag)
- 7. R.L. Dutta and A. Syamal: Elements of Magnetochemsitry (Affiliate East-West).
- 8. K. Hussain Reddy Text book of Bioinorganic chemistry

CHE-EC- 306 A	Spectral Techniques	L-5,T-1,P-0	4Credits
D ••• TT	deretanding of Dagie Cheetral Teahn	•	

Pre-requisite: Understanding of Basic Spectral Techniques

Course Objectives:

- Familiarize with the instrumentation of UV and visible spectroscopy, applications of identifying the structures of the molecules.
- Understand IR spectrometry and applications to ascertain the fundamental groups by observing

absor	absorption bands											
• Study	• Study on the applications of flame atomic absorption spectroscopy.											
• Unde	• Understand the working principle and fragmentation rules of different molecules in Mass											
spect	roscopy	,										
Cours	e Outco	mes :A	t the end	d of the	course,	the stud	lent will	be able				
CO1	To kno	w the ba	asic prin	ciples o	of spectr	oscopy						
CO2		To familiarize with the analysis of various functional groups by using different spectroscopic techniques.										
CO3	To Uno	To Understand the applications of AAS.										
CO4	_	n knowl nal grou	_	bout Ma	ass spec	tral frag	mentati	on of or	ganic co	ompoun	ds and c	ommon
		Ma	apping	of cours	se outco	mes wi	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	3	-	2	3	2	1	-	1	1
CO2	3	2	2	3	2	2	3	2	-	1	-	2
CO3	3 2 - 2 2 - 1 1 -											
CO4	3	2	2	3	-	2	1	1	-	1	-	2

CHE: EC: 306(A): (OPEN ELECTIVE) SPECTRAL TECHNIQUES

UNIT – I: ULTRAVIOLET AND VISIBLE SPECTROSCOPY

15 Hrs

Various electronic transitions (185-800nm.), Beer-Lambert Law, effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, Fieser-Woodward rules for conjugated dienes and carbonyl compounds

UNIT – II : INFRARED SPECTROSCOPY

15 Hrs

Instrumentation and sample handling, characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ethers, phenols, amines, ketones, aldehydes, esters, amides, acids and anhydrides. Effect of hydrogen bonding.

UNIT – III: ATOMIC ABSORPTION SPECTROSCOPY: FLAME AAS:

15 Hrs

Principle, Instrumentation – Sources of radiation (HCL and EDL), Different types of burners, Interferences-Physical, Chemical, spectral and back ground correction, and methods of minimization

GF AAS: Principle and technique –Comparison between Flame AAS and furnace AAS, Applications of AAS, Comparison between Atomic Absorption & Flame Photometry.

UNIT -IV: MASS SPECTROMETRY

15 Hrs

Principle, instrumentation, different methods of ionization, EI, CI, FD and FAB, Mass spectra-molecular ion, base peak, meta-stable peak, nitrogen rule and Mc Lafferty rearrangement. Mass spectral fragmentation of organic compounds and common functional groups. Normal and branched alkanes, alkenes, cycloalkanes, benzene and its derivatives, alcohols and phenols, ethers, aldehydes and ketones, carboxylic acids and their derivatives , amines and nitro compounds. Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.

Books Suggested:

- 1. Organic spectroscopy, W.Kemp 5th Ed, ELBS .2.
- 2. Spectroscopy of organic compounds, RM Silversteen and others 5th Ed, John Wiley 1991
- 3. Spectroscopy of organic compounds, PS Kalsi, Wiley, 1993
- 4. NMR in chemistry A Multi nuclear introduction, William Kemp, Mc Millan 1986
- 5. Spectroscopic methods in Organic Chemistry, DH Williams & I Flemmi TMH . 2005

CHE E	C 306 l	306 B Chromatographic Techniques L-5,T-1,P-0 4Credits											
Pre-re	quisite:	Unders	tanding	of Chro	matogr	aphic Te	echnique	es					
Cours	e Objec	tives:											
•]	Familiarize with Classification of Chromatographic methods												
•	Underst	and Der	nonstrat	ion exp	eriment	in TLC							
•	Study or	n the ap	plication	ns of Hig	gh-Perfo	ormance	Liquid	Chroma	itograph	y (HPL	C)		
•	Underst	and the	working	gprincip	le of ga	s chrom	atograp	hy.					
Cours	e Outco	mes: A	t the end	d of the	course,	the stud	ent will	be able				_	
CO1	To kno	w the st	ationary	and mo	bile pha	ases in c	hromato	ographic	technic	ques.			
CO2	To fam	iliarize	applicat	ions of o	different	t chroma	atograpł	nic meth	ods				
CO3	To Und	lerstand	the prin	ciple of	chroma	ıtograph	ic techn	iques					
CO4	To gain	knowle	edge on	the norr	nal phas	se and re	everse p	hase					
		Ma	apping o	of cours	se outco	mes wit	h the p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	-	1	3	-	2	3	2	1	-	1	1	
CO2	3	2	2	3	2	2	3	2		1	-	2	
CO3	3	2	-	2	2	1	2	-	2	-	1	1	
CO4	3	2	2	3	-	2	1	2	-	1	-	2	

CHE: EC: 306(B): (OPEN ELECTIVE) CHROMATOGRAPHIC TECHNIQUES

Unit –**I:** Introduction - Classification of Chromatographic methods – Column chromatography-Adsorption phenomenon: Nature of adsorbents-Solvent systems-Differential migration-Separation of mixture of o-/p-nitro anilines (A demonstration experiment).

Unit –II: Thin-Layer Chromatography (TLC)-Coating materials and preparation of TLC plates-Solvents for development-Detection of compounds in TLC- R_f values in TLC-Applications of TLC in chemistry-Preparative TLC – Demonstration experiment in TLC.

Unit –III: High-Performance Liquid Chromatography (HPLC) - Application of HPLC- HPLC instrument-Stationary phases in HPLC-Normal and reversed phase HPLC: A comparison- Normal phase HPLC: Principle-Retention times in Normal and reversed phase HPLC- Reversed phase HPLC: Principle.

Unit –IV: Gas-Liquid Chromatography- Instruments for Gas-Liquid Chromatography- Gas-Chromatographic Columns and the Stationary Phase- Application of Gas-Liquid Chromatography-Gas-Solid Chromatography.

Reference Books:

- 1. Analytical chemistry: G L David Krupadanam, D.Vijaya prsad, K.Varaprasad Rao, KLN Reddy, C.Sudhakar.
- 2. Analytical chemistry: Skoog West Holler.
- 3. Modern Analytical Chemistry: David Harvey DePauw University.
- 4. J.G.Dick. Analytical Chemistry, McGrraw Hill, New Delhi, (1973).

CHE-I	C- 301		organio hermal	_			L-	5,T-1,P	2-0	4	Credits	
Pre-re	Pre-requisite: Understanding of Basic Inorganic Spectroscopy and Thermal Methods of Analysis											
Cours	Course Objectives:											
• Gain knowledge on thermal methods of analysis and principles and applications to inorganic materials												
	iliarize with basics of Mossbauer and NQR spectroscopy.											
• Learn	the pro	he properties like g-factor, nuclear spin, hyperfine coupling constants										
• Study	the ES	R instru	mentati	on, vari	ous app	lications	s and ph	otoelect	ron spec	ctroscop	y.	
Cours	e Outco	mes :A	t the end	d of the	course,	the stud	lent will	be able				
CO1	To kn	ow abou	ıt TG ar	nd DTA	and app	olication	s of diff	erent sc	anning	calorime	etry.	
CO2	To ga	in know	ledge or	n Doppl	er shift	and che	mical sh	ift, basi	c princi	ples and	applica	tions of
	NQR	spectros	всору.									
CO3			field spon and a			ner's deg ESR.	generacy	y, relaxa	ition pro	ocesses,		
CO4	To kno	w abou	t photoe	electric	effect a	nd Koo	pmans t	heorem	and im	part the	applica	tions of
	X-ray a	and UV	photoel	ectron s	spectros	сору.	_			_		
		Ma	apping	of cours	se outco	omes wi	th the p	rogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3		2	2	_	1	_	2	2
CO2	3	2	2	3	2	2	1	2	2	2	2	_
CO3	3	2	2	3	2	2	-	1	_	2	-	2
CO4	3	2	2	3	2	-	2	-	1	-	2	2

CHE-IC- 301: INORGANIC SPECTROSCOPY AND THERMAL METHODS OF ANALYSIS

UNIT -I: THERMAL METHODS OF ANALYSIS

15 Hrs

Thermo gravimetry –Principle, Factors affecting the results, instrumentation. Application with special reference to CuSO₄5H₂O, CaC₂O₄ 2H₂O. Different thermal analysis – principle, instrumentation, difference between TG and DTA, applications with special reference to the clays and minerals. Different scanning calorimetry –principle, and applications to inorganic materials like chlorates and perchlorates, ammonium nitrate.

UNIT -II: MOSSBAUER SPECTROSCOPY and NQR

15 Hrs

Mossbauer spectroscopy: Basic principles, Recoil energy, Doppler shift, Chemical shift, Quadrapole effects, Magnetic effects. Instrumentation, spectral parameters and spectrum display. Aapplication of the technique to the studies of (1) bonding and structures of Fe^{2+} and Fe^{3+} compounds, (2) Sn^{2+} and Sn^{4+} compounds.

NQR spectroscopy: Basic principles of NQR spectroscopy, quadrupole nuclei, quadrupole moments, electric field gradient, coupling constant and applications.

UNIT -III: ELECTRON SPIN RESONANCE SPECTROSCOPY

15 Hrs

Basic Principles, Hyper fine splitting, Factors affecting the 'g' value. Isotropic and anisotropic hyperfine coupling constants, Hamiltonian and spin densities. Zero field splitting and Kramer's degeneracy, Relaxation process and line widths. Instrumentation and Applications. The EPR spectrum of bis(salicylidimine)-copper(II) complex, study of inorganic free radicals, biological applications of Electron Spin Resonance (Study of free radicals and Iron-sulfur proteins)

UNIT -IV: PHOTO ELECTRON SPECTROSCOPY

15 Hrs

Photoelectric effect, Koopmans's theorem, ionization energy.

X-ray photoelectron spectroscopy (ESCA): Principle, Binding energies, Chemical shift, Applications of XPES to Qualitative analysis, to surface studies and structural analysis. Ultraviolet photoelectron spectroscopy- Principle, application of UPES in studying the molecular orbitals of O_2 and N_2 molecules. Block diagram of photoelectron spectrophotometer. Sources of radiation, detectors. Auger spectra – Principle, Applications of Auger spectra to surface studies and use of Auger spectra as a finger print tool.

Books Suggested

- 8. F.A. Cotton and G. Wilkinson, Advanced In-organic chemistry VI Edition, 1999. John wiley & sons. Inc., New York.
- 9. J.E. Huheey, E.A. Keiter and R.L. Keiter: Inorganic Chemsitry, Principles of Structure and Reactivity (4th Ed.) (Addison-Wesley)
- 10. Gary Wulfsberg: Inorganic Chemistry (5th Ed. (Viva Books)
- 11. J.D. Lee: Concise Inorganic Chemistry (Blackwell)
- 12. W.L. Jolly: Modern Inorganic Chemsitry (McGraw-Hill)
- 13. R.L. Carlin: Magneto-chemsitry (Springer-Verlag)
- 14. R.L. Dutta and A. Syamal: Elements of Magnetochemsitry (Affiliate East-West).
- 8. K. Hussain Reddy Text book of Bioinorganic chemistry

CHE-IC 302	Organic Spectroscopy and Applications	L-5,T-1,P-0	, ,						
Pre-requisite:	Understanding of Organic Spectroscopy	and Applications							

Course Objectives:

- Familiarize with the instrumentation of UV and visible spectroscopy, applications of identifying the structures of the molecules.
- Understand IR spectrometry and applications to ascertain the fundamental groups by observing absorption bands
- Study on the applications of NMR spectroscopy in ascertaining the stereochemical structures of the molecules.
- Understand the working principle and fragmentation rules of different molecules in Mass spectroscopy

Course Outcomes: At the end of the course, the student will be able to

CO1 To get experience to calculate λ max values for dienes, enones, polyenes, aromatic and heteroaromatic compounds.
 CO2 To familiarize with the absorption bands of the molecules with specific functional groups
 CO3 To interpret the data to different types of protons and carbons present in a molecule so as to ascertain the structure of the molecule based on the data provided
 CO4 To acquire knowledge about specific fragmentation rules of different molecules which are unique.

	Mapping of course outcomes with the program outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	2	3	2	2	-	2	1	2	2	_	
CO2	3	2	2	3	2	2	2	1	2	2	2	1	
CO3	3	2	2	3	2	2	2		2	2	2	2	
CO4	3	2	2	3	2	2	2	1	-	2	2	_	

CHE-IC 302: CORE THEORY: ORGANIC SPECTROSCOPY AND APPLICATIONS

UNIT-I: ULTRAVIOLET AND VISIBLE SPECTROSCOPY: 15Hrs

Various electronic transitions (185-800 nm), effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, conjugated polyenes. Fisher-Woodward rules for conjugated dienes and carbonyl compounds, ultraviolet spectra of aromatic and heterocyclic compounds. Steric effect in biphenyls.

UNIT – II: INFRARED SPECTROSCOPY

15Hrs

Instrumentation and sample handling. Characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ether, phenols and amines. Detailed study of vibrational frequencies of carbonyl compounds (ketones, aldehydes, esters, amides, acids, anhydrides, lactones, lactams and conjugated carbonyl compounds). Effect of hydrogen bonding and solvent effect on vibrational frequencies, overtones, combination bands and fermi resonance, FT-IR

UNIT -III: NMR SPECTROSCOPY:

15Hrs

¹H NMR spectroscopy: Magnetic properties of nuclei, Principles of NMR. Instrumentation, CW and pulsed FT instrumentation, equivalent and nonequivalent protons, enantiotopic and diastereotopic protons, Chemical shifts, factors affecting the chemical shifts, electronegativity and anisotropy, shielding and deshielding effects, Signal integration, Spin-spin coupling: vicinal,

germinal and long range, Coupling constants and factors affecting coupling constants.

Applications of ¹H NMR spectroscopy: Reaction mechanisms (cyclic bromonium ion, electrophilic and nucleophilic substitutions, carbocations and carbanions), E, Z isomers, conformation of cyclohexane and decalins, keto-enol tautomerism, hydrogen bonding, proton exchange processes (alcohols, amines and carboxylic acids), C-N rotation. Stereochemistry, hindered rotation, Karplus curve variation of coupling constant with dihedral angle. Simplification of complex spectra, nuclear magnetic double resonance, contact shift reagents, nuclear Overhauser effect (NOE).

¹³C NMR spectroscopy: General considerations, chemical shift (aliphatic, olefinic, alkyne, aromatic, heteroaromatic and carbonyl carbon), coupling constants. Two dimensional NMR spectroscopy-COSY.

UNIT-IV: MASS SPECTROMETRY

15Hrs

Introduction, ion production, type of ionization, EI, CI, FD, and FAB-factors affecting fragmentation, ion analysis, ion abundance. Mass spectral fragmentation of organic compounds, common functional groups, molecular-ion peak, metastable peak, Mc. Lafferty rearrangement. Nitrogen rule, isotope labeling. High resolution mass spectrometry, Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.

Books suggested:

- 6. Organic spectroscopy, W. Kemp 5th Ed, ELBS
- 7. Spectroscopy of organic compounds, RM Silversteen and others, 5th Ed,John Wiley
- 8. Spectroscopy of organic compounds, P.S. Kalsi, Wiley, 1993.
- 9. NMR in chemistry-A multi nuclear introduction, William Kemp, Mc Millan, 1986.
- 10. Spectroscopic methods in Organic chemistry, DH Williams & I Flemm.

	IC 33 & 304	&		e practi ganic (L-	5,T-1,P	2-0	4	Credits	5
Pre-re	quisite	: Unders	standing	of Inor	ganic C	hemistry	- Pract	ical.				
• Gai	 Course Objectives: Gain knowledge on synthesis of inorganic complexes Estimation of metal ions by complex metric and colorimetric method. 											
Cours	Course Outcomes: At the end of the course, the student will be able.											
CO1	To know the basic principles of instrumental methods of analysis.											
CO2	To fam	iliarize	with the	analysi	s of org	anometa	llic con	nplex sa	lts.			
CO3	To Uno	derstand	the con	nplexity	, theory	and wo	king pr	inciple	of colou	rimetry.		
CO4	To gain	n knowle	edge on	analysis	s of orga	anic com	ponent	S				
		Ma	apping	of cours	se outco	mes wit	h the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	3	1	2	3	2	-	1	1	-
CO2	3	2	2	3	2	2	3	2	-	1	_	2
CO3	3	2	1	2	2		2	-	2	-	1	1
CO4	3	2	2	3		2		1	2	1	_	2

CHE- IC -303: Core-Practical PRACTICAL-I

Preparation of Inorganic complexes and characterization:

- a) Tris thiourea Zinc (II) Sulphate
- **b**) Tris thiourea Copper(I) Sulphate
- c) Hexamine nickel (II) Chloride
- d) Chloropentamanine cobalt (III) Chloride
- e) Cis potassium diaquodioxalato chromate (III)
- f) Tris (acetylacetonato) manganese (III)
- g) Mercury tetrakristhiocyanato cobaltate (II)
- h) Sodium trioxalato ferrate (III)
- i) Tetrammine Copper (II) Sulphate
- j) Potassium hexathiocyanato chromate (III) tetrahydrate

CHE -IC -304 Core-Practical- PRACTICAL -II -Instrumental methods of analysis

Colorimetric determinations:

- k) Determination of manganese
- 1) Determination of nickel
- m) Determination of iron by 1,10 Pheren-thiroline
- n) Determination of chromium
- o) Determination of Phosphate
- p) Determination of Pesticides
- q) Determination of Nitrite.

CHE-IC-305A	Organic Chemistry III	L-3,T-1,P-2	4Credits						
Pre-requisite: Understanding of Organic Chemistry									

Course Objectives: Course Objectives:

- Familiarize with the applications of different reagents in organic synthesis, Mechanisms and stereochemistry.
- Study the methods of preparation and applications of organometallic reagents.
- Understand topocity, prochirality, auxillary and reagent-controlled methods in asymmetric synthesis.
- Applications of different oxidizing and reducing agents in organic synthesis with region and stereo controlled products.

Stere	stereo controllea products.								
Course	Course Outcomes: At the end of the course, the student will be able to								
CO1	To familiarize with the specific functions of the reagents particularly diazomethane,								
	N-bromosuccinimide, Ziegler Natta catalyst, 1,3-dithianes and Merrifield resin in the								
	synthesis of a variety of complex molecules.								
CO2	To gain knowledge in the synthesis of different organometallic reagents and also stereo								
	and regio specificity and selectivity of reactions with organometallic reagents								
CO3	To understand diastereoselectivity, stereoselectivity and substrate controlled auxillary								
	controlled reactions								
CO4	To acquire knowledge about the reagents which causes oxidation in various compounds								
	and also the reagents that causes selective and complete reductions to synthesize various								
	compounds.								
	Mapping of course outcomes with the program outcomes								

		1416	apping '	or cours	oc outco	illes wi	ш шс р	i ogi aiii	outcor	iics		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	2	2	1	2	-	2	2	1
CO2	3	2	2	3	2	2	-	2	2	-	2	2
CO3	3	2	2	3	2	2	1	-	2	2	-	1
CO4	3	2	2	3	2	2	-	2	-	2	2	2

CHE-IC-303A Core-Theory Organic Chemistry III

UNIT I: REAGENTS IN ORGANIC SYNTHESIS

15 Hrs

Use of the following reagents in organic synthesis: Anhydrous AlCl₃, Boran trifluoride, N-Bromosuccinimide, Diazomethane, Dicyclohexylcarbodiimide, Lead tetraacetate, Zieglar-Natta catalysts, DDQ, Dithianes, Merrifield resin.

UNIT-II: ORGANOMETALLIC REAGENTS

15 Hrs

Synthesis and applications of Grignard reagents, Organolithium, Zinc, Copper, Mercury, Palladium and Rhodium compounds in Organic Synthesis, Homogeneous catalytic hydrogenation and hydroformylation reactions

UNIT III: ASYMMETRIC SYNTHESIS

15 Hrs

Topocity - Prochirality- Substrate selectivity - Diastereoselectivity and enantioselectivity-Substrate controlled methods-use of chiral substrates - examples

Auxiliary controlled methods-Use of chiral auxiliaries-Chiral enolates-alkylation of chiral imines – Stereoselective Diels-Alder reaction

Reagent controlled methods-Use of chiral reagents-Asymmetric oxidation-Sharpless epoxidation-Asymmetric reduction-Use of lithium aluminium hydride and borate reagents.

UNIT IV: METHODS OF ORGANIC SYNTHESIS

15 Hrs

i). *Oxidations*: (a) Alcohols to carbonyls-Chromium (iv) oxidants-Dimethylsulfoxide oxidation, periodate xidation, Oppenauer oxidation, oxidation with manganese dioxide, oxidation with silver carbonate (b) Alkenes to epoxides-peroxide induced epoxidations. (c) Alkenes to diols-

oxidation with potassium permanaganate, osmium tetraoxide, Prevost reaction (d) Ketones to esters-Bayer-Villiger oxidation (e) Oxidative bond cleavage-cleavage of alkenes by transition metals. (f) Oxidation of alkyl or alkenyl fragments-selenium dioxide and chromium trioxide oxidations.

ii). *Reductions*: Reduction with lithium aluminium hydride, sodium borohydride, alkoxides, bismethoxy ethoxy aluminium hydride, Boran aluminium hydride and derivatives-catalytic, hydrogenation-dissolving metal reductions, Non-Metallic reducing agents including enzymatic and microbial reductions.

Suggested Books

- 1. Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, John Wiley.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J. Sundberg, Plenum.
- 3. Structure and Mechanism in Organic Chemistry, C.K. Inglod, Cornell University Press.
- 4. Organic Chemistry, R.T Morrison and R.N. Boyd, Prentice Hall.
- 5. Name reactions and reagents in organic synthesis, B.P. Muway and M.G Ellord, John Wiley.
- 6. Principles of Organic Synthesis, R.O.C Norman and J.M Coxon, Blackie Academic & Professional.
- 7. Reaction Mechanism in Organic Chemistry, P.S. Kalsi, New Age International.
- 8. Principles of organometallic chemistry, P. Powell, ELBS.
- 9. Organo transition metal chemistry-Applications to organic synthesis, S.G. Davis, Pergmon.
- 10. Stereochemistry to Organic Compounds, D. Nasipuri, New Age International.
- 11. Stereochemistry, P.S. Kalsi, Wiley Eastern.

CHE-I	C-305B		Ph	ysical (Chemist	try III	L-	5,T-1,P	-0	4	Credits	
Pre-requisite: Understanding of graduate level Physical Chemistry												
Course Objectives:												
• Learn applications of Group Theory, symmetry criteria and symmetry restrictions.												
Applications of X-ray Diffraction and Electron Diffraction on solid state chemistry.												
• Familiarize with the applications of Microwave spectroscopy, infrared spectroscopy and Raman												
_	spectroscopy.											
	• Get knowledge on concept of Thermodynamics of polymer dissolution and Flory-Huggins											
	theory of polymer solutions.											
Cours	se Outco	mes: A	t the end	d of the	course,	the stud	ent will	be able	to			
CO1	To kno	w the de	termina	tion of (Characte	er Co-or	dinate o	of C ₂ V p	oint gro	up base	d on 3N	
	Coordin	nates and	d to lear	n the M	utual ex	clusion	Princip ¹	le.				
CO ₂	To lear	n the Br	agg con	ditions-	Miller In	ndices- 1	Laue me	ethod, B	ragg me	thod, D	ebye Sc	herrer
	method	of X-ra	y structi	ıral ana	lysis of	crystals.						
CO3	To stud	y the rig	gid rotat	or mode	l, stark	effect, v	ibration	-rotatio	n spectr	oscopy,	PQR br	anches,
	selectio	n rules a	and V	ibration	al- rotat	ional Ra	aman sp	ectrosco	ру.			
CO4	To stud	y the co	ncepts o	n heat o	of dissol	ution, re	egular so	olution t	heory, I	Hildebra	nd	
	solubili	ty paran	neter, co	ncept of	f Flory-	Huggins	theory	of poly	mer solu	itions		
		M	apping (of cours	se outco	mes wit	h the n	rngram	outcon	nes		
	T =											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	-	2	2	-	1	_	2	-
CO2	3	2	2	3	2	2	1	2	2	2	1	-
CO3	3	2	2	3	2	2	1	1	-	2	-	2
CO4	3	2	2	3	-	2	1	-	2	2	1	2

CHE-AC-303B CORE-THEORY PHYSICAL CHEMISTRY III

UNIT-I Applications of Group Theory

15 Hrs

Construction of reducible and irreducible representations, Determination of Character Co-ordinate of C₂V point group based on 3N Coordinates. Standard reduction formula, Determination of normal modes of vibrations of SO₂, NH₃, POCl₃, PtCl₄²⁻, H₂O₂ molecules. Mutual exclusion Principle, Direct Product, Accidental Degeneracy and Fermi resonance Group Theory and Spectroscopy: IR Spectral activity of NH₃ molecule, selection rules, symmetry Criteria for optical activity, symmetry restrictions on dipole moments, symmetry and stereo isomerism. Prediction of IR and Raman Spectral activity of H₂O and CO₂.

UNIT-II: X-ray Diffraction:

15 Hrs

- (A) Solid State Chemistry Dislocation of Solids, Schottky and Frenkeldefects, insulaters, a,d semiconductors, Band theory of solids, solid state reactions.
- (B) Bragg conditions-Miller Indices- Laue method, Bragg method, Debye Scherrer method of X-ray structural analysis of crystals. Index reflections, identification of unit cells from systematic diffraction pattern- structure of simple lattices and X-ray intensities- structure factor and its relation to intensity and electron density- Description of procedure for X-ray structure analysis (NaCl and KCl)
- (C) Electron Diffraction: Scattering intensity Vs scattering angle, Wierlequation, and its importance. Measurement techniques, Elucidation of structures of simple gas phase molecules, Low energy electron diffraction (LEED) for the study of surfaces.

Microwave spectroscopy: classification of molecules, rigid rotator model, effect of isotopic substitution on the transition frequencies, intensities- stark effect.

Infrared spectroscopy: Linear harmonic oscillator, zero point energy, anharmonity, Mores potential energy diagram, fundamental and overtone transitions, hot bands and combinations bands. Vibration-rotation spectroscopy, PQR branches, selection rules, factors affecting the band positions and intensities for IR region. **Raman spectroscopy:** Classical and quantum theories of Raman effect, pure rotational, pure vibrational Raman spectroscopy, selection rules, mutual exclusion principle, resonance Raman spectroscopy and coherent antistokes Raman spectroscopy. Vibrational- rotational Raman spectroscopy.

UNIT-IV: POLYMER SOLUTIONS

15 Hrs

Thermodynamics of polymer dissolution, effect of molecular weight on solubility, solubility of crystalline and amorphous polymer, heat of dissolution, regular solution theory, Hildebrand solubility parameter, Flory-Huggins theory of polymer solutions, conformational entropy, osmotic pressure and viscosity of polymer solutions. Molecular weight determination by light scattering, ultra-centrifugation and sedimentation equilibrium method. Liquid Crystals- synthesis and applications

Books Suggested

- 1. F.A. Cotton: Introduction to Group theory for chemists.
- 2. Geroge Davidson Elsevier: Introductory Group Theory for Chemists.
- 3. Gurdeep Raj, Ajay Bhagi&Vinod Jain: Group Theory and Symmetry in Chemistry
- 4. Instrumental methods of analysis M.H. Willard, Meritt Jr. and J.A. Dean
- 5. Principles of instrumental analysis Skoog and West
- 6. F. W. Billmeyer, Jr.: Text Book of Polymer Science. Wiley Interscience.
- 7. V. R. Gowariker, N. V. Viswanathan, Jayadev Sreedhar.: polymer Science. New Age international Publishers.

Pre-re	equisite	: Unders	standing	of Spec	tral Tec	chniques	3					
• 1 i	Familiandentifyi Understanders	Objective with the second IR and IR appears and the vector of the second control of the	h the i tructure spectro ption ba blication working	s of the metry a nds. as of flar princip	molecu and app me atom le and f	les. plication nic absor	s to as	certain pectroscoles of di	the fur	ndament	al grou	ips by
CO1	CO1 To know the basic principles of spectroscopy.											
CO2	To familiarize with the analysis of various functional groups by using different spectroscopic techniques.											
CO3	To Un	derstand	the app	lication	s of AA	S.						
CO4	_	n knowle onal grou	ıps.		-					-	ls and c	ommon
		Ma	apping	of cours	se outco	omes wi	th the p	rogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	3	1	2	3	2	1	-	1	-
CO2	3	2	2	3	2	2	3	2	-	1	2	2
CO3	3	2	1	2	2	1	2	-	2	-	1	-
CO4	3	2	2	3	1	2	-	1	-	1	-	2
	1	1	1	I	I	1	L	1	1	I	I	1

L-5,T-1,P-0

CHE: IC: 306(A): (OPEN ELECTIVE) SPECTRAL TECHNIQUES

UNIT – I: ULTRAVIOLET AND VISIBLE SPECTROSCOPY

Spectral Techniques

15 Hrs

4 Credits

Various electronic transitions (185-800nm.), Beer-Lambert Law, effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, Fieser-Woodward rules for conjugated dienes and carbonyl compounds

UNIT - II: INFRARED SPECTROSCOPY

CHE IC 306 A

15 Hrs

Instrumentation and sample handling, characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ethers, phenols, amines, ketones, aldehydes, esters, amides, acids and anhydrides. Effect of hydrogen bonding.

UNIT – III:ATOMIC ABSORPTION SPECTROSCOPY: FLAME AAS: 15 Hrs

Principle, Instrumentation – Sources of radiation (HCL and EDL), Different types of burners, Interferences- Physical, Chemical, spectral and back ground correction, and methods of minimization

GF AAS: Principle and technique –Comparison between Flame AAS and furnace AAS, Applications of AAS, Comparison between Atomic Absorption & Flame Photometry.

UNIT -IV: MASS SPECTROMETRY

15 Hrs

Principle, instrumentation, different methods of ionization, EI, CI, FD and FAB, Mass spectramolecular ion, base peak, meta-stable peak, nitrogen rule and Mc Lafferty rearrangement. Mass spectral fragmentation of organic compounds and common functional groups. Normal and branched alkanes, alkenes, cycloalkanes, benzene and its derivatives, alcohols and phenols, ethers, aldehydes and ketones, carboxylic acids and their derivatives , amines and nitro compounds. Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.

Books Suggested:

- 6. Organic spectroscopy, W. Kemp 5th Ed, ELBS .2.
- 7. Spectroscopy of organic compounds, RM Silversteen and others 5th Ed, John Wiley 1991
- 8. Spectroscopy of organic compounds, PS Kalsi, Wiley, 1993
- 9. NMR in chemistry A Multi nuclear introduction, William Kemp, Mc Millan 1986
- 10. Spectroscopic methods in Organic Chemistry, DH Williams & I Flemmi TMH . 2005

CHE	IC 306	B Chr	omatog	raphic	Techni	ques	L-	5,T-1,P	2-0	4	Credits	}
Pre-requisite: Understanding of graduate level Chromatographic Techniques												
	Course Objectives:											
	Familiarize with Classification of Chromatographic methods.											
	Iderstand Demonstration experiment in TLC. Idy on the applications of High-Performance Liquid Chromatography (HPLC).											
	Inderstand the working principle of gas chromatography.											
	ourse Outcomes: At the end of the course, the student will able to											
	- Outco	Outcomes: At the end of the course, the student will able to										
CO1	To kno	w the st	ationary	and mo	obile ph	ases in c	chromate	ographic	e technic	ques.		
CO2	To familiarize applications of different chromatographic methods.											
CO3	To Understand the principle of chromatographic techniques.											
CO4	To gain	n knowl	edge on	the nor	mal pha	se and r	everse p	hase.				
		Ma	apping	of cours	se outco	mes wi	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	3	1	2	3	2	2	-	1	1
CO2	3	2	2	3	2	2	3	2	-	1	-	2
CO3	3	2	-	2	2	-	2	-	2	-	1	-
CO4	3	2	2	3	1	2	-	2	-	1	2	2

CHE IC 306 (B): Chromatographic Techniques

Unit –I: Introduction - Classification of Chromatographic methods – Column chromatography-Adsorption phenomenon: Nature of adsorbents-Solvent systems-Differential migration-Separation of mixture of o-/p-nitro anilines (A demonstration experiment).

Unit –II: Thin-Layer Chromatography (TLC)-Coating materials and preparation of TLC plates-Solvents for development-Detection of compounds in TLC- R_f values in TLC-Applications of TLC in chemistry-Preparative TLC – Demonstration experiment in TLC.

Unit –III: High-Performance Liquid Chromatography (HPLC) - Application of HPLC- HPLC instrument-Stationary phases in HPLC-Normal and reversed phase HPLC: A comparison- Normal phase HPLC: Principle-Retention times in Normal and reversed phase HPLC- Reversed phase HPLC: Principle.

Unit –IV: Gas-Liquid Chromatography- Instruments for Gas-Liquid Chromatography- Gas-Chromatographic Columns and the Stationary Phase- Application of Gas-Liquid Chromatography-Gas-Solid Chromatography.

Reference Books:

- 5. Analytical chemistry: G L David Krupadanam, D. Vijaya prsad, K. Varaprasad Rao, KLN Reddy, C. Sudhakar.
- 6. Analytical chemistry: Skoog West Holler.
- 7. Modern Analytical Chemistry: David Harvey DePauw University.
- 8. J.G. Dick. Analytical Chemistry, Mc Grraw Hill, New Delhi, (1973).

CHE-O	C-301	C-301 Organic Chemistry III L-3,T-1,P-2 4Credits										
Pre-re	Pre-requisite: Understanding of Organic Chemistry											
Fam stereStudUnd syntApp stere	Course Objectives: Course Objectives: Familiarize with the applications of different reagents in organic synthesis, Mechanisms and stereochemistry. Study the methods of preparation and applications of organometallic reagents. Understand topocity, prochirality, auxillary and reagent-controlled methods in asymmetric synthesis. Applications of different oxidizing and reducing agents in organic synthesis with region and stereo controlled products. Course Outcomes: At the end of the course, the student will be able to											
CO1	To familiarize with the specific functions of the reagents particularly diazomethane, N-bromosuccinimide, Ziegler Natta catalyst, 1,3-dithianes and Merrifield resin in the synthesis of a variety of complex molecules.											
CO2	_		_	•			_	anometa organo		_		stereo
CO3		derstan lled rea		ereosele	ctivity,	stereose	electivity	y and s	ubstrate	contro	lled au	xillary
CO4		so the r						ises oxi olete red				
		Ma	apping	of cours	se outco	mes wit	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	2	2	-	2	1	2	2	1
CO2	3	2	2	3	2	2	1	2	1	1	2	2
CO3	3	2	2	3	2	2	1	-	2	_	-	2
CO4	3	2	2	3	2	2	-	2	1	2	2	2

I_3 T_1 D_2

CHE-OC-301Core-Theory Organic Chemistry III

UNIT I: REAGENTS IN ORGANIC SYNTHESIS

CHE-OC-301

15 Hrs

Use of the following reagents in organic synthesis: Anhydrous AlCl₃, Boran trifluoride, N-Bromosuccinimide, Diazomethane, Dicyclohexylcarbodiimide, Lead tetraacetate, Zieglar-Natta catalysts, DDQ, Dithianes, Merrifield resin.

UNIT-II: ORGANOMETALLIC REAGENTS

15 Hrs

Synthesis and applications of Grignard reagents, Organolithium, Zinc, Copper, Mercury, Palladium and Rhodium compounds in Organic Synthesis, Homogeneous catalytic hydrogenation and hydroformylation reactions

UNIT III: ASYMMETRIC SYNTHESIS

15 Hrs

Topocity - Prochirality- Substrate selectivity - Diastereoselectivity and enantioselectivity-Substrate controlled methods-use of chiral substrates - examples

Auxiliary controlled methods-Use of chiral auxiliaries-Chiral enolates-alkylation of chiral imines – Stereoselective Diels-Alder reaction

Reagent controlled methods-Use of chiral reagents-Asymmetric oxidation-Sharpless epoxidation-Asymmetric reduction-Use of lithium aluminium hydride and borate reagents.

- i). Oxidations: (a) Alcohols to carbonyls-Chromium (iv) oxidants-Dimethylsulfoxide oxidation, periodate xidation, Oppenauer oxidation, oxidation with manganese dioxide, oxidation with silver carbonate (b) Alkenes to epoxides-peroxide induced epoxidations. (c) Alkenes to diols-oxidation with potassium permanaganate, osmium tetraoxide, Prevost reaction (d) Ketones to esters-Bayer-Villiger oxidation (e) Oxidative bond cleavage-cleavage of alkenes by transition metals. (f) Oxidation of alkyl or alkenyl fragments-selenium dioxide and chromium trioxide oxidations.
- **ii).** *Reductions*: Reduction with lithium aluminium hydride, sodium borohydride, alkoxides, bismethoxy ethoxy aluminium hydride, Boran aluminium hydride and derivatives-catalytic, hydrogenation-dissolving metal reductions, Non-Metallic reducing agents including enzymatic and microbial reductions.

Suggested Books

- 1. Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, John Wiley.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J. Sundberg, Plenum.
- 3. Structure and Mechanism in Organic Chemistry, C.K. Inglod, Cornell University Press.
- 4. Organic Chemistry, R.T Morrison and R.N. Boyd, Prentice Hall.
- 5. Name reactions and reagents in organic synthesis, B.P. Muway and M.G Ellord, John Wiley.
- 6. Principles of Organic Synthesis, R.O.C Norman and J.M Coxon, Blackie Academic & Professional.
- 7. Reaction Mechanism in Organic Chemistry, P.S. Kalsi, New Age International.
- 8. Principles of organometallic chemistry, P. Powell, ELBS.
- 9. Organo transition metal chemistry-Applications to organic synthesis, S.G. Davis, Pergmon.
- 10. Stereochemistry to Organic Compounds, D. Nasipuri, New Age International.
- 11. Stereochemistry, P.S. Kalsi, Wiley Eastern.

CHE-OC 302	Organic Spectroscopy and Applications	L-5,T-1,P-0	4Credits
Pre-requisite:	Understanding of Organic Spectroscopy	and Applications	

Course Objectives:

- Familiarize with the instrumentation of UV and visible spectroscopy, applications of identifying the structures of the molecules.
- Understand IR spectrometry and applications to ascertain the fundamental groups by observing absorption bands
- Study on the applications of NMR spectroscopy in ascertaining the stereochemical structures of the molecules.
- Understand the working principle and fragmentation rules of different molecules in Mass spectroscopy

Course Outcomes: At the end of the course, the student will be able to

CO1 To get experience to calculate λ max values for dienes, enones, polyenes, aromatic and heteroaromatic compounds.
 CO2 To familiarize with the absorption bands of the molecules with specific functional groups
 CO3 To interpret the data to different types of protons and carbons present in a molecule so as to ascertain the structure of the molecule based on the data provided
 CO4 To acquire knowledge about specific fragmentation rules of different molecules which are

CO4 To acquire knowledge about specific fragmentation rules of different molecules which are unique.

	Mapping of course outcomes with the program outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	2	2	1	-	1	2	2	1
CO ₂	3	2	2	3	2	2	1	2	1	2	2	-
CO3	3	2	2	3	2	2	1	2	-	2	2	2
CO4	3	2	2	3	2	2	-	2	1	2	2	1

CHE-IC 302: CORE THEORY: ORGANIC SPECTROSCOPY AND APPLICATIONS

UNIT-I: ULTRAVIOLET AND VISIBLE SPECTROSCOPY: 15Hrs

Various electronic transitions (185-800 nm), effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, conjugated polyenes. Fisher-Woodward rules for conjugated dienes and carbonyl compounds, ultraviolet spectra of aromatic and heterocyclic compounds. Steric effect in biphenyls.

UNIT – II: INFRARED SPECTROSCOPY

15Hrs

Instrumentation and sample handling. Characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ether, phenols and amines. Detailed study of vibrational frequencies of carbonyl compounds (ketones, aldehydes, esters, amides, acids, anhydrides, lactones, lactams and conjugated carbonyl compounds). Effect of hydrogen bonding and solvent effect on vibrational frequencies, overtones, combination bands and fermi resonance, FT-IR

UNIT -III: NMR SPECTROSCOPY:

15Hrs

¹H NMR spectroscopy: Magnetic properties of nuclei, Principles of NMR. Instrumentation, CW and pulsed FT instrumentation, equivalent and nonequivalent protons, enantiotopic and diastereotopic protons, Chemical shifts, factors affecting the chemical shifts, electronegativity and anisotropy, shielding and deshielding effects, Signal integration, Spin-spin coupling: vicinal, germinal and long range, Coupling constants and factors affecting coupling constants.

Applications of ¹H NMR spectroscopy: Reaction mechanisms (cyclic bromonium ion, electrophilic and nucleophilic substitutions, carbocations and carbanions), E, Z isomers, conformation of cyclohexane and decalins, keto-enol tautomerism, hydrogen bonding, proton exchange processes (alcohols, amines and carboxylic acids), C-N rotation. Stereochemistry, hindered rotation, Karplus curve variation of coupling constant with dihedral angle. Simplification of complex spectra, nuclear magnetic double resonance, contact shift reagents, nuclear Overhauser effect (NOE).

¹³C NMR spectroscopy: General considerations, chemical shift (aliphatic, olefinic, alkyne, aromatic, heteroaromatic and carbonyl carbon), coupling constants. Two dimensional NMR spectroscopy-COSY.

UNIT-IV: MASS SPECTROMETRY

15Hrs

Introduction, ion production, type of ionization, EI, CI, FD, and FAB-factors affecting fragmentation, ion analysis, ion abundance. Mass spectral fragmentation of organic compounds, common functional groups, molecular-ion peak, metastable peak, Mc. Lafferty rearrangement. Nitrogen rule, isotope labeling. High resolution mass spectrometry, Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.

- 11. Organic spectroscopy, W. Kemp 5th Ed, ELBS
- 12. Spectroscopy of organic compounds, RM Silversteen and others, 5th Ed,John Wiley
- 13. Spectroscopy of organic compounds, P.S. Kalsi, Wiley, 1993.
- 14. NMR in chemistry-A multi nuclear introduction, William Kemp, Mc Millan, 1986.
- 15. Spectroscopic methods in Organic chemistry, DH Williams & I Flemm.

	OC 303 304	303 & Core practical I: L-5,T-1,P-0 4 Credits Organic Estimations - Practical										
Pre-re	quisite	Unders	standing	of Orga	anic Che	emistry	- Practic	al.				
Course	e Objec	ctives:										
•]	Estimatio	on of phe	enol, glu	cose, pri	mary am	ine and l	ketone					
•]	Estimatio	on and p	ercentag	e purity o	of aspirir	n and par	acetamo	1.				
•]	Multiste	p prepara	ations of	biologic	ally impo	ortant or	ganic mo	lecules.				
•]	Familiar	ize to ide	entify the	synthes	ized con	npounds	by specti	ral metho	ods.			
Course	e Outco	mes: A	t the en	d of the	course,	the stud	ent will	be able				
CO1												
CO2	To get purity.	hands-	on-expe	erience	with the	e synthe	esis and	determ	nination	of con	centrati	ons and
CO3		_	nowledg portant		andling	of to	kic che	micals	in mul	ti step	prepara	ition of
CO4	To gair	n experi	ence in	the prop	osal of	syntheti	c routes	to funct	tionalize	ed deriva	atives.	
		Ma	apping	of cour	se outco	mes wi	th the p	rogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	2	2	1	2	1	-	2	-
CO2	3	2	2	3	2	2		2	1	2	2	2
CO3	3	2	2	3	2	-	1	2	-	-	-	2
CO4	3	2	2	3	2	1	_	2	1	2	-	2

CHE-OC-303 Core-Practical Organic Estimations PRACTICAL -I

- 1) Estimation of phenol
- 2) Estimation of glucose
- 3) Estimation of primary amine
- 4) Estimation of ketone
- 5) Estimation of percentage purity of aspirin
- 6) Estimation of percentage purity of paracetamol.

CHE-OC-304 Core-Practical Multistep preparations PRACTICAL –II

- 1) Preparation of benzilic acid
- 2) Preparation of benzanilide
- 3) Preparation of o-chlorobenzoic acid
- 4) Preparation of symmetric tribromobenzene

CHE	-OC-	Inorganic Spectroscopy and L-5,T-1,P-0 4Credits Thermal Methods of Analysis										
30:	5 A	Tl	hermal	Method	ls of An	alysis						
Pre-re	quisite	Unders	standing	of Basi	c Inorga	anic Spe	ectrosco	py and T	Thermal	Method	ls of An	alysis
Course	e Objec	tives:										
• (Gain kı	nowledg	ge on t	hermal	method	ds of a	nalysis	and pr	inciples	and a	pplication	ons to
i	norgani	ic mater	ials.									
•]	Familia	rize with	n basics	of Moss	sbauer a	ınd NQI	R spectr	oscopy.				
•]	Learn th	e prope	rties lik	e g-facto	or, nucle	ear spin,	, hyperf	ine coup	ling cor	nstants		
• 5	Study th	e ESR i	instrume	entation,	various	s applica	ations a	nd photo	electror	ı spectro	oscopy.	
Course	e Outco	mes : A	At the en	d of the	course,	, the stu	dent wil	l be able)			
CO1	To kn	ow the	basic pr	inciples	of instr	umental	method	ds of ana	ılysis.			
CO2	To ga	in know	ledge o	n chemi	stry of a	alloys.						
CO3	To U	nderstan	d the co	mplexit	y, theor	y and w	orking	principle	e of colo	ourimetr	У	
CO4	To fa	miliariz	e with la	aws of c	olorime	tric titra	tions.					
		Ma	apping	of cours	se outco	omes wi	th the p	orogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	_	3	2	2	3	2	1	_	1	_
CO2	3	2	2	3	2	2	3	2	2	1	1	2
CO3	3	1	3	3	2	2	_	2	_	2	1	-
CO4	3											

CHE-OC- 305 A: Inorganic Spectroscopy and Thermal Methods of Analysis

UNIT -I: THERMAL METHODS OF ANALYSIS

15 Hrs

Thermo gravimetry –Principle, Factors affecting the results, instrumentation. Application with special reference to CuSO₄5H₂O, CaC₂O₄ 2H₂O. Different thermal analysis – principle, instrumentation, difference between TG and DTA, applications with special reference to the clays and minerals. Different scanning calorimetry –principle, and applications to inorganic materials like chlorates and perchlorates, ammonium nitrate.

UNIT -II: MOSSBAUER SPECTROSCOPY and NQR

15 Hrs

Mossbauer spectroscopy: Basic principles, Recoil energy, Doppler shift, Chemical shift, Quadrapole effects, Magnetic effects. Instrumentation, spectral parameters and spectrum display. Aapplication of the technique to the studies of (1) bonding and structures of Fe^{2+} and Fe^{3+} compounds, (2) Sn^{2+} and Sn^{4+} compounds.

NQR spectroscopy: Basic principles of NQR spectroscopy, quadrupole nuclei, quadrupole moments, electric field gradient, coupling constant and applications.

UNIT -III: ELECTRON SPIN RESONANCE SPECTROSCOPY

15 Hrs

Basic Principles, Hyper fine splitting, Factors affecting the 'g' value. Isotropic and anisotropic hyperfine coupling constants, Hamiltonian and spin densities. Zero field splitting and Kramer's degeneracy, Relaxation process and line widths. Instrumentation and Applications. The EPR spectrum of bis(salicylidimine)-copper(II) complex, study of inorganic free radicals, biological applications of Electron Spin Resonance (Study of free radicals and Iron-sulfur proteins)

Photoelectric effect, Koopmans's theorem, ionization energy.

X-ray photoelectron spectroscopy (ESCA): Principle, Binding energies, Chemical shift, Applications of XPES to Qualitative analysis, to surface studies and structural analysis. Ultraviolet photoelectron spectroscopy- Principle, application of UPES in studying the molecular orbitals of O_2 and N_2 molecules. Block diagram of photoelectron spectrophotometer. Sources of radiation, detectors. Auger spectra – Principle, Applications of Auger spectra to surface studies and use of Auger spectra as a finger print tool.

- 1. F.A. Cotton and G. Wilkinson, Advanced In-organic chemistry VI Edition, 1999. John wiley & sons. Inc., New York.
- 2. J.E. Huheey, E.A. Keiter and R.L. Keiter: Inorganic Chemsitry, Principles of Structure and Reactivity (4th Ed.) (Addison-Wesley)
- 3. Gary Wulfsberg: Inorganic Chemistry (5th Ed. (Viva Books)
- 4. J.D. Lee: Concise Inorganic Chemistry (Blackwell)
- 5. W.L. Jolly: Modern Inorganic Chemsitry (McGraw-Hill)
- 6. R.L. Carlin: Magneto-chemsitry (Springer-Verlag)
- 7. R.L. Dutta and A. Syamal: Elements of Magnetochemsitry (Affiliate East-West).
- 8. K. Hussain Reddy Text book of Bioinorganic chemistry

CHE-	OC- 305	В	Ph	ysical (Chemist	try III	L-	5,T-1,P	-0	4	Credits	}
Pre-r	Pre-requisite: Understanding of graduate level Physical Chemistry											
Cour	Course Objectives:											
	• Learn applications of Group Theory, symmetry criteria and symmetry restrictions.											
_	oplications of X-ray Diffraction and Electron Diffraction on solid state chemistry.											
	miliarize		e applica	ations o	f Microv	wave sp	ectrosco	py, infr	ared spe	ectrosco	py and l	Raman
_	ectroscop	-										
	t knowledge on concept of Thermodynamics of polymer dissolution and Flory-Huggins											
the	ory of po	ory of polymer solutions.										
Cour	se Outco	mes: A	t the end	d of the	course,	the stud	ent will	be able	to			
CO1	To kno	w the de	termina	tion of (Characte	er Co-or	dinate o	of C ₂ V p	oint gro	up base	d on 3N	
	Coordin	nates and	d to lear	n the M	utual ex	clusion	Principl	le.		-		
CO2									ragg me	thod, D	ebye Sc	herrer
			-		lysis of						J	
CO3	To stud	y the rig	gid rotat	or mode	l, stark	effect, v	ibration	-rotatio	n spectr	oscopy,	PQR br	anches,
	selectio	n rules a	and V	ibration	al- rotat	ional Ra	aman sp	ectrosco	py.			
CO4	To stud	y the co	ncepts o	n heat o	of dissol	ution, re	egular so	olution t	heory, I	Hildebra	nd	
	solubili	ty paran	neter, co	ncept of	f Flory-	Huggins	theory	of poly	mer solu	itions		
		M	nning	of course	no outoo	mag vvid	h tha n	подном	outoon	200		
								rogram				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	-	2	1	1	1	-	2	1
CO2	3	2	2	3	2	2	1	-	2	2	1	-
CO3	3	2	2	3	2	2	2	2		2	-	2
CO4	3	2	2	3		2	1	1	1	2	2	2

CHE-OC-305B CORE-THEORY PHYSICAL CHEMISTRY III

UNIT-I Applications of Group Theory

15 Hrs

Construction of reducible and irreducible representations, Determination of Character Co-ordinate of C₂V point group based on 3N Coordinates. Standard reduction formula, Determination of normal modes of vibrations of SO₂, NH₃, POCl₃, PtCl₄²⁻·H₂O₂ molecules. Mutual exclusion Principle, Direct Product, Accidental Degeneracy and Fermi resonance Group Theory and Spectroscopy: IR Spectral activity of NH₃ molecule, selection rules, symmetry Criteria for optical activity, symmetry restrictions on dipole moments, symmetry and stereo isomerism. Prediction of IR and Raman Spectral activity of H₂O and CO₂.

UNIT-II: X-ray Diffraction:

15 Hrs

- (A) Solid State Chemistry Dislocation of Solids, Schottky and Frenkeldefects, insulaters, a,d semiconductors, Band theory of solids, solid state reactions.
- **(B)** Bragg conditions-Miller Indices- Laue method, Bragg method, Debye Scherrer method of X-ray structural analysis of crystals. Index reflections, identification of unit cells from systematic absences in diffraction pattern- structure of simple lattices and X-ray intensities- structure factor and its relation to intensity and electron density- Description of procedure for X-ray structure analysis (NaCl and KCl)
- **(C) Electron Diffraction:** Scattering intensity Vs scattering angle, Wierlequation, and its importance. Measurement techniques, Elucidation of structures of simple gas phase molecules, Low energy electron diffraction (LEED) for the study of surfaces.

UNIT-III: SPECTROSCOPHY

15 Hrs

Microwave spectroscopy: classification of molecules, rigid rotator model, effect of isotopic substitution on the transition frequencies, intensities- stark effect.

Infrared spectroscopy: Linear harmonic oscillator, zero point energy, anharmonity, Mores potential energy diagram, fundamental and overtone transitions, hot bands and combinations bands. Vibration-rotation spectroscopy, PQR branches, selection rules, factors affecting the band positions and intensities for IR region. Raman spectroscopy: Classical and quantum theories of Raman effect, pure rotational, pure vibrational Raman spectroscopy, selection rules, mutual exclusion principle, resonance Raman spectroscopy and coherent antistokes Raman spectroscopy. Vibrational- rotational Raman spectroscopy.

UNIT-IV: POLYMER SOLUTIONS

15 Hrs

Thermodynamics of polymer dissolution, effect of molecular weight on solubility, solubility of crystalline and amorphous polymer, heat of dissolution, regular solution theory, Hildebrand solubility parameter, Flory-Huggins theory of polymer solutions, conformational entropy, osmotic pressure and viscosity of polymer solutions. Molecular weight determination by light scattering, ultra-centrifugation and sedimentation equilibrium method. Liquid Crystals- synthesis and applications

- 1. F.A. Cotton: Introduction to Group theory for chemists.
- 2. Geroge Davidson Elsevier: Introductory Group Theory for Chemists.
- 3. Gurdeep Raj, Ajay Bhagi&Vinod Jain: Group Theory and Symmetry in Chemistry
- 4. Instrumental methods of analysis M.H. Willard, Meritt Jr. and J.A. Dean
- 5. Principles of instrumental analysis Skoog and West
- 6. F. W. Billmeyer, Jr.: Text Book of Polymer Science. Wiley Interscience.
- 7. V. R. Gowariker, N. V. Viswanathan, Jayadev Sreedhar.: polymer Science. New Age international Publishers.

	(A)											
Pre-re	Pre-requisite: Understanding of Spectral Techniques											
	Course	Object	ives:									
•]	Familiar	rize with	h the i	nstrume	ntation	of UV	and v	visible s	spectros	copy, a	pplicati	ons of
i	dentifyi	ng the s	tructure	s of the	molecu	les.						
					and app	olication	is to a	scertain	the fu	ndamen	tal grou	ips by
		ig absorj	-									
	•					nic absor	-	-				
• 1	J ndersta	and the v	working	princip	le and f	ragment	tation ru	ıles of d	ifferent	molecul	les in M	ass
S	spectros	copy.										
Cours	e Outco	omes: A	t the en	d of the	course,	the stud	lent will	lable				
CO1	To kno	wy the h	acic nr ir	cinles c	of spectr	oscopy.						
	10 Kilo	ow the bo	asic prii	icipies c	л ѕрсси	oscopy.						
CO2	To familiarize with the analysis of various functional groups by using different											
		scopic t			2						C	
CO3	To Une	derstand	the app	lication	s of AA	S.						
004												
CO4	_		-	bout Ma	iss speci	tral fragi	mentati	on of or	ganic co	ompound	ds and c	ommon
	functio	nal grou		of acres	~~ ~~		4la 4la a m					
		IVI	apping			omes wi	ın ıne p	orogran	a outco	mes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
001												1
CO1	3	1	1	3	-	2	3	2	-	1	1	1
CO2	3	2	2	3	2	2	3	2	-	1	-	2
CO3	3	2	-	2	2	2	2	-	2	-	1	_
CO4	3	2	2	3	_	2	1	2	1	1	1	2
											<u> </u>	

L-5,T-1,P-0

4 Credits

CHE: OC: 306 (A): (OPEN ELECTIVE) SPECTRAL TECHNIQUES

UNIT – I: ULTRAVIOLET AND VISIBLE SPECTROSCOPY

Spectral Techniques

CHE OC 306

15 Hrs

Various electronic transitions (185-800nm.), Beer-Lambert Law, effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, Fieser-Woodward rules for conjugated dienes and carbonyl compounds

UNIT - II: INFRARED SPECTROSCOPY

15 Hrs

Instrumentation and sample handling, characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ethers, phenols, amines, ketones, aldehydes, esters, amides, acids and anhydrides. Effect of hydrogen bonding.

UNIT – III:ATOMIC ABSORPTION SPECTROSCOPY: FLAME AAS: 15 Hrs

Principle, Instrumentation – Sources of radiation (HCL and EDL), Different types of burners, Interferences- Physical, Chemical, spectral and back ground correction, and methods of minimization

GF AAS: Principle and technique –Comparison between Flame AAS and furnace AAS, Applications of AAS, Comparison between Atomic Absorption & Flame Photometry.

UNIT -IV: MASS SPECTROMETRY

15 Hrs

Principle, instrumentation, different methods of ionization, EI, CI, FD and FAB, Mass spectramolecular ion, base peak, meta-stable peak, nitrogen rule and Mc Lafferty rearrangement. Mass spectral fragmentation of organic compounds and common functional groups. Normal and branched alkanes, alkenes, cycloalkanes, benzene and its derivatives, alcohols and phenols, ethers, aldehydes and ketones, carboxylic acids and their derivatives , amines and nitro compounds. Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.

- 1. Organic spectroscopy, W.Kemp 5th Ed, ELBS .2.
- 2. Spectroscopy of organic compounds, RM Silversteen and others 5th Ed, John Wiley 1991
- 3. Spectroscopy of organic compounds, PS Kalsi, Wiley, 1993
- 4. NMR in chemistry A Multi nuclear introduction, William Kemp, Mc Millan 1986
- 5. Spectroscopic methods in Organic Chemistry, DH Williams & I Flemmi TMH . 2005

	E OC (B)											
	equisite:	Unders	tanding	of grad	uate lev	el Chroi	natogra _]	phic Ted	chnique	S		
FanUndStud	e Objectives: niliarize with Classification of Chromatographic methods. derstand Demonstration experiment in TLC. dy on the applications of High-Performance Liquid Chromatography (HPLC). derstand the working principle of gas chromatography.											
Cours	e Outco	Outcomes: At the end of the course, the student will able to										
CO1	To kno	w the st	ationary	and mo	obile ph	ases in c	hromato	ographic	technic	ques.		
CO2	To fam	Γο familiarize applications of different chromatographic methods.										
CO3	To Und	lerstand	the prin	ciple of	chroma	atograph	ic techn	iques.				
CO4	To gain	knowle	edge on	the nor	mal phas	se and re	everse p	hase.				
	I	Ma	apping	of cours	se outco	mes wit	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2
CO1	3	1	-	3	1	2	3	2	2	1	1	-
CO2	3	2	2	3	2	2	3	2	2	1	-	2
CO3	3	2	=	2	2	-	2	-	2	-	1	-
CO4	3	2	2	3	2	2	-	1	-	1	1	2

CHE OC 306 (B): Chromatographic Techniques

Unit –I: Introduction - Classification of Chromatographic methods — Column chromatography-Adsorption phenomenon: Nature of adsorbents-Solvent systems-Differential migration-Separation of mixture of o-/p-nitro anilines (A demonstration experiment).

Unit –II: Thin-Layer Chromatography (TLC)-Coating materials and preparation of TLC plates-Solvents for development-Detection of compounds in TLC- R_f values in TLC-Applications of TLC in chemistry-Preparative TLC – Demonstration experiment in TLC.

Unit –III: High-Performance Liquid Chromatography (HPLC) - Application of HPLC- HPLC instrument-Stationary phases in HPLC-Normal and reversed phase HPLC: A comparison- Normal phase HPLC: Principle-Retention times in Normal and reversed phase HPLC- Reversed phase HPLC: Principle.

Unit –IV: Gas-Liquid Chromatography- Instruments for Gas-Liquid Chromatography- Gas-Chromatographic Columns and the Stationary Phase- Application of Gas-Liquid Chromatography-Gas-Solid Chromatography.

Reference Books:

- Analytical chemistry: G L David Krupadanam, D. Vijaya prsad, K. Varaprasad Rao, KLN Reddy, C. Sudhakar.
- 2. Analytical chemistry: Skoog West Holler.
- 3. Modern Analytical Chemistry: David Harvey DePauw University.
- 4. J.G. Dick. Analytical Chemistry, Mc Grraw Hill, New Delhi, (1973).

CHE-PC-301	Physical Chemistry III	L-5,T-1,P-0	4 Credits
Pre-requisite: U	Understanding of graduate level Physica	l Chemistry	

Course Objectives:

- Learn applications of Group Theory, symmetry criteria and symmetry restrictions.
- Applications of X-ray Diffraction and Electron Diffraction on solid state chemistry.
- Familiarize with the applications of Microwave spectroscopy, infrared spectroscopy and Raman spectroscopy.
- Get knowledge on concept of Thermodynamics of polymer dissolution and Flory-Huggins theory of polymer solutions.

Course Outcomes: At the end of the course, the student will be able to

- CO1 To know the determination of Character Co-ordinate of C₂V point group based on 3N Coordinates and to learn the Mutual exclusion Principle.
- CO2 To learn the Bragg conditions-Miller Indices- Laue method, Bragg method, Debye Scherrer method of X-ray structural analysis of crystals.
- CO3 To study the rigid rotator model, stark effect, vibration-rotation spectroscopy, PQR branches, selection rules and Vibrational- rotational Raman spectroscopy.
- CO4 To study the concepts on heat of dissolution, regular solution theory, Hildebrand solubility parameter, concept of Flory-Huggins theory of polymer solutions

	Mapping of course outcomes with the program outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	-	2	2	1	1	-	2	2
CO2	3	2	2	3	2	2	1	2	2	2	-	1
CO3	3	2	2	3	2	2	-	2	-	1	2	2
CO4	3	2	2	3	-	2	2	-	2	2	-	2

CHE-PC-301 CORE-THEORY PHYSICAL CHEMISTRY III

UNIT-I Applications of Group Theory

15 Hrs

Construction of reducible and irreducible representations, Determination of Character Co-ordinate of C₂V point group based on 3N Coordinates. Standard reduction formula, Determination of normal modes of vibrations of SO₂, NH₃, POCl₃, PtCl₄²⁻ ·H₂O₂ molecules. Mutual exclusion Principle, Direct Product, Accidental Degeneracy and Fermi resonance Group Theory and Spectroscopy: IR Spectral activity of NH₃ molecule, selection rules, symmetry Criteria for optical activity, symmetry restrictions on dipole moments, symmetry and stereo isomerism. Prediction of IR and Raman Spectral activity of H₂O and CO₂.

UNIT-II: X-ray Diffraction:

15 Hrs

- (A) Solid State Chemistry Dislocation of Solids, Schottky and Frenkeldefects, insulaters, a,d semiconductors, Band theory of solids, solid state reactions.
- **(B)** Bragg conditions-Miller Indices- Laue method, Bragg method, Debye Scherrer method of X-ray structural analysis of crystals. Index reflections, identification of unit cells from systematic absences in diffraction pattern- structure of simple lattices and X-ray intensities- structure factor and its relation to intensity and electron density- Description of procedure for X-ray structure analysis (NaCl and KCl).
- **(C) Electron Diffraction:** Scattering intensity Vs scattering angle, Wierlequation, and its importance. Measurement techniques, Elucidation of structures of simple gas phase molecules, Low energy electron diffraction (LEED) for the study of surfaces.

UNIT-III: SPECTROSCOPHY

15 Hrs

Microwave spectroscopy: classification of molecules, rigid rotator model, effect of isotopic substitution on the transition frequencies, intensities- stark effect.

Infrared spectroscopy: Linear harmonic oscillator, zero point energy, anharmonity, Mores

potential energy diagram, fundamental and overtone transitions, hot bands and combinations bands. Vibration-rotation spectroscopy, PQR branches, selection rules, factors affecting the band positions and intensities for IR region. **Raman spectroscopy:** Classical and quantum theories of Raman effect, pure rotational, pure vibrational Raman spectroscopy, selection rules, mutual exclusion principle, resonance Raman spectroscopy and coherent antistokes Raman spectroscopy. Vibrational- rotational Raman spectroscopy.

UNIT-IV: POLYMER SOLUTIONS

15 Hrs

Thermodynamics of polymer dissolution, effect of molecular weight on solubility, solubility of crystalline and amorphous polymer, heat of dissolution, regular solution theory, Hildebrand solubility parameter, Flory-Huggins theory of polymer solutions, conformational entropy, osmotic pressure and viscosity of polymer solutions. Molecular weight determination by light scattering, ultra-centrifugation and sedimentation equilibrium method. Liquid Crystals- synthesis and applications

- 8. F.A. Cotton: Introduction to Group theory for chemists.
- 9. Geroge Davidson Elsevier: Introductory Group Theory for Chemists.
- 10. Gurdeep Raj, Ajay Bhagi&Vinod Jain: Group Theory and Symmetry in Chemistry
- 11. Instrumental methods of analysis M.H. Willard, Meritt Jr. and J.A. Dean
- 12. Principles of instrumental analysis Skoog and West
- 13. F. W. Billmeyer, Jr.: Text Book of Polymer Science. Wiley Interscience.
- 14. V. R. Gowariker, N. V. Viswanathan, Jayadev Sreedhar.: polymer Science. New Age international Publishers.

CHE-PC 302	Organic Spectroscopy and Applications	L-5,T-1,P-0	4Credits
Pre-requisite:	Understanding of Organic Spectroscopy	and Applications	

Course Objectives:

- Familiarize with the instrumentation of UV and visible spectroscopy, applications of identifying the structures of the molecules.
- Understand IR spectrometry and applications to ascertain the fundamental groups by observing absorption bands
- Study on the applications of NMR spectroscopy in ascertaining the stereochemical structures of the molecules.
- Understand the working principle and fragmentation rules of different molecules in Mass spectroscopy

CO1 To get experience to calculate λ max values for dienes, enones, polyenes, aromatic and heteroaromatic compounds.

Course Outcomes: At the end of the course, the student will be able to

CO2 To familiarize with the absorption bands of the molecules with specific functional groups

CO3 To interpret the data to different types of protons and carbons present in a molecule so as to ascertain the structure of the molecule based on the data provided

CO4 To acquire knowledge about specific fragmentation rules of different molecules which are unique.

	Mapping of course outcomes with the program outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	2	3	2	2	2	-	-	2	2	-	
CO2	3	2	2	3	2	2	-	2	2	2	2	2	
CO3	3	2	2	3	2	2	2	1	-	2	2	2	
CO4	3	2	2	3	2	2	-	2	-	2	2	2	

CHE-PC 302: CORE THEORY: ORGANIC SPECTROSCOPY AND APPLICATIONS

UNIT-I: ULTRAVIOLET AND VISIBLE SPECTROSCOPY: 15Hrs

Various electronic transitions (185-800 nm), effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, conjugated polyenes. Fisher-Woodward rules for conjugated dienes and carbonyl compounds, ultraviolet spectra of aromatic and heterocyclic compounds. Steric effect in biphenyls.

UNIT – II: INFRARED SPECTROSCOPY

15Hrs

Instrumentation and sample handling. Characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ether, phenols and amines. Detailed study of vibrational frequencies of carbonyl compounds (ketones, aldehydes, esters, amides, acids, anhydrides, lactones, lactams and conjugated carbonyl compounds). Effect of hydrogen bonding and solvent effect on vibrational frequencies, overtones, combination bands and fermi resonance, FT-IR

UNIT -III: NMR SPECTROSCOPY:

15Hrs

¹H NMR spectroscopy: Magnetic properties of nuclei, Principles of NMR. Instrumentation, CW and pulsed FT instrumentation, equivalent and nonequivalent protons, enantiotopic and diastereotopic protons, Chemical shifts, factors affecting the chemical shifts, electronegativity and anisotropy, shielding and deshielding effects, Signal integration, Spin-spin coupling: vicinal,

germinal and long range, Coupling constants and factors affecting coupling constants.

Applications of ¹H NMR spectroscopy: Reaction mechanisms (cyclic bromonium ion, electrophilic and nucleophilic substitutions, carbocations and carbanions), E, Z isomers, conformation of cyclohexane and decalins, keto-enol tautomerism, hydrogen bonding, proton exchange processes (alcohols, amines and carboxylic acids), C-N rotation. Stereochemistry, hindered rotation, Karplus curve variation of coupling constant with dihedral angle. Simplification of complex spectra, nuclear magnetic double resonance, contact shift reagents, nuclear Overhauser effect (NOE).

¹³C NMR spectroscopy: General considerations, chemical shift (aliphatic, olefinic, alkyne, aromatic, heteroaromatic and carbonyl carbon), coupling constants. Two dimensional NMR spectroscopy-COSY.

UNIT-IV: MASS SPECTROMETRY

15Hrs

Introduction, ion production, type of ionization, EI, CI, FD, and FAB-factors affecting fragmentation, ion analysis, ion abundance. Mass spectral fragmentation of organic compounds, common functional groups, molecular-ion peak, metastable peak, Mc. Lafferty rearrangement. Nitrogen rule, isotope labeling. High resolution mass spectrometry, Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.

Books suggested:

- 1. Organic spectroscopy, W. Kemp 5th Ed, ELBS
- 2. Spectroscopy of organic compounds, RM Silversteen and others, 5th Ed, John Wiley
- 3. Spectroscopy of organic compounds, P.S. Kalsi, Wiley, 1993.
- 4. NMR in chemistry-A multi nuclear introduction, William Kemp, Mc Millan, 1986.
- 5. Spectroscopic methods in Organic chemistry, DH Williams & I Flemmi

CHE PC 303 & 304	Core practical I: Physical Chemistry-practicals I & II	L-5,T-1,P-0	4 Credits					
Dra magnisitas Un desetanding of Inguagnia Chamistary Dragtical								

Pre-requisite: Understanding of Inorganic Chemistry - Practical.

Course Objectives:

- Study on chemical kinetics of different reactions
- Flame photometry to determine different cations
- Familiarize with conductometric titrations of mixtures

Colorometric estimation of different molecules. **Course Outcomes:** At the end of the course, the student will be able To study chemical kinetics of homogeneous solutions **CO1** CO₂ To gain knowledge on the determination of different cations by flame photometry **CO3** To understand the principle and working aspects of conductometric titrations CO₄ To acquire knowledge on the implementation of colorometric estimations. Mapping of course outcomes with the program outcomes PO1 PO2 PO3 PO4 PO₅ PO₆ PO7 PO8 PO9 PO10 PO11 PO12 **CO1** 3 2 2 3 2 2 1 2 2 2 2 3 CO₂ 3 3 2 2 2 2 2 CO₃ 3 3 3 2 2 1 2 2 2 CO₄ 3 3 2 3

CHE-PC-303: Core-Practical PRACTICAL-I

1. Chemical Kinetics:

- a) Study of the kinetics of halogenations of acetone.
- b) Determination of activation energy of reaction between iodide and Persulphate
- c) Determination rate constant of oxidation of iodide ion by persulphate ion and study the effect of neutral salt (KCl) on this reaction.

2. Flame Photometry:

- a) Determination of Na
- b) Determination of K
- c) Determination of Cu

CHE- PC-304: Core-Practical PRACTICAL-II

1. <u>Conductometry:</u>

- a) Titration of mixture of halides
- b) Titration of mixture of HCl+HOAC
- c) Saponification of an ester

2. Colorimetry:

- a) Estimation of Manganese
- b) Estimation of Iron
- c) Estimation of Phosphate
- d) Titration of copper Vs EDTA

(Mandatory Core)

CHE PC 305 A	Organic Chemistry III	L-3,T-1,P-2	4Credits		
Pre-requisite: U	Understanding of Organic Chemistry				

Course Objectives: Course Objectives:

- Familiarize with the applications of different reagents in organic synthesis, Mechanisms and stereochemistry.
- Study the methods of preparation and applications of organometallic reagents.
- Understand topocity, prochirality, auxillary and reagent-controlled methods in asymmetric synthesis.
- Applications of different oxidizing and reducing agents in organic synthesis with region and stereo controlled products.

Course Outcomes: At the end of the course, the student will be able to

- CO1 To familiarize with the specific functions of the reagents particularly diazomethane, N-bromosuccinimide, Ziegler Natta catalyst, 1,3-dithianes and Merrifield resin in the synthesis of a variety of complex molecules.
- CO2 To gain knowledge in the synthesis of different organometallic reagents and also stereo and regio specificity and selectivity of reactions with organometallic reagents
- CO3 To understand diastereoselectivity, stereoselectivity and substrate controlled auxillary controlled reactions
- CO4 To acquire knowledge about the reagents which causes oxidation in various compounds and also the reagents that causes selective and complete reductions to synthesize various compounds.

Mapping of course outcomes with the program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	2	2	1	2	-	2	2	2
CO2	3	2	2	3	2	2	-	2	2	2	2	2
CO3	3	2	2	3	2	2	1	1	2	-	2	-
CO4	3	2	2	3	2	2	-	2	-	2	2	1

CHE-PC-305A Core-Theory Organic Chemistry III

UNIT I: REAGENTS IN ORGANIC SYNTHESIS

15 Hrs

Use of the following reagents in organic synthesis: Anhydrous AlCl₃, Boran trifluoride, N-Bromosuccinimide, Diazomethane, Dicyclohexylcarbodiimide, Lead tetraacetate, Zieglar-Natta catalysts, DDQ, Dithianes, Merrifield resin.

UNIT-II: ORGANOMETALLIC REAGENTS

15 Hrs

Synthesis and applications of Grignard reagents, Organolithium, Zinc, Copper, Mercury, Palladium and Rhodium compounds in Organic Synthesis, Homogeneous catalytic hydrogenation and hydroformylation reactions

UNIT III: ASYMMETRIC SYNTHESIS

15 Hrs

Topocity - Prochirality- Substrate selectivity - Diastereoselectivity and enantioselectivity-Substrate controlled methods-use of chiral substrates - examples

Auxiliary controlled methods-Use of chiral auxiliaries-Chiral enolates-alkylation of chiral imines – Stereoselective Diels-Alder reaction

Reagent controlled methods-Use of chiral reagents-Asymmetric oxidation-Sharpless epoxidation-Asymmetric reduction-Use of lithium aluminium hydride and borate reagents.

UNIT IV: METHODS OF ORGANIC SYNTHESIS

15 Hrs

i). *Oxidations:* (a) Alcohols to carbonyls-Chromium (iv) oxidants-Dimethylsulfoxide oxidation, periodate xidation, Oppenauer oxidation, oxidation with manganese dioxide, oxidation with silver carbonate (b) Alkenes to epoxides-peroxide induced epoxidations. (c) Alkenes to diols-oxidation with potassium permanaganate, osmium tetraoxide, Prevost reaction (d) Ketones to

esters-Bayer-Villiger oxidation (e) Oxidative bond cleavage-cleavage of alkenes by transition metals. (f) Oxidation of alkyl or alkenyl fragments-selenium dioxide and chromium trioxide oxidations.

ii). Reductions: Reduction with lithium aluminium hydride, sodium borohydride, alkoxides, bisethoxy aluminium hydride, Boran aluminium hydride and derivativescatalytic, hydrogenation-dissolving metal reductions, Non-Metallic reducing agents including enzymatic and microbial reductions.

Suggested Books

- 1. Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, John Wiley.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J. Sundberg, Plenum.
- 3. Structure and Mechanism in Organic Chemistry, C.K. Inglod, Cornell University Press.
- 4. Organic Chemistry, R.T Morrison and R.N. Boyd, Prentice Hall.
- 5. Name reactions and reagents in organic synthesis, B.P. Muway and M.G Ellord, John Wiley.
- 6. Principles of Organic Synthesis, R.O.C Norman and J.M Coxon, Blackie Academic & Professional.
- 7. Reaction Mechanism in Organic Chemistry, P.S. Kalsi, New Age International.
- 8. Principles of organometallic chemistry, P. Powell, ELBS.
- 9. Organo transition metal chemistry-Applications to organic synthesis, S.G. Davis, Pergmon.
- 10. Stereochemistry to Organic Compounds, D. Nasipuri, New Age International.
- 11. Stereochemistry, P.S. Kalsi, Wiley Eastern.

CHE-PC- 305 B	Inorganic Spectroscopy and Thermal Methods of Analysis	L-5,T-1,P-0	4Credits						
Dra requisite: Understanding of Pasia Ingrania Speatroscopy and Thermal Mathods of Analysis									

Pre-requisite: Understanding of Basic Inorganic Spectroscopy and Thermal Methods of Analysis

Course Objectives:

- Gain knowledge on thermal methods of analysis and principles and applications to inorganic materials
- Familiarize with basics of Mossbauer and NQR spectroscopy.

• Learn the properties like g-factor, nuclear spin, hyperfine coupling constants • Study the ESR instrumentation, various applications and photoelectron spectroscopy. **Course Outcomes :** At the end of the course, the student will be able CO₁ To know about TG and DTA and applications of different scanning calorimetry. CO₂ To gain knowledge on Doppler shift and chemical shift, basic principles and applications of NQR spectroscopy. CO₃ To learn zero field splitting and Kramer's degeneracy, relaxation processes, instrumentation and applications of ESR. **CO4** To know about photoelectric effect and Koopmans theorem and impart the applications of X-ray and UV photoelectron. Mapping of course outcomes with the program outcomes PO₁ PO₂ PO₃ PO₄ PO₅ PO₆ PO7 PO8 PO9 PO10 PO11 PO12 **CO1** 2 2 3 2 1 1 1 2 1 3 CO₂ 3 2 2 3 2 2 2 2 2 1 2 CO₃ 3 2 2 3 2 2 2 1 2 1 **CO4** 3 2 2 3 2 1 2 2 1

CHE-PC- 304: Inorganic Spectroscopy and Thermal Methods of Analysis

UNIT -I: THERMAL METHODS OF ANALYSIS

15 Hrs

Thermo gravimetry –Principle, Factors affecting the results, instrumentation. Application with special reference to CuSO₄5H₂O, CaC₂O₄ 2H₂O. Different thermal analysis – principle, instrumentation, difference between TG and DTA, applications with special reference to the clays and minerals.Different scanning calorimetry –principle, and applications to inorganic materials like chlorates and perchlorates, ammonium nitrate.

UNIT -II: MOSSBAUER SPECTROSCOPY and NQR

15 Hrs

Mossbauer spectroscopy: Basic principles, Recoil energy, Doppler shift, Chemical shift, Quadrapole effects, Magnetic effects. Instrumentation, spectral parameters and spectrum display. Aapplication of the technique to the studies of (1) bonding and structures of Fe^{2+} and Fe^{3+} compounds, (2) Sn^{2+} and Sn^{4+} compounds.

NQR spectroscopy: Basic principles of NQR spectroscopy, quadrupole nuclei, quadrupole moments, electric field gradient, coupling constant and applications.

UNIT –III: ELECTRON SPIN RESONANCE SPECTROSCOPY 15 Hrs

Basic Principles, Hyper fine splitting, Factors affecting the 'g' value. Isotropic and anisotropic hyperfine coupling constants, Hamiltonian and spin densities. Zero field splitting and Kramer's degeneracy, Relaxation process and line widths. Instrumentation and Applications. The EPR spectrum of bis(salicylidimine)-copper(II) complex, study of inorganic free radicals, biological applications of Electron Spin Resonance (Study of free radicals and Iron-sulfur proteins)

UNIT -IV: PHOTO ELECTRON SPECTROSCOPY

15 Hrs

Photoelectric effect, Koopmans's theorem, ionization energy.

X-ray photoelectron spectroscopy (ESCA): Principle, Binding energies, Chemical shift, Applications of XPES to Qualitative analysis, to surface studies and structural analysis. Ultraviolet

photoelectron spectroscopy- Principle, application of UPES in studying the molecular orbitals of O_2 and N_2 molecules. Block diagram of photoelectron spectrophotometer. Sources of radiation, detectors. Auger spectra – Principle, Applications of Auger spectra to surface studies and use of Auger spectra as a finger print tool.

- 1. F.A. Cotton and G. Wilkinson, Advanced In-organic chemistry VI Edition, 1999. John wiley & sons. Inc., New York.
- 2. J.E. Huheey, E.A. Keiter and R.L. Keiter: Inorganic Chemsitry, Principles of Structure and Reactivity (4th Ed.) (Addison-Wesley)
- 3. Gary Wulfsberg: Inorganic Chemistry (5th Ed. (Viva Books)
- 4. J.D. Lee: Concise Inorganic Chemistry (Blackwell)
- 5. W.L. Jolly: Modern Inorganic Chemsitry (McGraw-Hill)
- 6. R.L. Carlin: Magneto-chemsitry (Springer-Verlag)
- 7. R.L. Dutta and A. Syamal: Elements of Magnetochemsitry (Affiliate East-West).
- 8. K. Hussain Reddy Text book of Bioinorganic chemistry

	1 C 300	'	Specia	ai i ccii	inques			3,1-1,1	-0	_	Cicuits	1		
-	<u>A</u>	<u> </u>		0.0										
Pre-re	quisite:	Unders	tanding	of Spec	tral Tec	hniques								
	Course Objectives:													
• Familiarize with the instrumentation of UV and visible spectroscopy, applications of														
identifying the structures of the molecules.														
	• Understand IR spectrometry and applications to ascertain the fundamental groups by													
			otion ba											
	-					ic absor								
J •	J <mark>nderst</mark> a	and the v	working	princip	le and fr	ragment	ation ru	les of di	fferent 1	molecule	es in Ma	ISS		
S	pectroso	copy.												
Cours	e Outco	mes: A	t the end	d of the	course.	the stud	ent will	able						
					,			.,						
CO1	To kno	w the ba	asic prin	ciples o	f spectro	oscopy.								
CO2	To far	niliarize	with	the ar	nalysis	of vari	ous fu	nctional	oronn	s by i	using d	lifferent		
			echniqu		iary 515	or vari	1000	1101101141	810 4 P	.5 0)	451115			
CO3					of A A	C								
	10 Unc	ierstand	the app	ncauons	S OI AA	3.								
CO4	To gair	knowle	edge al	out Ma	ss spect	ral fragi	nentatio	on of org	ganic co	mpound	s and co	mmon		
		nal grou			-					-				
		Ma	apping o	of cours	se outco	mes wit	th the p	rogram	outcon	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1		
	101	102	103	154	103	100	10/	100	10)	1 010		2		
CO1	3	1	1	3	-	2	3	2	1	-	1	1		
CO2	3	2	2	3	2	2	3	2	2	1	-	2		
CO3	3	2	-	2	2	-	2	2		2	1	-		
CO4	3	2	2	3	1	2	1	-	2	1	-	2		

L-5,T-1,P-0

Spectral Techniques

CHE: PC: 306(A): (OPEN ELECTIVE) SPECTRAL TECHNIQUES

UNIT - I: ULTRAVIOLET AND VISIBLE SPECTROSCOPY

15 Hrs

4 Credits

Various electronic transitions (185-800nm.), Beer-Lambert Law, effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, Fieser-Woodward rules for conjugated dienes and carbonyl compounds

UNIT - II: INFRARED SPECTROSCOPY

CHE PC 306

15 Hrs

Instrumentation and sample handling, characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ethers, phenols, amines, ketones, aldehydes, esters, amides, acids and anhydrides. Effect of hydrogen bonding.

UNIT – III:ATOMIC ABSORPTION SPECTROSCOPY: FLAME AAS: 15 Hrs

Principle, Instrumentation – Sources of radiation (HCL and EDL), Different types of burners, Interferences- Physical, Chemical, spectral and back ground correction, and methods of minimization

GF AAS: Principle and technique –Comparison between Flame AAS and furnace AAS, Applications of AAS, Comparison between Atomic Absorption & Flame Photometry.

UNIT -IV: MASS SPECTROMETRY

15 Hrs

Principle, instrumentation, different methods of ionization, EI, CI, FD and FAB, Mass spectramolecular ion, base peak, meta-stable peak, nitrogen rule and Mc Lafferty rearrangement. Mass spectral fragmentation of organic compounds and common functional groups. Normal and branched alkanes, alkenes, cycloalkanes, benzene and its derivatives, alcohols and phenols, ethers, aldehydes and ketones, carboxylic acids and their derivatives , amines and nitro compounds. Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.

- 11. Organic spectroscopy, W. Kemp 5th Ed, ELBS .2.
- 12. Spectroscopy of organic compounds, RM Silversteen and others 5th Ed, John Wiley 1991
- 13. Spectroscopy of organic compounds, PS Kalsi, Wiley, 1993
- 14. NMR in chemistry A Multi nuclear introduction, William Kemp, Mc Millan 1986
- 15. Spectroscopic methods in Organic Chemistry, DH Williams & I Flemmi TMH . 2005

CHE	PC 306	06 Chromatographic Techniques L-5,T-1,P-0 4Credits										
	В											
Pre-requisite: Understanding of graduate level Chromatographic Techniques												
Course Objectives:												
Familiarize with Classification of Chromatographic methods.												
	derstand			-								
• Stud	dy on the	applic	ations of	f High-l	Perform	ance Lic	լuid Chı	romatog	raphy (l	HPLC).		
• Uno	derstand	the wor	king pri	nciple o	of gas ch	romatog	graphy.					
Course Outcomes: At the end of the course, the student will able to												
CO1	L.											
COI	To know	v the st	ationary	and mo	bile pha	ases in c	hromato	ographic	technic	ques.		
CO2	To fami	liarize	applicat	ions of o	different	t chroma	ıtograpl	nic meth	ods.			
CO3	To Und	erstand	the prin	ciple of	chroma	atograph	ic techn	iques.				
CO4	To gain	knowle	edge on	the nor	nal nhas	se and re	verse n	hase				
	10 gain	KIIOWK	ouge on	the non	nai piias	se and re	verse p	nasc.				
		Ma	apping o	of cours	se outco	mes wit	h the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1
												2
CO1	3	-	2	3	-	2	3	2	2	-	1	1
CO2	3	2	2	3	2	2	3	2	-	1	-	2
CO3	3	2	-	2	2	-	2	-	2	-	1	-
CO4	3	2	2	3	1	2	_	2	_	1	-	2

CHE PC 306 B: Chromatographic Techniques

Unit –I: Introduction - Classification of Chromatographic methods – Column chromatography-Adsorption phenomenon: Nature of adsorbents-Solvent systems-Differential migration-Separation of mixture of o-/p-nitro anilines (A demonstration experiment).

Unit –II: Thin-Layer Chromatography (TLC)-Coating materials and preparation of TLC plates-Solvents for development-Detection of compounds in TLC- R_f values in TLC-Applications of TLC in chemistry-Preparative TLC – Demonstration experiment in TLC.

Unit –III: High-Performance Liquid Chromatography (HPLC) - Application of HPLC- HPLC instrument-Stationary phases in HPLC-Normal and reversed phase HPLC: A comparison- Normal phase HPLC: Principle-Retention times in Normal and reversed phase HPLC- Reversed phase HPLC: Principle.

Unit –IV: Gas-Liquid Chromatography- Instruments for Gas-Liquid Chromatography- Gas-Chromatographic Columns and the Stationary Phase- Application of Gas-Liquid Chromatography- Gas-Solid Chromatography.

Reference Books:

- 1. Analytical chemistry: G L David Krupadanam, D. Vijaya prsad, K. Varaprasad Rao, KLN Reddy, C. Sudhakar.
- 2. Analytical chemistry: Skoog West Holler.
- 3. Modern Analytical Chemistry: David Harvey DePauw University.
- 4. J.G. Dick. Analytical Chemistry, Mc Grraw Hill, New Delhi, (1973).

CHE-AC- 401	Quality Control and General	L-5,T-1,P-0	4 Credits
	Principles		

Pre-requisite: Understanding of Quality Control and General Principles

Course Objectives:

- Study on quality assurance and management
- Obtain practice on the applications of different organic reagents in analysis of inorganic compounds.
- Understand standard reduction potential, mechanism of complex formation reactions. Enzyme characteristics and applications
- Study on Equilibrium constants of oxidation and reduction reactions and the complexometric titration with EDTA.

- CO1 To diagnose problems in the quality improvement process and Explain each total quality implementation phase
- CO2 To know about theoretical basis for the use of organic reagents in inorganic analysis.
- CO3 To understand different types of kinetic methods and their evaluation and to determine the kinetics of enzyme
- CO4 To understand the oxidation reactions with Ce (IV) sulphate solutions and applications of complexometric titrations.

Mapping of course outcomes	with the program	outcomes
----------------------------	------------------	----------

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	1	2	2	2		2	2	-
CO2	3	2	2	3	1	2	1	2	2	2	-	2
CO3	3	3	3	3	2	2	2	-	2	1	1	1
CO4	3	3	3	3	1	-	1	-	2	1	-	1

CHE AC 401: CORE THEORY: QUALITY CONTROL AND GENERAL PRINCIPLES

UNIT-I: QUALITY CONTROL IN ANALYTICAL CHEMISTRY 15 Hrs

Definition of analytical terms: Accuracy, precision, limit of detection, sensitivity, selectivity and specificity, ruggedness, principles of Ruggedness test, validating the Method as a Standard Method.

Quality assurance and management systems: Elements of quality assurance, Quality and quantity management system ISO 9000 and ISO 14000 series.

Good laboratory practices (GLP): Elements of Good Laboratory Practice, Laboratory accreditation, GLP status in India.

UNIT-II: ORGANIC REAGENTS IN INORGANIC ANALYSIS 15 Hrs

Theoretical basis for the use of organic reagents in inorganic analysis: Application of the following reagents in inorganic analysis: dimethylglyoxime, salicylaldehyde, cupferron, d-benzoin, 1,10 phenanthroline, 8-hydroxy quinoline, nitron, tannin, pyridine, 8-hydroxyquinoldine, dithizone, Acetylacetone, theonyl, trifluoroacetone, 8-hydroxy quinoline, tri-M-octylphosphine oxide.

UNIT – III: KINETIC METHODS OF TRACE ANALYASIS 15 Hrs

Rate laws, Analytical use of reaction rates, First and second order reactions, relative rate of reactions. Determination of reaction rates. Analytical utility of first and pseudo first order reactions. Types of kinetic methods, differential, integral, logarithmic, extrapolation method. Evaluation of kinetic methods — Scale of Operation, Catalyzed reactions, measurement method for catalyzed reaction. Micro determination of Inorganic species like Iodine and Hg in complex materials. Determination of organic species. Kinetics of enzyme, catalyzed reactions. Michael's constant factors affecting the rate of enzyme, Catalyzed reactions, Enzyme characteristics and applications of Kinetic methods of trace analysis.

Redox Titrations: Standard reduction potential, equilibrium constants of oxidation-reduction reactions, change of electrode potential during the titration of reductant with an oxidant. Formal potential primary standard substance. Standard solutions. Preparation and storage. Oxidations with cerium (IV) sulphate solutions. Theory and use of (i) acid-base, (ii) Oxidation-reduction (iii) Metal ion indicators.; **Complexometric titrations:** Introduction, complexones, stability constants of EDTA complexes, conditional stability constants, titration curves, types of EDTA titration's, titration of mixtures.

- 1. Vogel's Text book of Quantitative Chemical Analysis, Basselt, Denmy, Jaffery and Merdhan, ELBS, Orientlong- Manan, 5th Ed.1990.
- 2. Analytical Chemistry, Gary D. Christian, John Laliley and Senes, New York, 6th Ed., 2007.
- 3. Fundamentals of ANALYTICAL CHEMISTRY, Skoog, West, Holler; 7th Editin 2001
- 4. Fundamentals of Analytical Chemistry, D.A. Skoog & D.M. West, Holf-Saunderrs, 5th Ed., 1991.
- 5. Principles and Methods Chemical Analysis: H.F. Walton, Prentice Hall, New Delhi.
- 6. Chemical Analysis, H.A. Laitinan, Mc.Graw Hill Book Company.
- 7. Technical methods of analysis Griffin, Mc Graw Hill Book Co.
- 8. K.V.S.G Murali Krishna, An Introduction ISO 9000, ISO 1400 Series,
- 9. Environmental Management Quality Assurance and Good Laboratory Practices, Prof. Y. Anjaneyulu, In Now Publication, New York.
- 10. Quality Assurance in Analytical Chemistry G.Kateman and F.W Pijpers, John Wiley and Sons, New York

CHE-AC 402	: Instrumental Methods of Analysis	L-5,T-1,P-0	4Credits							
Pre-requisite:	Pre-requisite: Understanding of Instrumental Methods of Analysis									

Course Objectives:

- Gain sound knowledge in spectroscopic methods of ICP-AES, ICP-MS, x-ray fluorescence, spectroscopic techniques and their applications.
- Chromatographic techniques like High-Performance Liquid Chromatography, Capillary Electrophoresis and Supercritical Fluid Chromatography (SFC).
- Familiarise with instrumentation, resolution and ionization sources of GCMS and LCMS.

Cours	Course Outcomes: At the end of the course, the student will be able to											
CO1	To u	To understand the working principles, instrumentation and applications of ICP-AES and										
	ICP-I	MS, ene	rgy disp	persive 2	X-ray fl	uoresce	nce (ED	XRF),	Wavele	ngth dis	persive	X-ray
	fluore	escence	(WDXR	2F).	_							_
CO2	To u	nderstan	d the ba	sic prin	ciples,	procedu	re and c	compone	ents of t	he High	-Perfor	mance
	Liqui	d Chro	natogra	phy (H	PLC), (Gel Per	meation	Chron	natograp	hy (GP	C): Ca	pillary
	Elect	rophores	sis (CE).	, Superc	ritical F	Fluid Ch	romatog	graphy (SFC).			-
CO3	To go	To get knowledge on instrumentation and applications of GCMS in drug analysis and										
	envir	environmental samples analysis.										
CO4	To in	nprove tl	ne know	ledge al	bout cou	ulometri	ic techni	ques an	d their a	nalysis	of catio	ns (As
	(III),	Fe (II))	and anio	ons (I ⁻ aı	nd S ²⁻) ł	y using	I ₂ libera	ations aı	nd Ce ⁴⁺	liberatio	n in sol	utions
							th the p					
		,			•				•	,	,	,
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	-	2	2	-	2	1	-	1
CO2	3	3	3	3	3	2	2	1	_	1	1	1
CO3	3	3	3	3	3	2	1	2	1	1	1	3
CO4	3	3	2	2	_	2	2	-	1	1	1	3

CHE-402: CORE THEORY: INSTRUMENTAL METHODS OF ANALYSIS

UNIT -I SPECTROSCOPIC METHODS

15 Hrs

Emission Spectroscopy:

- (i) ICP-AES: Principles, instrumentation, AES detectors, applications in the analysis of trace and toxic metals in water, geological and industrial samples.
- $\textbf{(ii)}\ ICP-MS:\ Principles, instrumentation, quadrupole\ mass\ spectrometers, applications$

Fluorescence Spectroscopy:

- i) Molecular Fluorescence Spectroscopy: Principle, Theory of fluorescence, phosphorescence, relation between intensity of fluorescence and concentration, Correlation of fluorescence with molecular structure, Fluorescence quenching, Instrumentation and applications.
- **ii) X-ray Fluorescence Spectroscopy**: Principle, energy dispersive X-ray fluorescence (EDXRF), Wavelength dispersive X-ray fluorescence (WDXRF), applications.

UNIT - II: CHROMATOGRAPHIC METHODS

15 Hrs

High Performance Liquid Chromatography (HPLC): Principles, Stationary phases, Instrumentation, Solvent delivery system, sample introduction, gradient elution, columns and detectors. Partition Chromatography, adsorption chromatography, Gel permeation chromatography.

Capillary Electrophoresis: Principle, Electroosmotic flow, Instrumentation, Applications to separation of small ions, separation of Molecular Species, DNA sequencing

Supercritical-fluid chromatography: Supercritical-fluids, Instrumentation and Applications

UNIT -III: HYPHENATED TECHNIQUES

15 Hrs

Mass Spectroscopy: Principle, basic instrumentation, resolution, Ionization sources- Electron impact and Chemical ionization, Mass Analyzers- Quadrupole Mass analyzer and Time- of- Flight Analyzer.

Gas Chromatography- Mass spectrometry: Introduction, GC – MS interface, processing of GC – MS data – ion chromatogram. Quantitative measurement – sample preparation, Selected ion monitoring – Application of GC-MS for Trace constituents. Drugs analysis, Environmental analysis and others.

Liquid chromatography- Mass spectrometry — Introduction — Instrumentation — liquid chromatography — Mass spectrometer Interface — Instrumental details — Processing LC-MS data — ion chromatograms, Sample preparation — selected ion monitoring. Application of LC-MS for Drug analysis, Environmental samples and others.

UNIT- IV: ELECTRO ANALYTICAL METHODS 15 Hrs

Anodic stripping voltametry: principle, instrumentation, Hanging mercury drop electrode, application in the analysis of Pb and Cd in environmental samples, principle of cathode stripping voltametry.

Coulometric analysis: principles of coulometric analysis with constant current, coulometric analysis with controlled potential, applications of coulometric methods for the analysis of cations-As (III), Fe (II) and I- and S₂- by using I₂ liberations and Ce⁴⁺ liberation in solutions

Ion Selective Electrodes: types of ion selective electrodes, basic properties, potentials and construction, calibration of ion selective electrodes, ion selective electrodes with fixed membrane sites, silver, lead, cadmium, sulfide, fluoride, cyanide and glass electrodes, applications in the analysis of air and water pollutants, principles of liquid membrane, gas sensing and enzyme based electrode

- 1. Analytical Chemistry, Gary D. Christian, John Laliley and Senes, New York, 6th Ed., 2007.
- 2. Analytical Chemistry Principles and Techniques, I.G. Harge, Prentice Hall.
- 3. Principles of Instrumental analysis, D.A. Skoog and J.L. Loacy, W.B. Saunders.
- 4. Handbook of Instrumental Techniques for Analytical Chemistry, F. Serlie, Prentice Hall.
- 5. Vogels Text book of Quantitative Chemical Analysis, Basett, Denny Jebbary, 5th Ed. ELBs 1990.
- 6. Instrumental Methods of Chemical Analysis, Willard Merrit, Dean, Stella Jr 6th Edition.
- 7. Separation methods, M.N Sastri, Himalaya Publishing Company, Mumbai

CHE A	AC 403		Core pra alytical		: stry- Pr	actical	L-	5,T-1,P	-0	4	Credit	5
Pre-re	Pre-requisite: Understanding of Analytical Chemistry- Practical.											
Cours	e Objec	tives:										
	learn abo							tric anal	ysis of 1	pesticido	e residu	es
	erminati					_						
	iciple, in						•					
• Inte	rpretatio	on of NN	MR cher	nical sh	ifts and	hydroge	en bondi	ing.				
Cours	e Outco	mes: A	t the end	d of the	course,	the stud	ent will	be able	to			
CO ₁ U	Jndersta	and the c	common	laborat	ory tech	iniques i	includin	g separa	ation tec	chniques	3	
CO ₂ F	Polarogr	aphy, at	omic ab	sorptior	n spectro	oscopy i	n both e	mission	and ab	sorption	mode.	
CO ₃	Gain kno	wledge	on imp	lementa	tion of g	gas chro	matogra	phy and	I HPLC	for sepa	aration o	of
	nixtures											
CO ₄ F	Familiari	ize with	interpre	etation o	of data to	structu	res by N	NMR.				
		Ma	apping o	of cours	se outco	mes wit	th the p	rogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	-	2	2	1	-	2	3
CO2	3	3	3	3	2	2	1	2		2	-	3
CO3	3	3	-	3		3	-	2	2	3	2	3
CO4	3	-	3	1	3	2	2	-	1	2	-	3

CHE AC 404: CORE PRACTICALS: <u>PRACTICAL – I-</u>

Instrumental methods of analysis- II

- 1. Flame Photometry: Determination of Na and K, Ca and Li in Water and Soil.
- 2. TLC/Paper chromatographic separation.
- 3. Determination of Pesticide residues by gas chromatographic method
- 4. Polarography: a) Determination of E ½ of Zn and Cd; b) Determination of amounts of Zn and Cd
- 5. Atomic Absorption Spectroscopy: Determination of transition metal ions (Cd, Cr, Cu, Pb, Zn etc.,) by AAS.
- 6. Separation of Metal ion by Solvent Extraction /Ion exchange.

II DEMONSTRATION EXPERIMENTS

- 1. IR Interpretation of IR spectrum of alcohols, ketones, aldehydes and other standard materials
- 2. AAS: Demonstration of AAS Determination of Zn, Cd, Pb, Mn, Fe and Ni in effluents using AAS.
- 3. Spectrofluorimetry estimation of quinine and fluoroscene
- 4. Ion selective electrodes estimation of F⁻, S²⁻ and CN⁻ in effluents using ion selective electrode meter.
- 5. Polarography and Anode stripping voltametry
 - a). Polarography and Anode stripping voltametry behavior of Cd, Zn, Pb in a mixture.
 - b). Determination of Pb and Cd in samples using Anode stripping voltametr
- 6. Gas chromatography- Determination of pesticides
- 7. HPLC- Determination of pesticides
- 8. NMR
- (a). Demonstration of NMR spectrometer and study of hydrogen bonding in a given alcohol or phenol.
- (b). Interpretation of NMR chemical shifts of ethyl benzene, ethyl alcohol
- 9. TGA, DTA, DSC Demonstration of TG, DTA and DSC and study of decomposition of calcium oxalate, calcium carbonate, copper sulfate, oxalic acid.

10. pH metry

- (a). Determination of alkalinity in a colored effluent using pH metric end point.
- (b). Determination of purity of commercial HCl, H₂SO₄, H₃PO₄ and CH₃COOH using pH metric end point.

CHE A	C 404		P	roject V	Work		L-	5,T-1,P	-0	40	Credits		
Pre-re	Pre-requisite: Project Work												
110-10	quisite.	Troject	WOIK										
Cours	e Objec	tives:											
	Identific		problei	n									
	Ability t		-		t chemis	strv rese	arch wi	th comp	etency	in resear	ch desi	gn. data	
	gathering	-	000 1110	Р • •		, in 1000		 • • • • • •				511, 676166	
•	Interpret	ation a	nd com	munica	tion of	researc	h result	s throu	gh scie	ntific n	ıblicatio	ons and	
	presenta					1000010	100010		511 2010	P.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, 115 U 11 U	
	Preparat		iccertati	on									
	e Outco				COURGO	the stud	ont will	ha abla	to				
Cours	e Outco	mes. A	t the end	i or the	course,	ine stud	ent win	be able	ιο				
CO1	Perform	n experi	ments, o	collectio	n and e	valuatio	n of data	a.					
CO2	Interpre behavio		of resul	ts while	adheri	ng to so	cientific	princip	les of 1	responsi	ble and	ethical	
CO3	Analysi disserta		compi	ling the	data a	nd resu	lts in a	chrono	ological	order i	in the f	form of	
CO4	Prepara	tion of	dissertat	tion.									
		Ma	apping	of cours	se outco	mes wit	th the p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	2	3	_	2	3	2	1	2	1	3	
CO2	3	3	3	3	3	2	3	3	-		2	3	
CO3	3	3	3	3	3	-	3	2	-	3	-	3	
CO4	3	3	3	3	3	2		2	1	-	2	3	

CHE AC 404: PRACTIAL II/ PROJECT WORK

CHE-A	C-405	App	plied an	d Envir	onmen	tal Aspe	ects 1	L-3,T-1,	P-2	4	Credits	
Pre-re	Pre-requisite: Understanding of Environmental Aspects											
Cours	e Objec	ctives:										
• Gai	• Gain sound knowledge on preparation of sampling, decomposition, separation and pre-											
con	concentration											
					-	de analy		erals and	l ores.			
		-		, ,		xplosive	es					
_			er qualit	•								
Cours	se Outco	omes: A	t the en	d of the	course,	the stud	ent will	be able	to			
CO1	Have a	n idea a	bout pre	paration	n of sam	npling, d	ecompo	sition, s	eparatio	on and p	reconce	ntration
		al ions e		1		1 0,	1	ŕ	1			
CO2	Gain e	xperienc	ce on ag	rochemi	cals and	d fertiliz	ers and	their and	alysis.			
~~~												
CO ₃	Have a	n idea o	n the an	alysis o	f fuels,	alloys aı	nd explo	osives				
CO4	Experi	ence wit	th enviro	onmenta	ıl pollut	ion mon	itoring 1	techniqu	ies.			
	1											
		M	apping	of cour	se outco	omes wi	th the p	rogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	_	2	1		1	1		1
CO2	3	3	3	3	3	2	_	1	1	1	1	1
CO3	3	3	3	3	3	2	1	2	2	1	1	3
CO4	3	3	2	2	1	2		2		1	1	3
CO4	ر	ر			1		_			1	1	<u> </u>

# CHE: AC 403(A): (GENERIC ELECTIVE) APPLIED AND ENVIRONMENTAL ASPECTS

#### UNIT-I: SAMPLING AND SEPARATION METHODS

15

#### Hrs

**Preparing the sample for analysis**: Sampling, The effect of sampling uncertainties, Gross sample, determination of the size of the gross sample. Analytical sample. Preparation of laboratory sample from gross sample, Moisture in the sample, Karl-Fisher reagent for the determination of moisture content in samples.

**Decomposition and dissolving the sample**: Decomposition of sample by fluxes, wet digestion, dry ashing, combustion with oxygen, microwave decomposition.

**Separation and pre-concentration**: Extractive separation of metal ions as chelates (dithizone, oxine, APDC, NaDDTC), Solid-phase extraction

# UNIT-II: ANALYSIS OF AGRO CHEMICALS and MINERALS

**15** 

Hrs

**Soil analysis:** Soil moisture, pH, total nitrogen, Phosphorus, silica, boron and metals (Cd, Cu, Fe, Mn, and zinc) in soil.

Fertilizer analysis: Analysis of Ammonical fertilizers, Phosphate fertilizers, Nitrate fertilizers

**Pesticide Analysis:** Analysis of organo chlorine pesticides by gas chromatography, Determination of DDT residue in vegetable and food grains. Analysis of organo phosphorous pesticides (Malathion, parathion) by spectrophotometric and chromatographic methods.

**Analysis of Minerals and Ores**: Limestone, Ilmenite, Chalcopylites and Beryl. Analysis of Cement, Ceramics and glass.

# UNIT-III: ANALYSIS OF COMPLEX MATERIALS

**15 Hrs** 

Analysis of Fuels: Coal, proximate and ultimate analysis, heating valves and grading of coal.

Liquid Fuels: Flash point, aniline point, octane number and carbon residue.

Analysis of Gaseous Fuels: Producer gas, Water gas, Calorific values

**Analysis of alloys**: German Silver, Brass, bronze, Solder, Steels containing elements such as Mo, Co, V, Cr, Si and Ni.

**Aanalysis of Explosives**: Introduction, Classification, Deflagrating or low explosives, Characteristics of explosives, Nitrocellulose, PETN or PENTHRIT, Di-nitrobenzene (DNB), Trinitrobenzene (TNB), Trinitrotoluene (TNT),

#### **UNIT – IV: ENVIRONMENTAL POLLUTION MONITORING:**

**15 Hrs** 

**Water Quality monitoring:** Methods of water sample collection, Determination of Dissolved oxygen (D.O), Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand(COD)

Analytical methods for the determination of the following ions in water:

Anions: F⁻, PO₄³⁻, NO₃⁻, NO₂⁻ Cations: Cr⁶⁺, As⁵⁺, Pb²⁺, Hg²⁺, Cd²⁺

**Air Quality Monitoring:** Air sampling methods, Chemical analysis of the following Air pollutants. i) Gaseous pollutants: Carbon monoxide (CO). sulphur dioxide (SO₂), nitrogen dioxide (NO₂), Aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (PAH). (ii) Particulate matter

- 1. Analytical Chemistry, Gary D. Christian, John Laliley and Senes, New York, 6th Ed., 2007.
- 2. Fundamentals of ANALYTICAL CHEMISTRY, Skoog, West, Holler; 7th Editin 2001.
- 3. Analytical Chemistry Principles and Techniques, I.G. Harge, Prentice Hall.
- 4. Principles of Instrumental analysis, D.A. Skoog and J.L. Loacy, W.B. Saunders.
- 5. Fundamentals of Air Pollution by A.C. Strem and others, Academic Press, 1975.
- 6. Standard methods for the examination of water and waste water published by American public health association, 15th Ed.1981.
- 7. Methods of Soil Analysis, C.A. Black, Part I and II.
- 8. Handbook of Analytical Control of Iron and Steel Production, Harrison John Weily 1979
- 9. Standard methods of Chemical Analysis, Welcher.
- 10. Technical Methods of Analysis, Griffin, Mc Graw Hill.
- 11. Environmental Chemistry, Anil Kumar De, Wiley Eastern Ltd.

CHE-A	AC-406			_	nic, Bio al Cher	organio nistry	c, L-	5,T-1,P	-0	40	Credits	
Pre-r	equisite:	Unders					ganic, E	Biophysi	cal Che	mistry		
Cours	se Objec	tives:										
•	Highligh	hten me	tal comp	olexes as	s oxygei	n carrier	s and el	ectron to	ransfer i	n biolog	gy	
•	• Metal ion transport and storage in biological systems and importance of trace metals in											etals in
	biology											
•	<ul> <li>Learn physiological functions of carbohydrates, lipids, enzymes classification, stereospecificity</li> </ul>										fication,	
•	The bas	sic con	cepts o	f bioph	ysical	chemist	y in t	oiochem	ical rea	ctions,	exergo	nic and
	endergo	nic reac	tions.									
Cours	se Outco	mes: A	t the end	d of the	course,	the stud	ent will	be able	to			
CO1	Gain kı	nowledg	ge on me	etallo pr	oteins ir	n electro	n transf	er proce	esses.			
CO2	Know	the appl	ications	of trace	metal i	ons and	metal io	ons as cl	nelating	agents i	n medic	ine.
CO3	Achiev	e and de	evelop h	ighly st	ereosele	ctive sy	nthesis	of orga	nic com	pounds	and dru	gs by
	adoptin	ig enviro	onmenta	ılly.								
CO4			•		f biopol	ymer re	actions	and to c	orrelate	free ene	ergy and	l
	biopoly		rameters									
		Ma	apping	of cours	se outco	mes wit	h the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	3	1	2	1	2	1	1	1	1
CO2	3	3	3	3	-	2	-	2	2	-	1	3
CO3	3	3	3	2	2	-	2	3	-	1	1	3
CO4	3	2	2	3	2	2	1	-	2	2	-	1

# CHE AC-406: (GENERIC ELECTIVE): BIOINORGANIC, BIOPHYSICAL CHEMISTRY

#### UNIT-I: BIO-INORGANIC CHEMISTRY-I

**15 Hrs** 

Metal complexes as oxygen carriers –Heme proteins –Hemoglobin and myoglobin –Non heme proteins –hemerythrin and hemocyanin – model synthetic complexes of iron, cobalt and copper. Co-enzymes Vitamin  $B_{12}$ , carboxy peptidase and superoxidedismutase.

**Electron Transfer in Biology:** Structure and functions of metalloproteins in electron transfer processes –catalase –peroxidose –cytochromes and iron –sulphur proteins –synthetic models.

**UNIT – II: BIOINORGANIC CHEMISTRY- II:** Metal ion transport and storage in biological systems, Metal ions in Biology, Molecular mechanism of ion transport across membranes: ionophores, photosynthesis.

**Hydrolytic metalloenzymes:** Carbonic anyhdrase, carboxy peptidase, calcium in control processes, calcium and muscle contraction, calcium and secretion, calcium in blood clotting mechanisms. Therapeutic uses of enzymes.

**Importance of trace metals in biology:** Metal ions as chelating agents in medicine, trace metal ions and metal and non-metal deficiency. Biological nitrogen fixation, in-vivo and in-vitro nitrogen fixation.

#### **UNIT-III: BIOORGANIC CHEMISTRY**

**Carbohydrates:** Structure and biological functions of mucopolysaccharides, glycoproteins, and glycolipids- Role of sugars in biological recognition- Blood group substances

**Lipids:** Essential fatty acids-structure and function of triglycerols, Glycerophospholipids, cholesterol, bile acids prostaglandins- composition and functioning of lipoproteins

**Enzymes:** Nomenclature and classification, properties, factors affecting enzyme catalysis, enzyme inhibition- reversible and irreversible inhibition. Uses of enzymes in food drink industry and clinical laboratories.

# **UNIT-IV: BIOPHYSICAL CHEMISTRY:**

Standard free energy change in biochemical reactions, exergonic and endergonic reactions, hydrolysis of ATP, thermodynamics of biopolymer solutions, chain configuration of bio polymers, and calculation of average dimensions. Membrane equilibrium, ion transport through cell membrane.dialosis and its function. Structure and functions of proteins, enzymes, DNA and RNA in living systems, forces involved in bio polymer interactions, electrostatic forces, hydrophobic forces, molecular expansion, and dispersion forces.

- 1. M.N. Hughes, The Inorganic chemistry of Biological Processes, John wiley and Sons, New York 2nd Edition, 1981.
- 2. A Text book of Biochemistry, A.V.S.S. Rama Rao
- 3. Physical chemistry by Atkenes
- 4. Physical chemistry by Albertz.
- 5. Bio physical chemistry by Van Holde
- 6. Bio Physics by Narayanam
- 7. Organic Chemistry, Vol. 2, I. L. Finar, ELBS.
- 8. Chemistry of Natural Products, P.S. Kalsi, Kalyani Publishers.
- 9. Chemistry of Organic Natural Products, O. P. Agarwal, Vols., 1 & 2, Geol Pubs.
- 10. Natural products Chemistry K.B.G. Torssell, John Wiley, 1983.
- 11. Burger's Medicinal Chemistry, M.E. Wolff, John Wiley
- 12. Medicinal Chemistry, A. Kar, New Age International

CHE A	C 400A	•	Dr	ug Che	mistry		L-	3,1-1,P	-2	4	Creatts	
Pre-requisite: Understanding of Drug Chemistry												
Cou	ırse Ob	jectives	<b>:</b>									
• '	To learn	about t	he natur	al produ	icts as l	eads for	new dr	ugs				
• ]	Determi	nation c	of cardio	vascula	r drugs							
• '	To study	Autaco	oids									
• ]	Interpre	tation of	f Antipy	retics								
Cours	e Outco	mes: A	t the end	d of the	course,	the stud	ent will	be able	to			
CO1	Know a	about na	tural pro	oducts.								
CO2	Know 1	Interpret	tation of	cardiov	ascular	drugs.						
CO3	Know t	he Anal	lyzing al	bout pro	stagland	dins.						
CO4	Know	the De	efinition	, Class	ification	, Nome	enclatur	e, Stru	cture a	nd Syn	thesis o	of anti-
	inflamr	natory c										
		Ma	apping o	of cours	e outco	mes wit	h the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	1	1	2	ı	-	2	3
CO2	3	3	3	3	-	2	1	2	2	2	2	3
CO3	3	3	1	3	-	3	-	2		3	-	3
CO4	3	1	3	1	3	2	1	-	1	2	1	3

I _3 T_1 P_2

4Credite

# CHE: AC: 406 (A): (OPEN ELECTIVE): DRUG CHEMISTRY

# UNIT - I: NATURAL PRODUCTS AS LEADS FOR NEW DRUGS

Occurrence, Structure and therapeutic uses of Drugs acting on Central Nervous System

Morphine alkaloids (morphine, codeine, thebaine, heroin, pethidine)

Cannabinoids (9-cannabinol, Tetrahydrocannabinol)

Neuromuscular Blocking Agents (Curare, Decamethonium)

Vinca Alkaloids (Vincristin and Vinblastin), Taxol and Taxotere, podophyllotoxin, Etoposide, Teniposide.

#### UNIT - II: CARDIOVASCULAR DRUGS

Definition, Classification, Nomenclature, Structure and Synthesis.

Cardiac glycosides (ex: Digoxin, Digitoxin);

Antihypertensive drugs (ex: Methyl dopa, Clonidene hydrochloride);

Antiarrhythmic agents (ex: Quinidine sulfate);

Antisympathetic drugs (ex: Propranolol hydrochloride, Verapamil hydrochloride);

Vasopressor drugs (ex: Prenylamine, Buphenine).

# **UNIT - III: AUTACOIDS**

CHE AC 406A

Definition, Occurrence, Isolation, Nomenclature, Classification, Synthesis, Biosynthesis and Stereochemical structures of Prostaglandins. Structural elucidation of  $PGE_1$ ,  $PGE_2$ ; Synthesis and biosynthesis of  $PGE_2$ ,  $PGF_{2\alpha}$ . Structure and Biosynthesis of Thromboxane A2 and Prostacyclin (synthesis not expected).

# **UNIT – IV: ANTI-INFLAMMATORY DRUGS**

Definition, Classification, Nomenclature, Structure and Synthesis of Paracetamol, Aspirin (Antipyretic), Salol, Cinchophen, Antipyrene, Phenylbutazone, Indomethacin, Tolmetin, Ibuprofen, Diclofenac and Naproxen.

# **Books suggested:**

1. Medicinal Chemistry by Ashitosh Kar

- 2 Medicinal Chemistry by D. Sriram, P. Yogeeswari
- 3 Medicinal Chemistry by David A. Williams, Thomas L. Lemke
- 4 Medicinal Chemistry by V. Alagarsamy
- 5 Biochemistry by U. Satyanarayana
- 6 Natural Products Chemistry and Applications by Sujata V. Bhat, B.A. Nagasampagi, Meenakshi
- S.

- 7 Medicinal Chemistry by V.K. Ahluwalia, Madhu Chopra
- 8 Medicinal Chemistry by Balkishen Razdar
- 9 Advanced Practical Medicinal Chemistry by Ashutosh Kar
- 10 Chemistry of Organic Natural Products by O. P. Agarwal, Vols., 1 & 2, Geol Pubs.
- 11 Chemistry of Natural Products by S. V. Bhat, B.A. Nagasampagi, M. Sivakumar
- 12 Natural Products Chemistry by K.B.G. Torssell, John Wiley, 1983.

<b>CHE AC 406 B</b>	<b>Electroanalytical Techniques</b>	L-5,T-1,P-0	4 Credits
<b>Pre-requisite</b> : U	Inderstanding of Electroanalytical Tech	niques	

#### **Course Objectives:** To learn about the classification of electroanalytical methods Determination of types of currents Principle, instrumentation, reversible and irreversible cyclic voltammograms... Interpretation of Ion selective electrodes **Course Outcomes:** At the end of the course, the student will able to CO₁ Know how to interpret potentiometry and conductometry CO₂ Know the Interpretation of results while adhering to DC Polarography. **CO3** Know the Analysing and compiling the data and results in polarography. CO₄ Familiarize Types of ion sensitive electrodes. Mapping of course outcomes with the program outcomes PO₁ PO₂ PO₃ PO4 PO5 PO₆ PO7 PO8 PO9 PO10 PO11 PO12 **CO1** 2 3 3 3 3 1 2 2 3 CO₂ 3 3 3 3 2 2 2 2 1 3 CO₃ 3 3 1 2 2 3 1 3 2 3 3 -

2

3

### CHE: AC: 406(B): (OPEN ELECTIVE): ELECTRO ANALYTICAL TECHNIQUES

3

**Unit I:** Types and Classification of Electro analytical Methods.

3

i) **Potentiometry-** Types of electrodes, Hydrogen gas, Calomel, Quin hydrone and glasselectrodes. Determination of pH. Potentiometric titrations.

2

**ii**) **Conductometry** – Definition of terms – conductivity, specific conductivity, cell constant. Mobility of ions, Conductometric titrations.

**Unit II:** D.C Polarography:. Dropping mercury electrode- Instrumentation-polarogram. Types of Currents: Residual, Migration, Limiting. Two and Three electrode assemblies. Ilkovic equation(derivation not necessary) and its consequences. Types of limiting Currents: Adsorption, Diffusion, Kinetic. Applications of polarography in qualitative and quantitative analysis. Analysis of mixtures. Application to inorganic and organic compounds. Determination of stability constants of complexes.

**Unit III:** (i) A.C. polarography (ii) Square-wave polarography (iii) Pulse polarography (iv) Differential pulse polarography(V) Cyclic Voltammetry: Principle, instrumentation, reversible and irreversible cyclic voltammograms.

**Unit IV: Ion selective electrodes:** Ion-sensitive electrodes —types of ion sensitive electrodes —metal based cation and anion sensitive electrodes, solid membrane electrodes. Liquid ion-exchange electrodes, gas sensing membrane electrodes.

#### **Books Suggested**

CO₄

3

2

- 1. H.W. Willard, LL. Merrit and J.A. Dean: Instrumental Methods of Analysis. Affiliated East-West).
- 2. G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denny. Vogel's Text Book of Quantitative Chemical Analysis (ELBS).
- 3. D.A. Skoog and D.M. West: Principles of Instrumental Analysis (Holt, Rinehart and Wilson).
- 4. J.G. Dick: Analytical Chemistry (Mc Graw Hill).

CHE-	EC- 401	Er	iergy, E	inviron	ment ar	id Soil	L-	5,T-1,P	-0	40	Credits	
Pre-re	equisite:	Unders	tanding	of Ener	gy, Env	ironmer	nt and S	oil				
	e Object											
	liarize w											
	• Hydropower and photo-electrochemistry, hydrological cycle, water pollutants, eutrophication and											
_	ihouse ef											
	ction of c	-			_	_	_		mistry,	biocatal	ysis	
• Soil p	ollution	, solid v	waste m	anagem	ent and	disposal	ole meth	nods.				
Cours	e Outco	mes :A	t the end	d of the	course,	the stud	ent will	be able	to			
CO1	Know a	bout nu	ıclear fis	ssion an	d fusion	, uses o	f solar e	nergy in	space l	neating a	and wate	er
	heating,	hydrop	ower ar	nd water	r heating	g, hydroj	power a	nd prod	uction o	f ethanc	ol from i	ndirect
	solar energy.											
CO2	Learn p	hysical	and che	mical p	ropertie	s of wat	er and v	vater coi	nplexat	ion in na	atural ar	ıd
	waste w		d to und	erstand	about gl	lobal wa	ırming,	ozone d	epletion	, green l	house ef	fect
	and acid											
CO3	Acquire		_	-		_		_	contami	nants in	soil, so	il
	corrosic											
CO4	Get kno	wledge	on vari	ous met	hods of	solid wa	aste coll	lection a	nd its di	isposal.		
	Mapping of course outcomes with the program outcomes											
	PO1   PO2   PO3   PO4   PO5   PO6   PO7   PO8   PO9   PO1   PO1   PO1											
										0	1	2
CO1	3	3	3	3	3	2	1	2	2	2	-	3
CO2	3	3	3	3	3	2	-	2	2	-	2	3
CO3	3	3	3	3	2	2	-	1	2	2	-	3
CO4	3	3	3	3	3	2	1	2	2	-	2	3

Energy Environment and Sail

CHE EC-401: CORE THEORY: ENERGY, ENVIRONMENT AND SOILS

# **UNIT-I: Sources of Energy**

**15 Hrs** 

1Crodita

Fossil fuels- Nuclear fission and fusion- Solar energy-use of solar energy in space heating and water heating- production of electricity using solar energy- solar trough collectors- power tower- solar pond- solar energy for driving vehicles- power from indirect solar energy — Hydropower- wind power- Biomass energy- production of ethanol from biomass- production of methane from biomass-photosynthesis- photo electro chemistry- Geothermal energy.

#### **UNIT-II: Water Resources and Air**

**15 Hrs** 

Hydrological cycle- physical and chemical properties of water-complexation in natural and waste water,-Anomalous properties-water pollutants-Types-Sources- Heavy metals- metalloids- organic – Inorganic –Biological and Radio active-Types of reactions in various water bodies including marine environment- Eutrophication- Ground water- Potable water standards. Treatment for portable water. **Air:** Chemical reactions in the atmosphere – Aerosols types- Production and distribution – Aerosols and Radiation – structure and composition of atmosphere- temperature inversion – Global warning-Ozone depletion – Green house effect, "CFC"s- Acid rain.

#### **UNIT-III: Soil and Green Chemistry**

**15 Hrs** 

**Soil:** Composition of soil- lithosphere- inorganic and organic contaminants in the soil-Biodegradation- Nondegrdable waste and its effect on the environment- Bioremediation –of surface soils- Fate and transport of contaminants on soil system— Bioindicators- Soil parameters- soil destruction- Erosion- Soil conservation – Nitrogen pathways and NPK in soil .

**Green Chemistry:** Goals of Green chemistry- Significance and basic components of Green chemistry research - industrial applications of Green chemistry-products from natural materials-Green fuels and E-Green propellants- Zeolites- Biocatalysts.

## **UNIT IV: Soil pollution:**

**15 Hrs** 

Introduction – soil pollution by industrial wastes. soil pollution by urban wastes, Radioactive pollutants and Agricultural waste- chemical and metallic pollutants-Biological agents – mining - Detrimental effects of soil pollutants – Effects of industrial pollutants- Effects of sewage and domestic wastes- Effects of heavy metals- Effects of radioactive pollutants- Effects of modern agrotechnology – Diseases caused by soil pollution – solid waste management – sources and classification -public Health Aspects – methods of collection- Disposal methods – potential methods of disposal.

# **Books Suggested:**

- 1. Daniel D. Chiras (1994), Environmental Science, 4th Ed.
- 2. Environmental Chemistry by W. Moore and J. Moore
- 3. Environmental chemistry by J.O.M. Bockariss
- 4. Environm, ental by BK SHArma
- 5. Environmental chemistry by SS Dara
- 6. Environmental chemistry by Mahajan
- 7. Environmental chemistry by a.K.De

(Mandatory Core)

	\		
<b>CHE-EC 402</b>	Water Pollution Monitoring and	L-5,T-1,P-0	4Credits
	Environment Laws		

Pre-re	equisite	e: Und	erstandi	ng of V	Vater pol	lution n	nonitori	ng and	environn	nent laws	S.	
Cou	ırse O	bjective	es:									
Basic concepts of different water pollutants												
•	Different principles of water treatment.											
•	Biotec	hnology	and its	applica	ations in	environ	mental	protect	ion			
•	Enviro	nmenta	l manag	gement	and envi	ronmen	tal laws	3				
Cours	e Outo	comes:	At the e	end of th	ne course	, the stu	ıdent w	ill be al	ole to			
CO1	Acqui	re knov	vledge o	on disea	ise causir	ng agen	ts in wa	iter.				
CO2	CO2 Learn about the removal of suspended and dissolved solids present in waste water.											
CO3	CO3 Understand different uses of micro-organisms in environmental protection.											
CO4	Know	differe	nt worl	d life ac	ets such a	s forest	conver	rsion ac	t, water c	control po	ollution	act and
	air pre		n and co									
		N	<b>Aappin</b>	g of cou	ırse outo	comes v	vith the	progr	am outc	omes		
	PO1   PO2   PO3   PO4   PO5   PO6   PO7   PO8   PO9   PO10   PO11   PO12											
CO1	CO1 3 3 3 3 2 1 1 2 2 3											
CO2	CO2 3 3 3 2 2 2 2 2 - 3											
CO3	3	3	3	3	2	2	1	2	2	2	2	3
CO4	3	3	3	3	-	2	-	2	3	-	2	3

# CHE EC-402: CORE THEORY: WATER POLLUTION MONITORING AND ENVIRONMENT LAWS

# **UNIT-I: Water pollution**

#### **15 Hrs**

Basic aspects of water-general principles of water (physical and chemical)-criteria of water quality. Types of water pollutants: sewage and domestic wastes-industrial wastes-agriculture discharges- toxic metals-oxygen demanding wastes-disease causing agents-oils- detergents and phosphates. Sampling: Basics of Sampling, sampling procedure, statistics, sampling and physical state, crushing and grinding, hazards waste of sampling, pre-concentration methods

#### **UNIT-II: Waste water treatment:**

#### 15 Hrs

Basic process of water treatment- primary treatment pretreatment – sedimentation – Flotation-secondary (Biological) Treatment – Active sludge process – Trickling filters – sludge Treatment and disposal – Advanced waste water Treatment – Removal of suspended solids – Removal of dissolved solids – Nitrogen removal – phosphorous removal – Advanced Biological systems – chemical oxidation .

#### UNIT III: Biotechnology and its application in Environmental protection 15 Hrs

Introduction- Bio-informatics- Bio-Technology and pollution control,-Bioremediation-Biological de-odourisation- Biological purification of contaminated air-microorganisms and energy of mankind-use of microorganisms role in petroleum augmentation and recovery.

UNIT IV: Environmental Management and Important Environmental Laws: 15 Hrs Environmental Management: Introduction-objectives-components-environmental impact assessment (EIA)-historical background-elements of EIA process-participants in EIA processes-contents of EIS-design of EIA.

**Important Environmental Laws:** the world life act-the forest conservation act-the water and control pollution act-air prevention& control act—the environment act-environmental quality management standard-ISO 14000 series.

- 1. Environmental Chemistry by W. Moore and J.Moore
- 2. Environmental chemistry by J.O.M. Bokriss
- 3. Environmental by BK Sharma
- 4. Environmental chemistry by SS Dara
- 5. Environmental chemistry by Mahajan
- 6. Environmental chemistry by a.K.De
- 7. Lodge (1994) Methods of air sampling and analysis. Publications, Jaipur
- 8. Kudesia, V.P. (1985) Water Pollution, Pragati Prakashan
- 9. Elements of biotechnology by PK Gupta and Rastogi

CHE E	C 403			Practic	al I		L-	5,T-1,P	-0	4	Credits	
Pre-re	quisite:	Enviro	nmenta	d Chem	nistry P	ractical	I					
Course	Course Objectives:											
• (	Conductometric methods of analysis.											
• (	Colorimetric methods of analysis											
• ]	Interpret	tation of	f data fro	om IR, I	HPLC, O	GC, AA	S					
• ]	Determination of purity and alkanility by pH metry											
Course	Course Outcomes: At the end of the course, the student will be able											
CO1	CO1 To know the basic principles of conductometry and analysis of acids and halides.											
CO2	Coloro	metric e	stimatio	n of iro	n and m	anganes	e.					
CO3					orking	princip	les of	IR, A	AS, S _I	pectroflu	orimetr	y, Gas
~ .			y and H									
CO4	Tofami	liarize v	vith inte	rpretation	on of da	ta						
	Mapping of course outcomes with the program outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	3	2	2	2	-	2	1	2
CO2	3	3	3	3	2	3	2	-	2	2	2	3
CO3	3	3	3	3	3	2	-	2	2	2	-	3
CO4	3	3	2	2	3	2	2	2	-	2	1	3

#### CHE EC-404: PRACTICAL-I- INSREUMENTAL METHODSOF ANALYSIS-II

1) Conductometry:

- a) Mixture of Acids
- b) Mixture of Halides
- 2) Colorimetry:
- a) Estimation of Iron
- b) Manganese
- c) Phosphate
- d) Titration of copper Vs EDTA

#### **DEMONSTRATION EXPERIMENTS**

- IR Interpretation of IR spectrum of alcohols, ketones, aldehydes and other standard materials
- 2 AAS: Demonstration of AAS – Determination of Zn, Cd, Pb, Mn, Fe and Ni in effluents using AAS.
- Spectrofluorimetry estimation of quinine and fluoroscene
- Ion selective electrodes estimation of F-, S²⁻ and CN⁻ in effluents using ion selective electrode meter.
- Polarography and Anode stripping voltametry
  - (A)Polarography and Anode stripping voltametry behavior of Cd, Zn, Pb in a mixture.
  - (B)Determination of Pb and Cd in samples using Anode stripping voltametr
- 6 Gas chromatography- Determination of pesticides
- **HPLC- Determination of pesticides** 7
- pH metry
  - (A)Determination of alkalinity in a colored effluent using pH metric end point.
  - (B)Determination of purity of commercial HCl, H₂SO₄, H₃PO₄ and CH₃COOH using pH metric end point.

CHE	EC 404		Practical II:Project Work L-5,T-1,P-0 4 Credits									
Pre-re	quisite	Projec	t Work									
Cours	e Objec	ctives:										
	-	on of pro	oblem b	y literat	ure surv	rey						
• Car	ry out th	ne proble	em inde	pendent	ly	•						
• Inte	• Interpretation of data											
Communication of research results through presentations and preparation of dissertation												
	Course Outcomes: At the end of the course, the student will be able											
CO1	To idea	ntify res	earch pr	oblem,	propose	the hyp	othesis	and to c	ollect li	terature.		
CO2	To per	form res	earch de	esigns &	experi	ments						
CO3	To tabu	ılate res	earch re	sults								
CO4	To con	clude re	search o	utcome	s in the	form of	disserta	ition.				
		Ma	apping	of cours	se outco	mes wi	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	-	3	2	2	1	2	3
CO2	3	3	3	3	2	3	-	1	2	2	-	3
CO3	3	3	3	3	3	2	3	-	2	-	3	3
CO4	3	3	3	3	2	3	3	2	3	_	2	3

# CHE EC- 405: PRACTIAL II/ PROJECT WORK

CHE-EC-405A	Air Pollution, Control Methods-	L-3,T-1,P-2	4 Credits
	<b>Noise and Thermal Pollution</b>		

Pre-requisite: Understanding of Air Pollution, Control Methods-Noise and Thermal Pollution
 Course Objectives:

 Study on properties of air pollutants, air pollution sampling measurements and analysis.
 Familiarize with different control methods and adsorption of solids and liquids, gas analysis.
 Know about pollution caused by vehicle emissions and different industries.
 Get an idea on noise and thermal pollutions and their effect on human health.

 Course Outcomes: At the end of the course, the student will be able to
 CO1 Acquire knowledge on air pollutants, air pollution sampling measurements and analysis caused due to sulphur dioxide, carbon monoxide, nitrogen dioxide, oxidants, ozone, hydro carbons and particulate matter.
 CO2 Learn about different control methods and adsorption of solids and liquids, gas analysis eluents viz., nitrogen oxides, carbon monoxide and hydrocarbons.

CO3 Understand pollution caused by vehicle emission, different industries, cement plants, steel mills and petroleum refineries.

**CO4** Know about noise and thermal power project pollutions and their effect on human health.

	Mapping of course outcomes with the program outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	-	1	2	-	1	-	3
CO2	3	3	3	2	2	-	2	2	2	1	2	3
CO3	3	3	3	3	2	2	2	2	2	1	-	3
CO4	3	3	3	3	_	2	1	2	3	_	2	3

# CHE: EC-405 A: (GENERIC ELECTIVE): AIR POLLUTION, CONTROL METHODS-NOISE AND THERMAL POLLUTION

UNIT-I: Air Pollution 15 Hrs

Classification and properties of air pollutants-emission sources-major emissions from global sources-importance of anthropogenic sources-behavior and fate of air pollutants photochemical smog and its effects on health-vegetation-material damage in India.

Air pollution sampling and measurement-ambient air sampling-collection of gaseous air pollutants-collection of particulate pollutants-stack sampling-analysis of air pollutants-sulphur dioxide-carbon monoxide-nitrogen dioxide-oxidants-ozone-hydro carbons and particulate matter

#### **UNIT- II: Control methods**

**15 Hrs** 

Sources-correction methods-particulate emission control-gravitational settling chambers-cyclone separators-fabric filters-electrostatic precipitator-wet scrubbers-control of gaseous emissions by adsorption of solids and liquids-control methods of sulphur dioxide emission, flue gasesanalysis-control method, nitrogen oxides, carbon monoxide and hydrocarbon-mobile sources.

#### **UNIT-III: Vehicular Air Pollution:**

**15 Hrs** 

Genesis of vehicular emissions standard- natural pollution-gasification of vehicles-point sources of air pollution – mechanism of air pollution from automobiles -automobile pollution- Indian scenario population and pollution loads of vehicles-automobile air pollution control-exhaust gas controlling treatment devices-thermal reactor-catalytic converter from automobiles-fuel tank carbonator. Air pollution from Portland cement plants-steel mills and petroleum refineries.

# **UNIT-IV: Noise and Thermal Polution**

**15 Hrs** 

**Noise pollution:** sources-measurement of noise and indices-effect of meteorological parameters on noise propagation-noise exposure levels and standards –measurement of noise-impact of noise

#### on human health

**Thermal pollution**: Introduction-definition-sources-harmful effects-toxic compounds in traces-prevention and control of thermal pollution —thermal power projects in India.

- 1. Environmental Chemistry by W. Moore and J.Moore
- 2. Environmental chemistry by J.O.M. Bockeriss
- 4. Environmental chemistry by Sharmar and Kaur, Krishna Publishers
- 6. Environmental chemistry by a.K.De
- 8. Henry C perkins (1974) Air Pollution, McGraw-Hill
- 9. Kudesia, V.P. (1985) Water Pollution, Pragati Prakashan.
- 10. Environmental Engineering by CS Rao
- 11. Environmental by BK Sharma
- 12. Environmental chemistry by SS Dara

CHE-I	EC-405 1	В	Bioinor Bioph	ganic, l	_	,	L-	5,T-1,P	-0	4	Credits	1
Pre-r	equisite:	Unders				•	ganic, B	iophysi	cal Che	mistry		
Cours	Course Objectives:											
• Hig	Highlighten metal complexes as oxygen carriers and electron transfer in biology.											
• M	<ul> <li>Metal ion transport and storage in biological systems and importance of trace metals in biology.</li> </ul>											
• Lea	arn physi	ologica	l functio	ons of ca	ırbohydı	rates, lip	ids, enz	ymes cl	assifica	tion, ste	reospeci	ficity.
• The	e basic c	oncepts	of biop	hysical	chemist	ry in bio	chemic	al reacti	ons, ex	ergonic	and end	ergonic
	The basic concepts of biophysical chemistry in biochemical reactions, exergonic and endergonic reactions.											
Cours	Course Outcomes: At the end of the course, the student will be able to											
CO1	Gain kı	nowledg	ge on me	etallo pr	oteins in	electro	n transf	er proce	esses.			
CO2	Know	he appl	ications	of trace	metal i	ons and	metal ic	ons as ch	nelating	agents i	n medic	ine.
CO3			-		ereosele	ctive sy	nthesis	of organ	ic comp	ounds a	ınd drug	s by
	-		onmenta									
CO4	Unders	tand the	rmodyn	amics o	f biopol	ymer rea	actions	and to c	orrelate	free ene	ergy and	
	biopoly		rameters									
		Ma	apping o	of cours	se outco	mes wit	h the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	3	3	3	2	-	2	-	3
CO2	3	3	3	3	3	2	3	-	-	-	3	3
CO3	3	3	3	3	3	3	-	2	-	2	-	3
CO4	3	3	3	3	3	3	2	2	-	3	3	3

# CHE EC-405(B): (GENERIC ELECTIVE): BIOINORGANIC, BIOORGANIC, BIOPHYSICAL CHEMISTRY

#### UNIT-I: BIO-INORGANIC CHEMISTRY-I

**15 Hrs** 

Metal complexes as oxygen carriers –Heme proteins –Hemoglobin and myoglobin –Non heme proteins –hemerythrin and hemocyanin – model synthetic complexes of iron, cobalt and copper.Co-enzymes Vitamin  $B_{12}$ , carboxy peptidase and superoxidedismutase.

**Electron Transfer in Biology:** Structure and functions of metalloproteins in electron transfer processes –catalase –peroxidose –cytochromes and iron –sulphur proteins –synthetic models.

**UNIT – II: BIOINORGANIC CHEMISTRY- II:** Metal ion transport and storage in biological systems, Metal ions in Biology, Molecular mechanism of ion transport across membranes: ionophores, photosynthesis.

**Hydrolytic metalloenzymes:** Carbonic anyhdrase, carboxy peptidase, calcium in control processes, calcium and muscle contraction, calcium and secretion, calcium in blood clotting mechanisms. Therapeutic uses of enzymes.

**Importance of trace metals in biology:** Metal ions as chelating agents in medicine, trace metal ions and metal and non-metal deficiency. Biological nitrogen fixation, in-vivo and in-vitro nitrogen fixation.

# **UNIT-III: BIOORGANIC CHEMISTRY**

Carbohydrates: Structure and biological functions of mucopolysaccharides, glycoproteins, and

glycolipids- Role of sugars in biological recognition-Blood group substances

**Lipids:** Essential fatty acids-structure and function of triglycerols, Glycerophospholipids, cholesterol, bile acids prostaglandins- composition and functioning of lipoproteins

**Enzymes:** Nomenclature and classification, properties, factors affecting enzyme catalysis, enzyme inhibition- reversible and irreversible inhibition. Uses of enzymes in food drink industry and clinical laboratories.

#### **UNIT-IV: BIOPHYSICAL CHEMISTRY:**

Standard free energy change in biochemical reactions, exergonic and endergonic reactions, hydrolysis of ATP, thermodynamics of biopolymer solutions, chain configuration of bio polymers, and calculation of average dimensions. Membrane equilibrium, ion transport through cell membrane. dialosis and its function. Structure and functions of proteins, enzymes, DNA and RNA in living systems, forces involved in bio polymer interactions, electrostatic forces, hydrophobic forces, molecular expansion, and dispersion forces.

- 1. M.N. Hughes, The Inorganic chemistry of Biological Processes, John wiley and Sons, New York 2nd Edition, 1981.
- 2. A Text book of Biochemistry, A.V.S.S. Rama Rao
- 3. Physical chemistry by Atkenes
- 4. Physical chemistry by Albertz.
- 5. Bio physical chemistry by Van Holde
- 6. Bio Physics by Narayanam
- 7. Organic Chemistry, Vol. 2, I. L. Finar, ELBS.
- 8. Chemistry of Natural Products, P.S. Kalsi, Kalyani Publishers.
- 9. Chemistry of Organic Natural Products, O. P. Agarwal, Vols., 1 & 2, Geol Pubs.
- 10. Natural products Chemistry K.B.G. Torssell, John Wiley, 1983.
- 11. Burger's Medicinal Chemistry, M.E. Wolff, John Wiley
- 12. Medicinal Chemistry, A. Kar, New Age International

CHE EC 406A	Drug Chemistry	L-3,T-1,P-2	4Credits				
Pre-requisite: Understanding of Drug Chemistry							

#### **Course Objectives:**

- To learn about the natural products as leads for new drugs
- Determination of cardiovascular drugs
- To study Autacoids
- Interpretation of Antipyretics

Course Outcomes: At the end of the course, the student will be able to

**CO1** Know about natural products.

**CO2** Know Interpretation of cardiovascular drugs.

CO3 Know the Analyzing about prostaglandins.

**CO4** Know the Definition, Classification, Nomenclature, Structure and Synthesis of anti-inflammatory drugs.

	Mapping of course outcomes with the program outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	-	1	2	-	1	2	3
CO2	2	3	3	3	1	2	-	2	2	2	1	3
CO3	3	3	2	3	-	3	2	2		3	_	3
CO4	3	1	3	1	3	2	2	_	2	2	2	3

CHE: EC: 406 (A): (OPEN ELECTIVE): DRUG CHEMISTRY

#### UNIT - I: NATURAL PRODUCTS AS LEADS FOR NEW DRUGS

Occurrence, Structure and therapeutic uses of Drugs acting on Central Nervous System

Morphine alkaloids (morphine, codeine, thebaine, heroin, pethidine)

Cannabinoids (9-cannabinol, Tetrahydrocannabinol)

Neuromuscular Blocking Agents (Curare, Decamethonium)

Vinca Alkaloids (Vincristin and Vinblastin), Taxol and Taxotere, podophyllotoxin, Etoposide, Teniposide.

#### UNIT - II: CARDIOVASCULAR DRUGS

Definition, Classification, Nomenclature, Structure and Synthesis.

Cardiac glycosides (ex: Digoxin, Digitoxin);

Antihypertensive drugs (ex: Methyl dopa, Clonidene hydrochloride);

Antiarrhythmic agents (ex: Quinidine sulfate);

Antisympathetic drugs (ex: Propranolol hydrochloride, Verapamil hydrochloride);

Vasopressor drugs (ex: Prenylamine, Buphenine).

#### **UNIT - III: AUTACOIDS**

Definition, Occurrence, Isolation, Nomenclature, Classification, Synthesis, Biosynthesis and Stereochemical structures of Prostaglandins. Structural elucidation of PGE₁, PGE₂; Synthesis and biosynthesis of PGE₂, PGF_{2 $\alpha$}.

Structure and Biosynthesis of Thromboxane A2 and Prostacyclin (synthesis not expected).

#### **UNIT – IV: ANTI-INFLAMMATORY DRUGS**

Definition, Classification, Nomenclature, Structure and Synthesis of Paracetamol, Aspirin (Antipyretic), Salol, Cinchophen, Antipyrene, Phenylbutazone, Indomethacin, Tolmetin, Ibuprofen, Diclofenac and Naproxen.

- 1. Medicinal Chemistry by Ashitosh Kar
- 2. Medicinal Chemistry by D. Sriram, P. Yogeeswari
- 3. Medicinal Chemistry by David A. Williams, Thomas L. Lemke
- 4. Medicinal Chemistry by V. Alagarsamy
- 5. Biochemistry by U. Satyanarayana
- 6. Natural Products Chemistry and Applications by Sujata V. Bhat, B.A. Nagasampagi, S. Meenakshi
- 7. Medicinal Chemistry by V.K. Ahluwalia, Madhu Chopra
- 8. Medicinal Chemistry by Balkishen Razdar
- 9. Advanced Practical Medicinal Chemistry by Ashutosh Kar
- 10. Chemistry of Organic Natural Products by O. P. Agarwal, Vols., 1 & 2, Geol Pubs.
- 11. Chemistry of Natural Products by S. V. Bhat, B.A. Nagasampagi, M. Sivakumar
- 12. Natural Products Chemistry by K.B.G. Torssell, John Wiley, 1983.

<b>CHE EC 406 B</b>	Electroanalytical Techniques	L-5,T-1,P-0	4 Credits
Pre-requisite: U1	nderstanding of Electroanalytical Tech	niques	

#### **Course Objectives:** To learn about the classification of electroanalytical methods Determination of types of currents Principle, instrumentation, reversible and irreversible cyclic voltammograms... Interpretation of Ion selective electrodes **Course Outcomes:** At the end of the course, the student will able to CO₁ Ability to interpret potentiometry and conductometry CO₂ Interpretation of results while adhering to DC Polarography. **CO3** Analysing and compiling the data and results in polarography. CO₄ Familiarize Types of ion sensitive electrodes. Mapping of course outcomes with the program outcomes PO6 PO7 PO8 PO11 PO₁ PO2 PO4 PO5 PO10 PO12 CO₁ 2 3 3 3 3 2 2 1 2 3 CO₂ 3 3 2 3 1 2 2 2 2 1 3 _ CO₃ 3 3 1 3 2 3 1 2 3 2 3 CO₄ 3 3 1 3 2 1 1 2 _ 3

CHE: EC: 406(B): (OPEN ELECTIVE): ELECTRO ANALYTICAL TECHNIQUES

**Unit I:** Types and Classification of Electro analytical Methods.

- i) **Potentiometry-** Types of electrodes, Hydrogen gas, Calomel, Quin hydrone and glasselectrodes. Determination of pH. Potentiometric titrations.
- **ii)** Conductometry Definition of terms conductivity, specific conductivity, cell constant. Mobility of ions, Conductometric titrations.

**Unit II:** D.C Polarography: Dropping mercury electrode- Instrumentation-polarogram. Types of Currents: Residual, Migration, Limiting. Two and Three electrode assemblies. Ilkovic equation (derivation not necessary) and its consequences. Types of limiting Currents: Adsorption, Diffusion, Kinetic. Applications of polarography in qualitative and quantitative analysis. Analysis of mixtures. Application to inorganic and organic compounds. Determination of stability constants of complexes.

**Unit III:** (i) A.C. polarography (ii) Square-wave polarography (iii) Pulse polarography (iv) Differential pulse polarography(V) Cyclic Voltammetry: Principle, instrumentation, reversible and irreversible cyclic voltammograms.

**Unit IV: Ion selective electrodes:** Ion-sensitive electrodes —types of ion sensitive electrodes —metal based cation and anion sensitive electrodes, solid membrane electrodes. Liquid ion-exchange electrodes, gas sensing membrane electrodes.

- 1. H.W. Willard, LL. Merrit and J.A. Dean: Instrumental Methods of Analysis. Affiliated East-West).
- 2. G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denny. Vogel's Text Book of Quantitative Chemical Analysis (ELBS).
- 3. D.A. Skoog and D.M. West: Principles of Instrumental Analysis (Holt, Rinehart and Wilson).
- 4. J.G. Dick: Analytical Chemistry (Mc Graw Hill).

CHE-IC	- 401			nation (			L-	5,T-1,P	-0	4	Credits	
				netallic								
			Chemist	ry of No		sition						
				Eleme								
Pre-req					ordinatio	on Comp	ounds,	Organo	metallic	Chemis	stry &	
chemisti	-		sition ele	ements								
Course	•											
• Study 1												
• Unders												
	h hydrogenation, olefin oxygenation, Olefin hydroformylation and Fischer –Tropsch											
	esis with an aim to gain a good knowledge on synthetic applications of Organo-Lithium,											
	esium and Aluminium compounds.											
	hire knowledge of metal cluster compounds, various types of reactions of metal cluster bounds, isoelectronic and isolobal relationship and electron counting scheme for HNCC'S.											
_						-			_	cheme for	or HNC	C'S.
• Study of	on synt	thesis, p	ropertie	es and st	ructures	s of nont	ransitio	n eleme	nts			
Course	Outco	mes :A	t the end	d of the	course,	the stud	ent will	be able				
CO1	To Ga	in an ex	tensive	knowle	dge abo	ut dinitr	ogen co	mplexes	of Ru(	II), Os(I	I),Co(I)	),
	Mo(0)	and dio	xygen c	omplex	es of I	r(I) and	Rh(I) an	nd on cy	clohept	atriene	and trop	ylium
	comple	exes of	oxidativ	e, redu	ctive eli	minatio	n reactio	ons				
									eration	of cataly	yst in ol	efin
	hydrog	genation	ı (Wilki	nson's c	catalyst)	, olefin	oxygena	ation (W	acker p	rocess o	r Smidt	
	reactio	on), Ole	fin hydr	oformy	lation ar	nd Fisch	er –Troj	psch pro	cess.			
										e or mul	tiple bo	nds and
		•	-		-	or the p	_		_		-	
										orazines	, silicat	es
						r haloge					-	
1						mes wi				nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	_	1	2		2	_	1
000	_			_	<b> </b>		_	<b> </b>		<b>†</b>	<del></del>	<del>                                     </del>

CHE IC 401: CORE THEORY: Co-ordination Compounds, Organometallic Chemistry and Chemistry of Non-transition Elements

1

#### UNIT -I: ORGANOMETALLIC CHEMISTRY OF TRANSITION ELEMENTS:

- 1.Dinitrogen complexes of Ru(II), Os (II),Co(I) and Mo(0)
- 2. Dioxygen complexes of Ir (I) and Rh (I)

CO₃

CO₄

3. Cycloheptatriene and Tropylium complexes –Oxidative addition and Reductive Elimination. Insertion and Elimination reaction –Nucleophilic and Electrophilic attack of coordinated ligands.

#### UNIT -II: APPLICATIONS OF ORGANOMETALLIC COMPOUNDS 15 Hrs

Catalytic applications –Fischer –Tropsch synthesis, Olefin hydrogenation (Wilkinson catalyst). Olefin oxygenation (Wacker process or Smidt reaction) Olefin hydroformylation (Ziegler-NattaCatalysis).

Synthetic applications of Organo-Lithium, -Magnesium and Aluminium compounds. Biological applications of organometallic compounds in medicine, agriculture and horticulture.

#### UNIT -III: METAL-TO METAL BONDS AND METAL ATOM CLUSTERS 15 Hrs

Introduction, metal carbonyl clusters —low —nuclearity (M and M) clusters, isoelectronic and isolobal relationships, High nuclearity, carbonyl clusters (HNCC'S), Hetero stomes in metal atom clusters, electron counting scheme for HNCC'S, HNCC'S of the Fe, Ru and Os group HNCC'S of the Cu, Rh and Ir group, HNCC'S of the Ni, Pd, and Pt group. Compounds with M-M multiple bonds, Major structural types, quadruple bonds, relation of clusters to multiple bonds and one dimensional solids.

# UNIT –IV: CHEMISTRY OF NON-TRANSITION ELEMENTS 15 Hrs

General characteristics of the non-transition elements, special features of individual elements: Synthesis, properties and structure of their Halides and oxides, polymorphism of carbon, Phosphorus and Sulphur. Synthesis, properties and structure of boranes, carboranes, borazines, silicates, carbides, Sulphur-nitrogen compounds, peroxo compounds of boron, carbon and sulphur, oxyacids of nitrogen, phosphorus, sulphur and halogens, inter halogens pseudo halides.

- 1. F.A. Cotton and G. Wilkinson, Advanced In-organic chemistry VI Edition, 1999. John wiley & sons. Inc., New York.
- 2. James E. Huheey, Inorganic chemistry- Principles of structure and reactivity, IV Edition 1993. Harper Collins College Publishers, New York.
- 3. J.D. Lee, Concise Inorganic chemistry, V Edition 1996, ELBS, Chapman and Hall, London.
- 4. Concise Inorganic chemistry by J.D. Lee V Edition ELBS, Chapman and Hall, London.
- 5. Organometallic Chemistry by R.C. Mehrotra and Singh.

CHE-I	C <b>402</b>	In	strume	ntal M	ethods of	f Analy	sis	L-5,T-1	1,P-0	4	4Credit	s
Pre-re	quisite	e: Und	erstandi	ng of C	Organic S	pectros	copy ar	nd Appli	ications			
Cou	rse Ol	ojectiv	es:									
• (	Gain so	ound kr	nowledg	ge in sp	ectroscop	oic meth	ods of	ICP-AI	ES, ICP-	MS, x-ra	y fluore	scence,
	spectro	scopic	techniq	ues and	their app	olication	ns					
				-		_				omatogra	phy, Ca	apillary
]	Electrophoresis and Supercritical Fluid Chromatography (SFC).											
• ]	Familiarise with instrumentation, resolution and ionization sources of GCMS and LCMS.											
Cours	e Outcomes: At the end of the course, the student will be able to											
CO1	To u	ndersta	nd the v	working	gprincipl	es, instr	umenta	ation an	d applica	tions of I	ICP-AE	S and
				-	e X-ray	fluores	cence (	(EDXRI	F), Wave	length di	spersive	e X-ray
			e (WD)									
CO2										f the Hig		
	_		_						_	aphy (G	PC): Ca	apillary
					ercritical							
CO3						tion and	l appli	cations	of GCM	S in dru	g analy	sis and
			tal sam									
CO4		-		_				-		r analysis		,
			(I)) and	anions	(I- and	S2-)by	using	I2 libe	rations a	and Ce4-	+ libera	tion in
	solut	ions.										
					ırse outo							
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	2	2	2	-	2	1	-	1
CO2	3	3	3	3	3	2	1	2	1	1	1	1
CO3	3	3	3	3	3	2		2	2	1	1	3
CO4	3	3	2	2	2	2	2	-	-	1	1	3

CHE-IC 402: CORE THEORY: INSTRUMENTAL METHODS OF ANALYSIS

#### UNIT -I SPECTROSCOPIC METHODS

**15 Hrs** 

#### **Emission Spectroscopy:**

- (i) ICP-AES: Principles, instrumentation, AES detectors, applications in the analysis of trace and toxic metals in water, geological and industrial samples.
- (ii) ICP-MS: Principles, instrumentation, quadrupole mass spectrometers, applications

# Fluorescence Spectroscopy:

- i) Molecular Fluorescence Spectroscopy: Principle, Theory of fluorescence, phosphorescence, relation between intensity of fluorescence and concentration, Correlation of fluorescence with molecular structure, Fluorescence quenching, Instrumentation and applications.
- **ii) X-ray Fluorescence Spectroscopy**: Principle, energy dispersive X-ray fluorescence (EDXRF), Wavelength dispersive X-ray fluorescence (WDXRF), applications.

#### UNIT - II: CHROMATOGRAPHIC METHODS

15 Hrs

**High Performance Liquid Chromatography (HPLC):** Principles, Stationary phases, Instrumentation, Solvent delivery system, sample introduction, gradient elution, columns and detectors. Partition Chromatography, adsorption chromatography, Gel permeation chromatography.

**Capillary Electrophoresis:** Principle, Electroosmotic flow, Instrumentation, Applications to separation of small ions, separation of Molecular Species, DNA sequencing

**Supercritical-fluid chromatography:** Supercritical-fluids, Instrumentation and Applications

#### UNIT -III: HYPHENATED TECHNIQUES

**15 Hrs** 

**Mass Spectroscopy:** Principle, basic instrumentation, resolution, Ionization sources- Electron impact and Chemical ionization, Mass Analyzers- Quadrupole Mass analyzer and Time- of- Flight Analyzer.

**Gas Chromatography- Mass spectrometry:** Introduction, GC – MS interface, processing of GC – MS data – ion chromatogram. Quantitative measurement – sample preparation, Selected ion monitoring – Application of GC-MS for Trace constituents. Drugs analysis, Environmental analysis and others.

**Liquid chromatography- Mass spectrometry** — Introduction — Instrumentation — liquid chromatography — Mass spectrometer Interface — Instrumental details — Processing LC-MS data — ion chromatograms, Sample preparation — selected ion monitoring. Application of LC-MS for Drug analysis, Environmental samples and others.

#### UNIT- IV: ELECTRO ANALYTICAL METHODS 15 Hrs

**Anodic stripping voltammetry**: principle, instrumentation, Hanging mercury drop electrode, application in the analysis of Pb and Cd in environmental samples, principle of cathode stripping voltammetry.

**Coulometric analysis**: principles of coulometric analysis with constant current, coulometric analysis with controlled potential, applications of coulometric methods for the analysis of cations-As (III), Fe (II) and I- and S₂- by using I₂ liberations and Ce⁴⁺ liberation in solutions

**Ion Selective Electrodes**: types of ion selective electrodes, basic properties, potentials and construction, calibration of ion selective electrodes, ion selective electrodes with fixed membrane sites, silver, lead, cadmium, sulfide, fluoride, cyanide and glass electrodes, applications in the analysis of air and water pollutants, principles of liquid membrane, gas sensing and enzyme based electrode

- 1. Analytical Chemistry, Gary D. Christian, John Laliley and Senes, New York, 6th Ed., 2007.
- 2. Analytical Chemistry Principles and Techniques, I.G. Harge, Prentice Hall.
- 3. Principles of Instrumental analysis, D.A. Skoog and J.L. Loacy, W.B. Saunders.
- 4. Handbook of Instrumental Techniques for Analytical Chemistry, F. Serlie, Prentice Hall.
- 5. Vogels Text book of Quantitative Chemical Analysis, Basett, Denny Jebbary, 5th Ed. ELBs 1990.
- 6. Instrumental Methods of Chemical Analysis, Willard Merrit, Dean, Stella Jr 6th Edition.
- 7. Separation methods, M.N Sastri, Himalaya Publishing Company, Mumbai.

CHE I	C 403	In		ore pra		ractical		5,T-1,P	P-0	4	Credits	3
Pre-re	Pre-requisite: Understanding of Inorganic Chemistry - Practical.											
Course	Course Objectives:											
• To l	earn ab	out the	separatio	on meth	ods and	flame p	hotome	tric anal	ysis of p	pesticide	e residue	es.
• Dete	erminati	on of tr	ansition	metal i	ons by p	olarogra	aphy.					
• Prin	ciple, ir	ple, instrumentation, determination of metal ions By AAS.										
• Inter	rpretatio	etation of NMR chemical shifts and hydrogen bonding.										
Course	e Outco	<b>Dutcomes:</b> At the end of the course, the student will be able										
CO1	To un	To understand the common laboratory techniques including separation techniques.										
CO2	Polare	ography	, atomic	absorp	tion spe	ctroscop	y in bot	th emiss	ion and	absorpt	ion mod	e.
CO3	To ga	in knov	vledge c	n imple	ementati	on of ga	as chror	natograp	ohy and	HPLC	for sepa	ration
	of mix	ktures.										
CO4	To Fa	miliariz	e with i	nterpret	ation of	data to	structur	es by N	MR.			
		Ma	apping	of cours	se outco	mes wit	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	-	-	2	-	-	2	3
CO2	3	3	3	3	-	2	-	2	-	2	_	3
CO3	3	3 3 - 3 - 3 - 3 - 3										
CO4	3	-	3	-	3	2	-	-	-	2	_	3

#### CHE IC 403: CORE PRACTICALS: PRACTICAL - I-

#### Instrumental methods of analysis- II

- 1) Flame Photometry: Determination of Na and K, Ca and Li in Water and Soil.
- 2) TLC/Paper chromatographic separation.
- 3) Determination of Pesticide residues by gas chromatographic method
- 4) Polarography:a) Determination of E ½ of Zn and Cd; b) Determination of amounts of Zn and Cd
- 5) Atomic Absorption Spectroscopy: Determination of transition metal ions (Cd, Cr, Cu, Pb, Zn etc.) by AAS.
- 6) Separation of Metal ion by Solvent Extraction /Ion exchange.

#### II <u>DEMONSTRATION EXPERIMENTS</u>

- 1. IR Interpretation of IR spectrum of alcohols, ketones, aldehydes and other standard materials
- 2. AAS: Demonstration of AAS Determination of Zn, Cd, Pb, Mn, Fe and Ni in effluents using AAS.
- 3. Spectrofluorimetry estimation of quinine and fluoroscene
- 4. Ion selective electrodes estimation of F⁻, S²⁻ and CN⁻ in effluents using ion selective electrode meter.
- 5. Polarography and Anode stripping voltametry
- 6. Polarography and Anode stripping voltametry behavior of Cd, Zn, Pb in a mixture.
- 7. Determination of Pb and Cd in samples using Anode stripping voltametr
- 8. Gas chromatography- Determination of pesticides
- 9. HPLC- Determination of pesticides

- 10. NMR
- 11. (a)Demonstration of NMR spectrometer and study of hydrogen bonding in a given alcohol or phenol.
  - (b)Interpretation of NMR chemical shifts of ethyl benzene, ethyl alcohol.
- 12. TGA, DTA, DSC Demonstration of TG, DTA and DSC and study of decomposition of calcium oxalate, calcium carbonate, copper sulfate, oxalic acid.
- 13. pH metry
- a. (a)Determination of alkalinity in a colored effluent using pH metric end point.
- b. (b)Determination of purity of commercial HCl, H₂SO₄, H₃PO₄ and CH₃COOH using pH metric end point

CHE IO	C 404		P	roject V	Work		L-	5,T-1,P	-0	4	Credits	1	
Pre-re	quisite:	Inorgai	nic Cher	nistry P	roject W	Vork							
• I		ation of	problen out inde		chemis	try resea	arch wit	h compe	etency in	n researc	ch desig	n, data	
• In	gathering Interpretation and communication of research results through scientific publications and presentations.  Preparation of dissertation												
					course,	the stud	ent will	be able					
CO1	Abilit	Ability to perform experiments, collection and evaluation of data											
CO2	Interp behav		of resul	lts while	adherir	ng to sci	entific p	principle	es of res	ponsible	and eth	nical	
CO3		sing and	d compi	ling the	data and	d results	in a ch	ronologi	ical orde	er in the	form of		
CO4	Prepa		f dissert										
		Ma	apping o	of cours	se outco	mes wit	h the p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	2	3	-	2	-	2	-	1	1	1	
CO2	3	3	3	3	-	2	-	2	-	-	1	3	
CO3	3 3 3 2 2 3 - 1 1 3												
CO4	3	2	2	3	2	2	-	-	-	2	-	1	

CHE IC 404: PRACTIAL II/ PROJECT WORK

CIIL	C- <del>1</del> 03A		ou unici	itai ivici	iious oi	ranalys	10	1-3,1-1,	1-4		Cicuits	
Pre-re	Pre-requisite: Understanding of Instrumental methods of analysis											
Cours	e Objec	tives:										
	n sound						s of IC	P-AES,	ICP-M	S, x-ray	fluore	scence,
_	ctroscop		-									
	omatog								Chron	natograp	hy, Ca	apillary
	ctrophoresis, and Supercritical Fluid Chromatography (SFC).											
	niliarise with instrumentation, resolution and ionization sources of GCMS and LCMS											
	sic principles of electro analytical techniques and their applications.											
Cours	se Outcomes: At the end of the course, the student will be able to											
CO1	To und	erstand t	he work	ing princ	ciples, in	strumen	tation an	d applic	ations o	f ICP-A	ES and	ICP-MS.
	To understand the working principles, instrumentation and applications of ICP-AES and ICP-MS, energy dispersive X-fluorescence (EDXRF), Wavelength dispersive X-ray fluorescence (WDXRF).											
CO ₂												
												sis (ĈE),
			iid Chroi									
CO3	To get l	knowledg	ge on ins	trumenta	ition and	applicat	ions of (	GCMS in	drug ar	nalysis ar	nd enviro	onmental
		analysis										
CO4											ons (As	(III), Fe
	(II)) and					ations ar						
		Ma	apping o	of cours	se outco	mes wit	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
001										1		1
CO1	3	2	2	3	-	2	-	-	-	1		1
CO ₂	3	3	3	3	3	2	-	-	-	1	1	1
CO3	3	3	3	3	3	2	-	2	-	1	1	3
CO4	3	3	2	2	-	2	-	-	-	1	1	3

#### CHE-IC 405A: CORE THEORY: INSTRUMENTAL METHODS OF ANALYSIS

CHE-IC-405A Instrumental Methods of Analysis L-3.T-1.P-2

# UNIT -I SPECTROSCOPIC METHODS

15 Hrs

**4Credits** 

# **Emission Spectroscopy:**

- (i) ICP-AES: Principles, instrumentation, AES detectors, applications in the analysis of trace and toxic metals in water, geological and industrial samples.
- (ii) ICP-MS: Principles, instrumentation, quadrupole mass spectrometers, applications Fluorescence Spectroscopy:
- i) Molecular Fluorescence Spectroscopy: Principle, Theory of fluorescence, phosphorescence, relation between intensity of fluorescence and concentration, Correlation of fluorescence with molecular structure, Fluorescence quenching, Instrumentation and applications.
- **ii) X-ray Fluorescence Spectroscopy**: Principle, energy dispersive X-ray fluorescence (EDXRF), Wavelength dispersive X-ray fluorescence (WDXRF), applications.

#### UNIT - II: CHROMATOGRAPHIC METHODS

**15 Hrs** 

**High Performance Liquid Chromatography (HPLC):** Principles, Stationary phases, Instrumentation, Solvent delivery system, sample introduction, gradient elution, columns and detectors. Partition Chromatography, adsorption chromatography, Gel permeation chromatography.

**Capillary Electrophoresis:** Principle, Electroosmotic flow, Instrumentation, Applications to separation of small ions, separation of Molecular Species, DNA sequencing

Supercritical-fluid chromatography: Supercritical-fluids, Instrumentation and Applications

# UNIT -III: HYPHENATED TECHNIQUES

**15 Hrs** 

**Mass Spectroscopy:** Principle, basic instrumentation, resolution, Ionization sources- Electron impact and Chemical ionization, Mass Analyzers- Quadrupole Mass analyzer and Time- of- Flight Analyzer.

**Gas Chromatography- Mass spectrometry:** Introduction, GC – MS interface, processing of GC – MS data – ion chromatogram. Quantitative measurement – sample preparation, Selected ion monitoring – Application of GC-MS for Trace constituents. Drugs analysis, Environmental analysis and others.

**Liquid chromatography- Mass spectrometry** — Introduction — Instrumentation — liquid chromatography — Mass spectrometer Interface — Instrumental details — Processing LC-MS data — ion chromatograms, Sample preparation — selected ion monitoring. Application of LC-MS for Drug analysis, Environmental samples and others.

#### UNIT- IV: ELECTRO ANALYTICAL METHODS 15 Hrs

**Anodic stripping voltammetry**: principle, instrumentation, Hanging mercury drop electrode, application in the analysis of Pb and Cd in environmental samples, principle of cathode stripping voltammetry.

**Coulometric analysis**: principles of coulometric analysis with constant current, coulometric analysis with controlled potential, applications of coulometric methods for the analysis of cations-As (III), Fe (II) and I- and  $S_2$ - by using  $I_2$  liberations and  $Ce^{4+}$  liberation in solutions

**Ion Selective Electrodes**: types of ion selective electrodes, basic properties, potentials and construction, calibration of ion selective electrodes, ion selective electrodes with fixed membrane sites, silver, lead, cadmium, sulfide, fluoride, cyanide and glass electrodes, applications in the analysis of air and water pollutants, principles of liquid membrane, gas sensing and enzyme based electrode

- 1) Analytical Chemistry, Gary D. Christian, John Laliley and Senes, New York, 6th Ed., 2007.
- 2) Analytical Chemistry Principles and Techniques, I.G. Harge, Prentice Hall.
- 3) Principles of Instrumental analysis, D.A. Skoog and J.L. Loacy, W.B. Saunders.
- 4) Handbook of Instrumental Techniques for Analytical Chemistry, F. Serlie, Prentice Hall.
- 5) Vogels Text book of Quantitative Chemical Analysis, Basett, Denny Jebbary, 5th Ed. ELBs 1990.
- 6) Instrumental Methods of Chemical Analysis, Willard Merrit, Dean, Stella Jr 6th Edition.
- 7) Separation methods, M.N Sastri, Himalaya Publishing Company, Mumbai.

			Biopl	hysical	Chemis	try							
Pre-r	equisite:	Unders	tanding	of Bioi	norgani	c, Bioor	ganic, B	Siophysi	cal Che	mistry			
Cours	se Objec	tives:											
• Hig	Highlighten metal complexes as oxygen carriers and electron transfer in biology.												
• M	Metal ion transport and storage in biological systems and importance of trace metals in biology.												
• Lea	• Learn physiological functions of carbohydrates, lipids, enzymes classification, stereospecificity.												
• The	e basic c	oncepts	of biop	hysical	chemist	ry in bio	chemic	al reacti	ons, exe	ergonic	and end	ergonic	
	ctions.	•	1	-		-							
Cours	se Outco	mes: A	t the end	d of the	course.	the stud	ent will	be able	to				
CO1	Gain kı	nowledg	e on me	etallo pro	oteins ir	electro	n transf	er proce	sses.				
CO2	Know	the appli	cations	of trace	metal i	ons and	metal ic	ons as cl	nelating	agents i	n medic	ine.	
CO3					ereosele	ctive sy	nthesis	of organ	ic comp	oounds a	ınd drug	s by	
		g envir											
CO4			•		f biopol	ymer re	actions	and to c	orrelate	free ene	ergy and	l	
	biopoly	mer pai											
		Ma	apping o	of cours	se outco	mes wit	th the p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	2	3	-	2	-	2	-	1	1	1	
CO2	3	3	3	3	-	2	-	2	-	-	1	3	
CO3	3	3	3	2	2		-	3	-	1	1	3	
CO4	3	2	2	3	2	2	-		-	2	-	1	

L-5,T-1,P-0

Bioinorganic, Bioorganic,

# CHE AC-405(B): (GENERIC ELECTIVE): BIOINORGANIC, BIOORGANIC, BIOPHYSICAL CHEMISTRY

#### UNIT-I: BIO-INORGANIC CHEMISTRY-I

CHE-IC-405B

**15 Hrs** 

4 Credits

Metal complexes as oxygen carriers –Heme proteins –Hemoglobin and myoglobin –Non heme proteins –hemerythrin and hemocyanin – model synthetic complexes of iron, cobalt and copper. Co-enzymes Vitamin  $B_{12}$ , carboxy peptidase and superoxidedismutase.

**Electron Transfer in Biology:** Structure and functions of metalloproteins in electron transfer processes –catalase –peroxidose –cytochromes and iron –sulphur proteins –synthetic models.

**UNIT – II: BIOINORGANIC CHEMISTRY- II:** Metal ion transport and storage in biological systems, Metal ions in Biology, Molecular mechanism of ion transport across membranes: ionophores, photosynthesis.

**Hydrolytic metalloenzymes:** Carbonic anyhdrase, carboxy peptidase, calcium in control processes, calcium and muscle contraction, calcium and secretion, calcium in blood clotting mechanisms. Therapeutic uses of enzymes.

**Importance of trace metals in biology:** Metal ions as chelating agents in medicine, trace metal ions and metal and non-metal deficiency. Biological nitrogen fixation, in-vivo and in-vitro nitrogen fixation.

**Carbohydrates:** Structure and biological functions of mucopolysaccharides, glycoproteins, and glycolipids- Role of sugars in biological recognition-Blood group substances

**Lipids:** Essential fatty acids-structure and function of triglycerols, Glycerophospholipids, cholesterol, bile acids prostaglandins- composition and functioning of lipoproteins

**Enzymes:** Nomenclature and classification, properties, factors affecting enzyme catalysis, enzyme inhibition- reversible and irreversible inhibition. Uses of enzymes in food drink industry and clinical laboratories.

#### **UNIT-IV: BIOPHYSICAL CHEMISTRY:**

Standard free energy change in biochemical reactions, exergonic and endergonic reactions, hydrolysis of ATP, thermodynamics of biopolymer solutions, chain configuration of bio polymers, and calculation of average dimensions. Membrane equilibrium, ion transport through cell membrane. dialosis and its function. Structure and functions of proteins, enzymes, DNA and RNA in living systems, forces involved in bio polymer interactions, electrostatic forces, hydrophobic forces, molecular expansion, and dispersion forces.

- 1. M.N. Hughes, The Inorganic chemistry of Biological Processes, John wiley and Sons, New York 2nd Edition, 1981.
- 2. A Text book of Biochemistry, A.V.S.S. Rama Rao
- 3. Physical chemistry by Atkenes
- 4. Physical chemistry by Albertz.
- 5. Bio physical chemistry by Van Holde
- 6. Bio Physics by Narayanam
- 7. Organic Chemistry, Vol. 2, I. L. Finar, ELBS.
- 8. Chemistry of Natural Products, P.S. Kalsi, Kalyani Publishers.
- 9. Chemistry of Organic Natural Products, O. P. Agarwal, Vols., 1 & 2, Geol Pubs.
- 10. Natural products Chemistry K.B.G. Torssell, John Wiley, 1983.
- 11. Burger's Medicinal Chemistry, M.E. Wolff, John Wiley
- 12. Medicinal Chemistry, A. Kar, New Age International

CHE IO	C 406A		Dr	ug Che	mistry		L-	3,T-1,P	-2	40	Credits	
Pre-requisite: Understanding of Drug Chemistry												
Cor	ırse Ob	jectives	:									
• '	To learn	about t	he natur	al produ	acts as l	eads for	new dru	ugs				
• ]	Determi	nation o	of cardio	vascula	r drugs							
• '	To study	Autaco	oids									
•	Interpre	tation of	Antipy	retics								
Cours	e Outco	mes: A	t the end	d of the	course,	the stud	ent will	be able	to			
CO1	Know a	about na	tural pro	oducts.								
CO2	Know 1	Interpret	ation of	cardiov	ascular	drugs.						
CO3	Know t	he Anal	yzing al	out pro	stagland	dins.						
CO4	Know	the De	finition	, Class	ification	, Nome	enclatur	e, Stru	cture a	nd Syn	thesis o	of anti-
	inflamr	natory d										
		Ma	apping o	of cours	se outco	mes wit	h the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	ı	-	2	ı	-	2	3
CO2	3	3	3	3	-	2	-	2	-	2	-	3
CO3	3	3		3	-	3	-	2	ı	3	-	3
CO4	3	-	3	-	3	2	-	-	-	2	-	3

1Cmad:4a

# CHE: AC: 406 (A): (OPEN ELECTIVE): DRUG CHEMISTRY

#### UNIT - I: NATURAL PRODUCTS AS LEADS FOR NEW DRUGS

Occurrence, Structure and therapeutic uses of Drugs acting on Central Nervous System

Morphine alkaloids (morphine, codeine, thebaine, heroin, pethidine)

Cannabinoids (9-cannabinol, Tetrahydrocannabinol)

Neuromuscular Blocking Agents (Curare, Decamethonium)

Vinca Alkaloids (Vincristin and Vinblastin), Taxol and Taxotere, podophyllotoxin, Etoposide, Teniposide.

#### UNIT - II: CARDIOVASCULAR DRUGS

Definition, Classification, Nomenclature, Structure and Synthesis.

Cardiac glycosides (ex: Digoxin, Digitoxin);

Antihypertensive drugs (ex: Methyl dopa, Clonidene hydrochloride);

Antiarrhythmic agents (ex: Quinidine sulfate);

Antisympathetic drugs (ex: Propranolol hydrochloride, Verapamil hydrochloride);

Vasopressor drugs (ex: Prenylamine, Buphenine).

#### **UNIT – III: AUTACOIDS**

CITE IC 40CA

Definition, Occurrence, Isolation, Nomenclature, Classification, Synthesis, Biosynthesis and Stereochemical structures of Prostaglandins. Structural elucidation of PGE₁, PGE₂; Synthesis and biosynthesis of PGE₂, PGF_{2 $\alpha$}.

Structure and Biosynthesis of Thromboxane A2 and Prostacyclin (synthesis not expected).

#### UNIT – IV: ANTI-INFLAMMATORY DRUGS

Definition, Classification, Nomenclature, Structure and Synthesis of Paracetamol, Aspirin (Antipyretic), Salol, Cinchophen, Antipyrene, Phenylbutazone, Indomethacin, Tolmetin, Ibuprofen, Diclofenac and Naproxen.

- 13. Medicinal Chemistry by Ashitosh Kar
- 14. Medicinal Chemistry by D. Sriram, P. Yogeeswari
- 15. Medicinal Chemistry by David A. Williams, Thomas L. Lemke
- 16. Medicinal Chemistry by V. Alagarsamy
- 17. Biochemistry by U. Satyanarayana
- 18. Natural Products Chemistry and Applications by Sujata V. Bhat, B.A. Nagasampagi, S. Meenakshi
- 19. Medicinal Chemistry by V.K. Ahluwalia, Madhu Chopra
- 20. Medicinal Chemistry by Balkishen Razdar
- 21. Advanced Practical Medicinal Chemistry by Ashutosh Kar
- 22. Chemistry of Organic Natural Products by O. P. Agarwal, Vols., 1 & 2, Geol Pubs.
- 23. Chemistry of Natural Products by S. V. Bhat, B.A. Nagasampagi, M. Sivakumar
- 24. Natural Products Chemistry by K.B.G. Torssell, John Wiley, 1983.

CHE IC 406 B	Electroanalytical Techniques	L-5,T-1,P-0	4 Credits
Pre-requisite: U	Inderstanding of Electroanalytical Tech	niques	

#### **Course Objectives:** To learn about the classification of electroanalytical methods Determination of types of currents Principle, instrumentation, reversible and irreversible cyclic voltammograms.. Interpretation of Ion selective electrodes **Course Outcomes:** At the end of the course, the student will able to CO₁ Ability to interpret potentiometry and conductometry CO₂ Interpretation of results while adhering to DC Polarography. CO₃ Analysing and compiling the data and results in polarography. **CO4** Familiarize Types of ion sensitive electrodes. Mapping of course outcomes with the program outcomes PO₁ PO₂ PO3 PO4 PO5 PO₆ PO7 PO8 PO9 PO10 PO11 PO12 CO₁ 3 3 3 3 3 2 2 3 CO₂ 3 3 3 3 2 2 2 3 --CO₃ 3 3 3 3 2 3 3 CO₄ 3 3 3 2 2 3

# CHE: IC: 406(B): (OPEN ELECTIVE): ELECTRO ANALYTICAL TECHNIQUES

**Unit I:** Types and Classification of Electro analytical Methods.

- i) **Potentiometry-** Types of electrodes, Hydrogen gas, Calomel, Quin hydrone and glasselectrodes. Determination of pH. Potentiometric titrations.
- **ii)** Conductometry Definition of terms conductivity, specific conductivity, cell constant. Mobility of ions, Conductometric titrations.

**Unit II:** D.C Polarography:. Dropping mercury electrode- Instrumentation-polarogram. Types of Currents: Residual, Migration, Limiting. Two and Three electrode assemblies. Ilkovic equation(derivation not necessary) and its consequences. Types of limiting Currents: Adsorption, Diffusion, Kinetic. Applications of polarography in qualitative and quantitative analysis. Analysis of mixtures. Application to inorganic and organic compounds. Determination of stability constants of complexes.

**Unit III:** (i) A.C. polarography (ii) Square-wave polarography (iii) Pulse polarography (iv) Differential pulse polarography(V) Cyclic Voltammetry: Principle, instrumentation, reversible and irreversible cyclic voltammograms.

**Unit IV: Ion selective electrodes:** Ion-sensitive electrodes —types of ion sensitive electrodes —metal based cation and anion sensitive electrodes, solid membrane electrodes. Liquid ion-exchange electrodes, gas sensing membrane electrodes.

- 1. H.W. Willard, LL. Merrit and J.A. Dean: Instrumental Methods of Analysis. Affiliated East-West).
- 2. G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denny. Vogel's Text Book of Quantitative Chemical Analysis (ELBS).
- 3. D.A. Skoog and D.M. West: Principles of Instrumental Analysis (Holt, Rinehart and Wilson).
- 4. J.G. Dick: Analytical Chemistry (Mc Graw Hill).

CHE-OC- 401	Organic synthesis I	L-5,T-1,P-0	4Credits
Pre-requisite: U	Jnderstanding of Organic synthesis		

#### **Course Objectives:**

- Acquire knowledge in the applications of Boron, Phosphorus, Sulfur and Silicon reagents in organic synthesis and their special behavior.
- Study photochemical reactions of olefins, carbonyl compounds, aromatic compounds, rearrangements and stereochemistry of the products.
- Understand the concept of pericyclic reactions, determination of allowed and forbidden transitions and prediction of stereochemistry of the products.
- Study different polymer reactions, Stereospecific polymers, Thermoplastics, Fibers, Elastomers and Ion exchange resins.

Cours	<b>Course Outcomes :</b> At the end of the course, the student will be able to												
CO1	Familia	Familiarize with the unique reactivity of Boron, Phosphorus, Sulfur and Silicon reagents											
CO2	olefins	Learn about photolytic reactions of carbonyl compounds, conjugated carbonyl derivatives, olefins, conjugated dienes CO ₃ :To gain knowledge in the determination of allowed or forbidden of chemical reactions <i>viz.</i> , cycloaddition and											
CO3		Learn the methods of preparation, properties, and industrial applications of various addition and condensation											
CO4	Familia	Familiarize with the unique reactivity of Boron, Phosphorus, Sulfur and Silicon reagents											
		Ma	apping	of cours	se outco	mes wi	th the p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	3	-	3	-	2	-	2	-	1	
CO2	3	3	3	3	3	2	-	1	_	2	-	3	
CO3	3	3 3 3 3 2 - 1 - 1 3											
CO4	3	3	3	2	_	2	-	_	2	2	1	2	

CHE OC-401: CORE THEORY: ORGANIC SYNTHESIS-I

#### UNIT-I: Chemistry of Organo Boran, Phophorus, Sulfur and Silicon reagents 15Hrs

Electronic structure and bonding in Boron, Phosphorus, Sulphur and Silicon compounds-Their reactivity and applications in Organic Synthesis.

**Boron Reagents**-Hydroboration-Organoboranes in the formation of C-C bonds, alcohols, amines, halogen and carbonyl compounds-Free radical reactions of organoboranes.

**Phosphorus Reagents**- Formation of carbon-carbon double bonds-Functional group transformations – deoxygenation reactions-reactivity as electrophiles- conversitoon of alcohols to alkyl halides, Witting reaction and nucleophiles - Corey-Winters reaction, Michaelis-Arbusov reaction-Perkow reaction and Mitsnobu reaction.

**Sulphur Reagents-** Sulphur ylides, stabilized and non-stabilized – Preparation and reactivity Pummerer reaction – sulphonyl carbanions-Julia reaction

**Silicon reagents-**Peterson's olefination, influence of trialkyl silyl reagents in electrophilic reactions, aryl silanes, alkenyl silanes, alkynyl silanes, allyl silanes.

#### **UNIT-II: PHOTOCHEMISTRY**

15Hr

Photochemical energy, photochemical excitations, Franck-Condon principle, electronic transitions, Jablonski diagram, singlet and triplet states, energy transfer in photochemical reactions - photosensitization reactions and quantum yield.

Photochemistry of carbonyl compounds - Norrish Type-I and Norrish Type-II reactions, Photo Reduction and Paterno-Buchi reaction. Photochemistry of  $\alpha,\beta$ -unsaturated ketones, enones, dienones and p-benzoquinones.

Photochemistry of unsaturated systems (olefins), cis-trans isomerization and dimerization reactions, Photochemistry of conjugated dienes - 1,3-butadiene, aromatic compounds, Photoaddition (1,2- &

1,4- additions) and Photosubstitution reactions of benzene derivatives. Photo-Fries rearrangement and Barton reaction.

#### UNIT III: PERICYCLIC REACTIONS

**15 Hrs** 

Molecular orbital symmetry, Frontier orbitals of ethylene, 1,3 butadiene, 1,3,5-hexatriene and allyl and pentadienyl system. Classification of pericyclic reactions. Woodward-Hoffmann correlation diagrams. FMO and PMO (Mobius Huckel) approach. Electrocyclic reactions-Conrotatory and disrotatory. 4n, 4n+2 and allyl systems. Cycloadditions-antarafacial and suprafacial additions, 4n and 4n+2 systems, 2+2 addition of ketene, 1,3 dipolar cycloadditions and cheleotropic reactions. Sigmatropic rearrangements - Suprafacial and antarafacial shifts of H, Sigmatropic shifts involving carbon moieties, 3,3 and 5,5 Sigmatropic rearrangements. Claisen, Cope and Oxy-Cope rearrangements. Ene reaction

#### **UNIT IV: SYNTHETHETIC POLYMERS**

**15 Hrs** 

Polymer Reactions-Addition and condensation polymerization processes- Bulk, Solution, Suspension and Emulsion polymerization.

Stereospecific Polymers-Preparation and significance- classification of polymers based on physical properties-Thermoplastics-Thermosetting plastics-Fibers and elastomers- General applications.

Preparation of Polymers-Preparation of Polymers based on different types of monomers Industrial applications-olefin polymers-Diene polymers-nylons-Glyptal resins-Urea-formaldehyde, phenolformaldehyde and melamine resins- Epoxy resins - Ion exchange resins.

# **Book References:**

- 1. Modern Synthetic Reactions, H.O. House, W.A Benjamin.
- 2. Some Modern Methods of Organic Synthesis, W. Carruthers, Cambridge University Press.
- 3. Advanced Organic Chemistry, F.A. Carey and R.J Sundberg, Plenum.
- 4. Principles of Organic Synthesis, R.O.C. Norman and J.M Coxon, Blackie
- 5. Advanced Organic Chemistry Part A & B, F.A Carey and R. J Sunderg, Plenum Press.
- 6. Structure and Mechanism in Organic Chemistry C.K. Inglod, Cornell University Press.
- 7. Reaction Mechanism in Organic Chemistry, P.S. Kalsi, New Age International.
- 8. Modern Synthetic Reactions, H.O. House, W.A. Benjamin.
- 9. Chemistry of Organic Natural Products, O.P. Agrawal, Vols., 1 & 2, Goel Pubs.
- 10. Natural Products Chemistry K.B.G. Torssell, John Wiley, 1983.
- 11. Principles of biochemistry, A.L. Lehninger worth publishers
- 12. A Text book of Biochemistry, A.V.S.S. Rama Rao

<b>CHE-OC 402</b>	Organic Synthesis II	L-5,T-1,P-0	4Credits
<b>Pre-requisite:</b>	Understanding of Organic Synthesis		

# **Course Objectives:**

- Use disconnection approach and retrosynthetic analysis and control of stereochemistry to design efficient multi-step syntheses involving different types of disconnection approaches
- Applications to synthesis complex naturally occurring compounds
- Familiarize with synthesis and pharmacological properties of antimalarials and antibiotics
- Understand structure and synthesis of proteins and nucleic acids

**Course Outcomes:** At the end of the course, the student will be able to

- **CO1** Familiarize with functionalization and interconversion of functional groups and the concept of organic synthesis by retrosynthetic approach.
- CO2 Gain knowledge in the formulation of synthetic routes for naturally occurring drugs.
- CO3 Understand quinoline, acridine and guanidine group of alkaloids as antimalarials and to familiarize with the role of functioning of broad spectrum antibiotics.
- CO4 Acquire knowledge about the classification, properties, structure & conformation and biological functions of peptides/proteins.

	Mapping of course outcomes with the program outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	-	1	-	-	1	_	3
CO2	3	3	3	3	2	1	-	-	ı	1	-	2
CO3	3	3	3	3	2	-	-	2	ı	1	1	3
CO4	3	3	3	3	2	2	-	2	-	-	2	3

CHE OC-402: CORE THEORY: ORGANIC SYNTHESIS-II

#### UNIT-I: DESIGNING OF ORGANIC SYNTHESIS

**15 Hrs** 

**Disconnection Approach**-Classification of organic reactions. Functionalisation and interconversion of functional groups, formation of carbon-carbon single and double bonds, general strategy, disconnection and synthon approach, retrosynthetic analysis, key intermediates and starting materials in designing a synthesis, linear and convergent synthesis, reconnections. The importance of the order of events in organic synthesis, one group C-X and two group C-X disconnections, chemoselectivity, reversal of polarity, cyclisation reactions, amine synthesis.

**Protecting Groups**-Principles of protection of alcohol, amine, carbonyl and carboxyl groups.

**One Group C-C Disconnections**-Alcohols and carbonyl compounds, regioselectivity. Alkene synthesis, use of acetylenic compounds in organic synthesis.

**Two Group C-C Disconnections**-Diels-Alder reaction, 1,3-difunctionalised compounds, unsaturated carbonyl compounds, control in carbonyl condensations, 1,5-difunctionalised compounds, Michael addition and Robinson annulation.

# **UNIT II: MULTI STEP SYNTHESIS**

15 hrs

Multi step synthesis of some complex naturally occurring compounds involving through retrosynthetic analysis and control of stereochemistry, Longifolene, Taxol, Juvabione, Fediricamycine A.

#### UNIT III: ANTIMALARIALS AND ANTIBOTICS

15 hrs

Antimalarials: Synthesis and activity of Quinoline group – Quinine, Plasmoquine and Chloroquine – Acridine group – Quinacrine – Guanidine group – Paludrine.

Antibiotics: Synthesis and activity of Penicillin, Chloramphenicol and Streptomycin – Broad spectrum antibiotics – Tetracyclines, Novobiocin.

Chemotherapy: Structure – activity relationships.

#### **UNIT-IV: BIOMOLECULES**

#### **15 Hrs**

Peptides and Proteins-Methods of peptide synthesis, sequence determination, structure of oxytocin, proteins-classification, structure, conformation and properties. Nucleic acids- Nucleosides, Nucleotides, DNA and RNA, structure and conformations, replication, translation of genetic material, genetic code, gene expression, gene mutation, protein synthesis.

#### **Book References:**

- 1) Modern Synthetic Reactions, H.O. House, W.A Benjamin.
- 2) Some Modern Methods of Organic Synthesis, W. Carruthers, Cambridge University Press.
- 3) Advanced Organic Chemistry, F.A. Carey and R.J Sundberg, Plenum.
- 4) Principles of Organic Synthesis, R.O.C. Norman and J.M Coxon, Blackie
- 5) Advanced Organic Chemistry Part A & B, F.A Carey and R. J Sunderg, Plenum Press.
- 6) Structure and Mechanism in Organic Chemistry C.K. Inglod, Cornell University Press.
- 7) Reaction Mechanism in Organic Chemistry, P.S. Kalsi, New Age International.
- 8) Modern Synthetic Reactions, H.O. House, W.A. Benjamin.
- 9) Chemistry of Organic Natural Products, O.P. Agrawal, Vols., 1 & 2, Goel Pubs.
- 10) Natural Products Chemistry K.B.G. Torssell, John Wiley, 1983.
- 11) Principles of biochemistry, A.L. Lehninger worth publishers
- 12) A Text book of Biochemistry, A.V.S.S. Rama Rao

CHE (	OC 403		C	ore pra	ctical I:	}	L-	5,T-1,P	<b>'-0</b>	4	Credits	3	
		Spe	ectral Id	lentifica	ation of	Organi	c						
				Compo	ounds								
Pre-requisite: Understanding of Spectral identification of organic compounds													
Course Objectives:													
• Spectral identification of organic compounds by UV by calculating λ max values													
Identification of absorption bands by IR and ascertain to the functional groups													
Unambiguous assignment of structures by interpreting NMR values													
Predict the characteristic cleavage processes by Mass.													
Course Outcomes: At the end of the course, the student will be able to													
CO1	CO1 Calculate λ max values.												
CO2	Ascertain functional groups.												
CO3	Interpret the spectral data to the structure and stereochemistry of the molecules.												
CO4	O4 Analyse the fragmentation patern of the molecules.												
Mapping of course outcomes with the program outcomes													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	3	3	-	-	2	-	-	2	3	
CO2	3	3	3	3	_	2	-	2	_	2	-	3	
CO3	3	3	-	3	_	3	-	2	-	3	_	3	
CO4	3	-	3	-	3	2	-	-	-	2	_	3	

#### CHE OC 403: PRACTICAL-I

Spectral identification of organic compounds by UV, IR, NMR (¹H & ¹³C) & Mass spectroscopy.

#### **DEMONSTRATION EXPERIMENTS**

- 1 IR Interpretation of IR spectrum of alcohols, ketones, aldehydes and other standard materials
- 2 AAS: Demonstration of AAS Determination of Zn, Cd, Pb, Mn, Fe and Ni in effluents using AAS.
- 3 Spectrofluorimetry estimation of quinine and fluoroscene
- 4 Ion selective electrodes estimation of F⁻, S²⁻ and CN⁻ in effluents using ion selective electrode meter.
- 5 Polarography and Anode stripping voltametry
- (a) Polarography and Anode stripping voltametry behavior of Cd, Zn, Pb in a mixture.
- (b) Determination of Pb and Cd in samples using Anode stripping voltametr
- 6 Gas chromatography- Determination of pesticides
- 7 HPLC- Determination of pesticides
- 8 NMR
  - a). Demonstration of NMR spectrometer and study of hydrogen bonding in a given alcohol or phenol.
  - b). Interpretation of NMR chemical shifts of ethyl benzene, ethyl alcohol
- 9 TGA, DTA, DSC Demonstration of TG, DTA and DSC and study of decomposition of calcium oxalate, calcium carbonate, copper sulfate, oxalic acid.
- 10 pH metry
- a) Determination of alkalinity in a colored effluent using pH metric end point.
- b) Determination of purity of commercial HCl, H₂SO₄, H₃PO₄ and CH₃COOH using pH metric end point

CHE O	C 404		Practica	al II: Pr	oject W	ork	L-	5,T-1,P	-0	4	Credits	
Pre-requisite: Organic Chemistry Project Work												
Course Objectives:												
Identification of problem by literature survey												
Ability to carry out independently with competency in research design and synthesis												
Interpretation of spectral data to the structures of the molecules												
Communication of research results through presentations and preparation of dissertation												
Course Outcomes: At the end of the course, the student will be able to												
CO1	Identify the problem, to collect the literature and understanding parameters to design the											
CO2	problem.  Perform experiments to synthesize the molecules with desired stereochemistry adopting											
002	modern techniques.											
CO3	Collect and interpretation of the data to the structures.											
CO4	Presentation of the data in the form of dissertation.											
		Ma	apping	of cours	e outco	mes wit	h the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	3	-	2	2	2	-	2	2	3
CO2	3	3	3	3	3	2	2	2	-	2	2	3
CO3	3	3	3	3	3	3	3	2	-	2	-	3
CO4	3	3	3	3	3	2	3	2	-	-	2	3

# CHE OC 404: PRACTIAL II/ PROJECT WORK

## **Pre-requisite:** Understanding of Heterocycles and Natural Products

# **Course Objectives:**

- Familiarize with Hantzsch- Widmann nomenclature of Fused heterocycles. Synthesis and reactivity of five membered heterocycles with two hetero atoms
- Understand synthesis and reactivity of benzofused five membered and six membered heterocycles
- Gain knowledge on structural elucidation, synthesis and biosynthesis of steroids and hormones
- Familiarize with on structural elucidation, synthesis and biosynthesis of flavonoids and isoflavonoids

### Course Outcomes: At the end of the course, the student will be able to

- **CO1** Familiarize with the synthetic routes of five membered heterocycles with two heteroatoms and to justify the site of
- Acquire knowledge on the synthetic methodologies of benzofused and six membered heterocycles and the effect of
- Familiarize with the structural elucidation and synthesis of naturally occurring steroids and hormones
- **CO4** Know about isolation, structural determination and synthesis of flavonoids and isoflavonoids.

#### Mapping of course outcomes with the program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	2	-	2	-	2	-	3
CO2	3	3	3	3	2	2	-	2	-	2	1	3
CO3	3	3	3	3	2	-	-	2	-	-	1	3
CO4	3	3	3	3	2	_	_	2	-	-	1	3

# CHE: OC-405(A): (GENERIC ELECTIVE): HETEROCYCLES AND NATURAL PRODUCTS

#### UNIT-I: NOMENCLATURE AND FIVE MEMBERED HETEROCYCLES 15 HRS

Systematic nomenclature (Hantzsch-Widman nomenclature) for fused and bridged heterocycles, Five membered heterocycles with two heteroatoms: Synthesis and reactions of pyrazole, imidazole, isoxazole, oxazole, isothiazole and thiazole

# UNIT-II: BENZOFUSED FIVE MEMBERED AND SIX MEMBERED HETEROCYCLES 15 HRS

Benzofused five membered heterocycles: Synthesis and reactions of Benzopyrazoles, Benzimidazoles and Benzoxazoles

Six Membered heterocycles with two or more heteroatoms: Synthesis and reactions of diazines (pyridazine, pyrimidine & pyrazine) and triazines (1,2,3-, 1,2,4-1,3,5- triazines)

#### **UNIT-III: STEROIDS AND HORMONES**

**15 HRS** 

Occurrence, nomenclature, basic skeleton, Diel's hydrocarbon and stereochemistry. Isolation, structure determination and synthesis of Cholesterol (total synthesis not expected), Bile acids, Androsterone, Testosterone, Estrone, Progesterone. Biosynthesis of steroids.

Occurrence, nomenclature and general methods of structure determination. Isolation and synthesis of Apigenin, Luteolin, Kaempferol, Quercetin, Butein, Daidzein, Biosynthesis of flavonoids and isoflavonoids: Acetate Pathway and Shikimic acid Pathway. Biological importance of flavonoids and isoflavonoids.

#### **Reference Books:**

- 1. Heterocyclic chemistry Vol. 1-3, R.R. Gupta, M.Kumar and V. Gupta, Springer Verlag.
- 2. The Chemistry of Heterocycles, T. Eicher and S. Hauptmann, Thieme.
- 3. Heterocyclic Chemistry, J.A. Joule, K. Mills and G.F. Smith, Chapman and Hall.
- 4. Heterocyclic Chemistry, T.L. Gilchrist, Longman Scientific Technical.
- 5. Contemporary Heterocyclic Chemistry, G.R. Newkome and W.W. Paudler, Wiley-Inter Science.
- 6. An Introduction to the Heterocyclic Compounds, R.M. Acheson, Jonn Wiley.
- 7. Comprehensive Heterocyclic Chemistry, A.R. Katritzky and C.W. Rees, eds. Pergamon Press.
- 8. Organic Chemistry, Vol. 2, I. L. Finar, ELBS.
- 9. Introduction to Flavonoids TA Geissman.

(Compulsory Foundation)

CHE-	E-OC-405B Bioinorganic, Bioorganic, L-5,T-1,P-0 4 Credits											
					al Cher							
Pre-r	equisite:	Unders	standing	of Bioi	norganio	c, Bioor	ganic, B	Biophysi	cal Che	mistry		
Cours	se Objec	tives:										
• Hi	ghlighten	metal c	complex	es as ox	ygen ca	rriers an	d electr	on trans	fer in b	iology.		
• M	etal ion t	ransport	t and sto	rage in	biologic	al syste	ms and	importa	nce of t	race met	als in bi	iology.
• Le	arn physi	ologica	l functio	ons of ca	ırbohydı	rates, lip	ids, enz	ymes cl	assifica	tion, ste	reospeci	ificity.
• Th	• The basic concepts of biophysical chemistry in biochemical reactions, exergonic and endergonic											
	reactions.											
Cour	se Outco	mes. A	t the end	d of the	course	the stud	ent will	he able	to			
CO1	Gain kı	nowledg	ge on me	etallo pr	oteins ir	electro	n transf	er proce	sses.			
CO2	Know	the appl	ications	of trace	metal i	ons and	metal io	ons as cl	nelating	agents i	n medic	ine.
CO3	Achiev	e and de	evelop h	ighly st	ereosele	ctive sy	nthesis	of organ	ic comp	ounds a	ınd drug	s by
	adoptin	g envir	onmenta	ılly.								
CO4	Unders	tand the	rmodyn	amics o	f biopol	ymer re	actions	and to c	orrelate	free ene	ergy and	l
	biopoly		rameters									
		Ma	apping o	of cours	se outco	mes wit	h the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	3	3	3	2		2	_	3
CO2	3	3	3	3	3	2	3	_	_	_	3	3
CO3	3	3	3	3	3	3		2	_	2	-	3
CO4	3	3	3	3	3	3	2	2	-	3	3	3
L								L				

# CHE AC-405(B): (GENERIC ELECTIVE): BIOINORGANIC, BIOORGANIC, BIOPHYSICAL CHEMISTRY

#### UNIT-I: BIO-INORGANIC CHEMISTRY-I

CHE OC 405D

**15 Hrs** 

Metal complexes as oxygen carriers –Heme proteins –Hemoglobin and myoglobin –Non heme proteins –hemerythrin and hemocyanin – model synthetic complexes of iron, cobalt and copper. Co-enzymes Vitamin  $B_{12}$ , carboxy peptidase and superoxidedismutase.

**Electron Transfer in Biology:** Structure and functions of metalloproteins in electron transfer processes –catalase –peroxidose –cytochromes and iron –sulphur proteins –synthetic models.

**UNIT – II: BIOINORGANIC CHEMISTRY- II:** Metal ion transport and storage in biological systems, Metal ions in Biology, Molecular mechanism of ion transport across membranes: ionophores, photosynthesis.

**Hydrolytic metalloenzymes:** Carbonic anyhdrase, carboxy peptidase, calcium in control processes, calcium and muscle contraction, calcium and secretion, calcium in blood clotting mechanisms. Therapeutic uses of enzymes.

**Importance of trace metals in biology:** Metal ions as chelating agents in medicine, trace metal ions and metal and non-metal deficiency. Biological nitrogen fixation, in-vivo and in-vitro nitrogen fixation.

**Carbohydrates:** Structure and biological functions of mucopolysaccharides, glycoproteins, and glycolipids- Role of sugars in biological recognition-Blood group substances

**Lipids:** Essential fatty acids-structure and function of triglycerols, Glycerophospholipids, cholesterol, bile acids prostaglandins- composition and functioning of lipoproteins

**Enzymes:** Nomenclature and classification, properties, factors affecting enzyme catalysis, enzyme inhibition- reversible and irreversible inhibition. Uses of enzymes in food drink industry and clinical laboratories.

#### **UNIT-IV: BIOPHYSICAL CHEMISTRY:**

Standard free energy change in biochemical reactions, exergonic and endergonic reactions, hydrolysis of ATP, thermodynamics of biopolymer solutions, chain configuration of bio polymers, and calculation of average dimensions. Membrane equilibrium, ion transport through cell membrane. dialosis and its function. Structure and functions of proteins, enzymes, DNA and RNA in living systems, forces involved in bio polymer interactions, electrostatic forces, hydrophobic forces, molecular expansion, and dispersion forces.

- 1. M.N. Hughes, The Inorganic chemistry of Biological Processes, John wiley and Sons, New York 2nd Edition, 1981.
- 2. A Text book of Biochemistry, A.V.S.S. Rama Rao
- 3. Physical chemistry by Atkenes
- 4. Physical chemistry by Albertz.
- 5. Bio physical chemistry by Van Holde
- 6. Bio Physics by Narayanam
- 7. Organic Chemistry, Vol. 2, I. L. Finar, ELBS.
- 8. Chemistry of Natural Products, P.S. Kalsi, Kalyani Publishers.
- 9. Chemistry of Organic Natural Products, O. P. Agarwal, Vols., 1 & 2, Geol Pubs.
- 10. Natural products Chemistry K.B.G. Torssell, John Wiley, 1983.
- 11. Burger's Medicinal Chemistry, M.E. Wolff, John Wiley
- 12. Medicinal Chemistry, A. Kar, New Age International

CHE O	C 406A	C 406A Drug Chemistry L-3,T-1,P-2 4Credits											
Pre-requisite: Understanding of Drug Chemistry													
Cou	ırse Ob	jectives	<b>::</b>										
• ′	To learn about the natural products as leads for new drugs												
• ]	Determination of cardiovascular drugs												
• '	To study Autacoids												
•	• Interpretation of Antipyretics												
Cours	Course Outcomes: At the end of the course, the student will be able to												
CO1	Know a	about na	tural pr	oducts.									
CO2	CO2 Know Interpretation of cardiovascular drugs.												
CO3	Know t	he Anal	lyzing al	out pro	stagland	dins.							
CO4	Know	the De	efinition	, Class	ification	, Nom	enclatur	e, Struc	cture a	nd Syn	thesis o	of anti-	
	inflamr	natory c											
		Ma	apping o	of cours	se outco	mes wit	th the p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	3	3	-	ı	2	-	-	2	3	
CO2	3	3	3	3	_	2	-	2	-	2	_	3	
CO3	3	3		3	-	3	-	2	-	3	-	3	
CO4	3	-	3	-	3	2	-	-	-	2	-	3	

CHE: OC: 406 (A): (OPEN ELECTIVE): DRUG CHEMISTRY

### UNIT - I: NATURAL PRODUCTS AS LEADS FOR NEW DRUGS

Occurrence, Structure and therapeutic uses of Drugs acting on Central Nervous System

Morphine alkaloids (morphine, codeine, thebaine, heroin, pethidine)

Cannabinoids (9-cannabinol, Tetrahydrocannabinol)

Neuromuscular Blocking Agents (Curare, Decamethonium)

Vinca Alkaloids (Vincristin and Vinblastin), Taxol and Taxotere, podophyllotoxin, Etoposide, Teniposide.

#### UNIT - II: CARDIOVASCULAR DRUGS

Definition, Classification, Nomenclature, Structure and Synthesis.

Cardiac glycosides (ex: Digoxin, Digitoxin);

Antihypertensive drugs (ex: Methyl dopa, Clonidene hydrochloride);

Antiarrhythmic agents (ex: Quinidine sulfate);

Antisympathetic drugs (ex: Propranolol hydrochloride, Verapamil hydrochloride);

Vasopressor drugs (ex: Prenylamine, Buphenine).

### **UNIT – III: AUTACOIDS**

Definition, Occurrence, Isolation, Nomenclature, Classification, Synthesis, Biosynthesis and Stereochemical structures of Prostaglandins. Structural elucidation of PGE₁, PGE₂; Synthesis and biosynthesis of PGE₂, PGF_{2 $\alpha$}.

Structure and Biosynthesis of Thromboxane A2 and Prostacyclin (synthesis not expected).

#### UNIT – IV: ANTI-INFLAMMATORY DRUGS

Definition, Classification, Nomenclature, Structure and Synthesis of Paracetamol, Aspirin (Antipyretic), Salol, Cinchophen, Antipyrene, Phenylbutazone, Indomethacin, Tolmetin, Ibuprofen, Diclofenac and Naproxen.

- 25. Medicinal Chemistry by Ashitosh Kar
- 26. Medicinal Chemistry by D. Sriram, P. Yogeeswari
- 27. Medicinal Chemistry by David A. Williams, Thomas L. Lemke
- 28. Medicinal Chemistry by V. Alagarsamy
- 29. Biochemistry by U. Satyanarayana
- 30. Natural Products Chemistry and Applications by Sujata V. Bhat, B.A. Nagasampagi, S. Meenakshi
- 31. Medicinal Chemistry by V.K. Ahluwalia, Madhu Chopra
- 32. Medicinal Chemistry by Balkishen Razdar
- 33. Advanced Practical Medicinal Chemistry by Ashutosh Kar
- 34. Chemistry of Organic Natural Products by O. P. Agarwal, Vols., 1 & 2, Geol Pubs.
- 35. Chemistry of Natural Products by S. V. Bhat, B.A. Nagasampagi, M. Sivakumar
- 36. Natural Products Chemistry by K.B.G. Torssell, John Wiley, 1983.

#### **Course Objectives:** To learn about the classification of electroanalytical methods Determination of types of currents Principle, instrumentation, reversible and irreversible cyclic voltammograms... Interpretation of Ion selective electrodes **Course Outcomes:** At the end of the course, the student will able to CO₁ Ability to interpret potentiometry and conductometry CO₂ Interpretation of results while adhering to DC Polarography. **CO3** Analysing and compiling the data and results in polarography. CO₄ Familiarize Types of ion sensitive electrodes. Mapping of course outcomes with the program outcomes PO6 PO7 PO₁ PO2 PO4 PO5 PO8 PO10 PO11 PO12 CO₁ 3 3 3 3 3 2 2 3 CO₂ 3 3 3 3 2 2 2 3 -_ -_ CO₃ 3 3 3 3 2 3 3 3 CO₄ 3 3 3 2 2

CHE: OC: 406(B): (OPEN ELECTIVE): ELECTRO ANALYTICAL TECHNIQUES

**Unit I:** Types and Classification of Electro analytical Methods.

- i) **Potentiometry-** Types of electrodes, Hydrogen gas, Calomel, Quin hydrone and glasselectrodes. Determination of pH. Potentiometric titrations.
- **ii)** Conductometry Definition of terms conductivity, specific conductivity, cell constant. Mobility of ions, Conductometric titrations.

**Unit II:** D.C Polarography: Dropping mercury electrode- Instrumentation-polarogram. Types of Currents: Residual, Migration, Limiting. Two and Three electrode assemblies. Ilkovic equation (derivation not necessary) and its consequences. Types of limiting Currents: Adsorption, Diffusion, Kinetic. Applications of polarography in qualitative and quantitative analysis. Analysis of mixtures. Application to inorganic and organic compounds. Determination of stability constants of complexes.

**Unit III:** (i) A.C. polarography (ii) Square-wave polarography (iii) Pulse polarography (iv) Differential pulse polarography(V) Cyclic Voltammetry: Principle, instrumentation, reversible and irreversible cyclic voltammograms.

**Unit IV: Ion selective electrodes:** Ion-sensitive electrodes —types of ion sensitive electrodes —metal based cation and anion sensitive electrodes, solid membrane electrodes. Liquid ion-exchange electrodes, gas sensing membrane electrodes.

- 1. H.W. Willard, LL. Merrit and J.A. Dean: Instrumental Methods of Analysis. Affiliated East-West).
- 2. G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denny. Vogel's Text Book of Quantitative Chemical Analysis (ELBS).
- 3. D.A. Skoog and D.M. West: Principles of Instrumental Analysis (Holt, Rinehart and Wilson).
- 4. J.G. Dick: Analytical Chemistry (Mc Graw Hill).

CHE-P	C- 401	C- 401 Electrochemistry L-5,T-1,P-0 4Credits												
Pre-re	Pre-requisite: Understanding of Electrochemistry													
Cours	Course Objectives:													
	Study industrial electrochemistry, corrosion and methods of prevention													
	Learn about electrochemical batteries and cells and their performance													
	Study on electro kinetics and electro capillary phenomena and electrokinetic effect													
• Fami	amiliarize polarography techniques and chemical passivity													
Cours	e Outcomes : At the end of the course, the student will be able to													
CO1	Know the techniques of deposition of metals, throwing power simultaneous discharge of cations and methods of corrosion protection													
CO2	Learn ab	out elec	ctrochem	ical Batt	eries, fue	el cells a	nd nicke	l-cadmiu	m batter	ies.				
CO3	Understa potential		trical do	ıble laye	r system	s, sedim	entation	potential	, null po	ints of m	etals and	l zeta		
CO4	Calculate	e electro	ochemica	l parame	eters; fan	niliarize	mixed lig	gand syst	tems and	l reversib	le syster	ns.		
	•	Ma	apping	of cours	se outco	mes wit	h the p	rogram	outcon	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	3	3	3	2	-	2	-	-	1	2		
CO2	3	3	3	3	2	-	-	2	-	2	-	3		
CO3	3	3	3	3	3	-	-	2	-	-	-	2		
CO4	3	3	3	3	-	2	-	-	-	-	-	3		

CHE PC-401: CORE THEORY: ELECTROCHEMISTRY

# **UNIT-I: Industrial Electrochemistry**

**15 Hrs** 

Deposition of metals, Factors influencing physical nature of electrodeposited metals – current density, concentration of electrolyte, temperature, colloidal matter, electrolyte and basis metal. Throwing power, simultaneous discharge of cations. Separation of metals by electrolysis. Electrochemical passivity. Passivity and current density. Chemical passivity. Theories of passivity. Mechanical passivity. The corrosion of metals. Hydrogen evolution type of corrosion, corrosion in presence of depolarizer. Differential oxygenation corrosion. Methods of corrosion protection.

#### **UNIT- II: Electrochemical Devices:**

15 Hr

Batteries- their performance – characteristics – considerations in the selection and applications, Chemistry of primary batteries – Zinc – Carbon, Mercuric oxide, silver oxide and lithium cells – Solid electrolyte cells.

 $\label{lem:chemistry} Chemistry \ of secondary \ batteries - Lead \ acid \ , \ Nickel \ cadmium \ batteries, \ Water \ activated \ batteries, \ Fuel \ cells - Their \ thermodynamics-performance$ 

# **UNIT-III:** Electrokinetic's and Electro capillary phenomena:

**15 Hrs** 

Electrical double layer, Helmholtz – Perrin, Gouy – Chapman and Stern theories of electrical double layer. Lipmann equation.

**Electrokinetic effect:** Electro osmosis, Electrophoresis, streaming potential , sedimentation potential and their relation to zeta potential. Determination of zeta potential from electrophoresis measurements. Tiselius apparatus. Electro capillary curves, Null points of metals and their experimental determination.

# **UNIT-IV**: Advances in Polarography:

#### **15 Hrs**

# (A) Polarography of Metal Complexes

Reversible, Diffusion-controlled systems, Determination of Formulae and Stability, Constants of Complexed Metal Ions, Determination of Stability Constants and Coordination Numbers of metal complexes, Calculation of Individual Complex, Stability Constants, Mixed Ligand Systems- the Method of Schaap and Mcmasters

# (B) Polarography of organic compounds

Structural Effects, Nature of Electroactive group, Steric Effects, substituent Effects.

- 1. S. Glasstone. An introduction to Electrochemistry. Affiliated East-West Press Pvt. Ltd.
- 2. P.T.K. Kissinger, W.R. Heinemann. Laboratory Techniques in Electro analytical Chemistry, Marsal Debber, Inc.
- 3. Willard, Merit. Instrumental methods of analysis, Welowarth Publiching Co.,
- 4. L. Antropov. Theoretical Electrochemistry. Mir Publications.
- 5. Silbey, Alberty, Bawendi. Physical chemistry. Jhon-Wiley & sons. 4th edition-2006.
- 6. V.S. Bagotsky. Fundamental of Electrochemistry. Jhon Wiley & Sons. 2nd editions-2006.
- 7. Introduction to polarography and allied Technique by Dr.K. Zutshi

			Sol	id-state	Chemis	stry							
Pre-re	equisite	: Und	erstandi	ng of T	hermody	namics	, Poly	mers and	Solid-st	ate Cher	nistry		
Cou	Course Objectives:												
• '	• To learn thermodynamic Properties of fluids, phase equilibria and flash calculations.												
• '	Thermodynamic properties of liquids, activity and activity coefficients.												
•	Polymer structures, morphology and properties.												
• '	To get knowledge on concept of solid state chemistry and super conductance.												
Cours	ourse Outcomes: At the end of the course, the student will be able to												
CO1	CO1 Derive Gibbs Duhem equation and to calculate fugacity and chemical potential.												
CO2													
	functions and activity coefficients												
CO3	-												
	cross	inking	in poly	mers.									
CO4	Identi	fy mag	netic pro	operties	of solids	s, magn	etic m	aterials,	supercon	ductors	and BCS	S theory	
		N	<b>Aappin</b>	g of cou	ırse outo	comes v	vith th	ne progra	am outc	omes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	3	2	-	-	-	-	1	-	3	
CO2	3	3	3	2	2	-	-		-	-	1	3	
CO3	3	3	2	2	2	-	-	-	-	2	-	2	
CO4	3	3	3	2	2	-	-	-	-	2	-	1	

CHE PC-402: CORE THEORY: THERMODYNAMICS, POLYMERS AND SOLID STATE CHEMISTRY

# **UNIT-I:** Thermodynamic properties of fluids:

15 Hrs

Thermodynamic relationship residual properties – systems of variable composition- ideal and non-ideal behaviour – fugacity-fugacity coefficient in solutions- Phase equilibrium of low to moderate pressures- dew point-bubble point and flash calculations.

## UNIT – II: Thermodynamic properties of 'Liquid Mixtures 15 Hrs

Activity and activity coefficients-excess free energy-excess enthalpy-excess volume-excess entropy-relation between excess functions and activity coefficients —Application of Gibbs-Deuhem equation-regular solutions —van Laar theory and Scachard-Hildebrand theory.

## **UNIT-III: Polymers- structure and properties**

**15 Hrs** 

Morphology and order in crystalline polymers, configuration of Polymer chains, crystal structures and polymers, Stain induced morphology, morphology of chrystalline polymers, crystallisation and melting- polymer structure and physical properties, crystalline melting point,  $T_m$ -melting point of homogeneous series, effect of chain flexibility and other steric factors- entropy and heat of fusion, the glass transition temperature, Tg, relationship between Tm and Tg effects of molecular weight, diluents, chemical structure, chain topology, branching and cross linking.

# **UNIT-IV: Solid State Chemistry**

**15 Hrs** 

Magnetic properties of solids- Classification of magnetic materials, Magnetic Susceptibility, Langevin diamagnetism, Weiss theory of para magnetism. Electronic properties of metals, insulators and semiconductors: Electronic Structure of solids, Band theory, band Structure of metals, insulators and semiconductors. Electrons, holes and Excitons. The temperature dependence of conductivity of extrinsic semiconductors. Photo conductivity and photovoltaic effect –P-n-

Junctions. Super conductivity: Occurence of superconductivity. Destruction of Superconductivity by magnetic fields-Meisner effect. Types of superconductors. Theories of super conductivity BCS theory.

- 1. J.M. Pransnitz. Molecular Thermodynamics of Fluid Phase Equilibrium. Prentice. Hall
- 2. Kuriocose and Rajram. Thermodynamics
- 3. Smith and Van Ners. Chemical Thermodynamics.
- 4. R.C. Srivastava, Subi. K. Saha. Thermodynamics-A care course. Prentice-Hall of India Pvt, Ltd,. 3rd edition-2007.
- 5. Silbey, Alberty, Bawendi. Physical chemistry. Jhon-Wiley & sons. 4th edition-2006.
- 6. F. W. Billmeyer, Jr.: Text Book of Polymer Science. Wiley Interscience.
- 7. V. R. Gowariker, N. V. Viswanathan, Jayadev Sreedhar.: polymer Science. New Age international Publishers.
- 8. Solid State chemistry by M.G. Arora.
- 9. Solid State Chemistry by Wiley.

		l In	organic	<b>Chemi</b>	istry - P	ractical	,							
Pre-requisite: Understanding of Inorganic Chemistry - Practical.														
Cours	Course Objectives:													
•	<ul> <li>Learn potentiometric titrations of mixture of acids</li> </ul>													
•	Determination of electrode potential by polarography													
•	Gain kn	owledge	e on inte	rpretati	on of da	ta from	IR, AA	S, HPLO	C and G	C				
•	Determ	ination c	of alkani	lity and	purity 1	by pH m	etry							
	Determination of alkanility and purity by pH metry													
Cours	e Outco	omes: A	t the end	d of the	course,	the stud	ent will	be able						
CO1	Ourse Outcomes: At the end of the course, the student will be able To perform titration of mixture of halides and to draw potentiometry curves													
CO2	1 ,													
CO3	To Co	relation	of data	obtaine	d from l	R, AAS	, HPLC	and GO						
CO4	To Det	erminat	ion of al	kanility	and pu	rity by p	H metry	y						
	•	Ma	apping	of cour	se outco	mes wit	th the p	rogram	outcon	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	1	2	3	-	ı	2	-	2	-	3		
CO2	3	3	3	2	3	2	. 1	_	_	2	3	3		
CO3	3	2	3	3	2	3	-	2	-		2	3		
CO4	3	3	3	2	3	3	-	2	_	2		3		

L-5,T-1,P-0

4 Credits

# CHE PC 403: CORE PRACTICALS: <u>PRACTICAL – I-</u>

1. Potentiometry: a) Titration of mixture of acids

**CHE PC 403** 

- b) Titration of mixture of halides
- c) Titration of ferrous ammonium sulphate with potassium dichromate
- d) Redox titrations
- e) Solubility of Sparingly soluble salt.
- f) Formula and instability constant of a complex

**Core practical I:** 

- g) Dissociation constant of acetic acid
- 2. Polarography: a) Determination of E1/2 of Zn and Cd
  - b) Determination of Zn and Cd in mixture
  - c) Amperometric titration.

# II <u>DEMONSTRATION EXPERIMENTS</u>

- 1. IR Interpretation of IR spectrum of alcohols, ketones, aldehydes and other standard materials
- 2. AAS: Demonstration of AAS Determination of Zn, Cd, Pb, Mn, Fe and Ni in effluents using AAS.
- 3. Spectrofluorimetry estimation of quinine and fluoroscene
- 4. Ion selective electrodes estimation of F⁻, S²⁻ and CN⁻ in effluents using ion selective electrode meter.
- 5. Polarography and Anode stripping voltametry
- 6. Polarography and Anode stripping voltametry behavior of Cd, Zn, Pb in a mixture.
- 7. Determination of Pb and Cd in samples using Anode stripping voltametr
- 8. Gas chromatography- Determination of pesticides
- 9. HPLC- Determination of pesticides
- 10. NMR
- 11. (a)Demonstration of NMR spectrometer and study of hydrogen bonding in a given alcohol or phenol.

- 12. (b)Interpretation of NMR chemical shifts of ethyl benzene, ethyl alcohol.
- 13. TGA, DTA, DSC Demonstration of TG, DTA and DSC and study of decomposition of calcium oxalate, calcium carbonate, copper sulfate, oxalic acid.

# 14. pH metry

- a. Determination of alkalinity in a colored effluent using pH metric end point.
- b. Determination of purity of commercial HCl,  $H_2SO_4$ ,  $H_3PO_4$  and  $CH_3COOH$  using  $\ pH$  metric end point

CHE P	C 404	404 Project Work L-5,T-1,P-0 4 Credits												
Pre-re	equisite	Physic	al Chem	istry Pr	oject W	ork								
Cours	se Objec	tives:												
	Identific		proble	m by lite	erature s	urvey								
	Carry or					•								
	Interpre			1	J									
	Commu			arch res	ults thro	ugh pre	sentatio	ns and r	renarati	on of di	ssertatio	on		
Cours	c Oute	Outcomes: At the end of the course, the student will be able												
CO1	To idon	tify roso	arch prob	lome on	d to colle	of recent	oh litoro	turo						
COI	10 lucii	To identify research problems and to collect research literature												
CO2	To propose hypothesis of a research problem													
CO ₃	To perf	orm rese	arch exp	eriments										
CO4	To anal	vse the d	ata and o	conclude	the research	arch outc	comes							
	10 41141													
		Ma	apping	of cours	se outco	mes wit	th the p	rogram	outcon	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	3	3	2	2	3	2	-	_	-	3		
	_	3 3 3 3 2 2 3 2 3												
CO ₂														
CO2	3	3	3	3	3	2	3	2	-	-	2	3		
CO3	3	3	3	3	3	3	3 2	3	-	2	2	3		

# CHE PC 404: PRACTIAL II/ PROJECT WORK

CHE-PC-405A	<b>Chemical Kinetics</b>	L-3,T-1,P-2	4Credits
Pre-requisite: U	Inderstanding of Chemical kinetics		

Cours	Course Objectives:													
	• Differentiate homogeneous and heterogeneous catalysis enzyme catalysis and applications													
	• Learn photo chemistry, chemical excitations and rate of photochemical reactions													
	<ul> <li>To familiarize electrochemical relaxation methods, photochemical and isotope effects</li> </ul>													
	<ul> <li>Radical photochemical reactions, theory and applications</li> </ul>													
	1 11													
Cours	Course Outcomes: At the end of the course, the student will be able to													
CO1	Draw skrabal pH diagram and to separate unimolecular and bimolecular reactions													
CO2	Study la	ws of pl	otochen	nistry, to	derive s	tern-volr	ner equa	tion						
CO3	Identify	chromo	potentio	metry po	oints and	to inves	tigate kir	netic curi	rents and	l isotopic	effects			
CO4	Learn p	hotocher	nical thr	esholds,	chemilu	minescer	ice							
	•	Ma	apping	of cours	se outco	mes wit	th the p	rogram	outcon	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	3	3	2	-	-	-	-	1	2	1		
CO2	3	3	3	3		2	-	-	-	1	-	2		
CO3	3	3	3	3	2	2	-	-	-	-	-	2		
CO4	3	3	3	3	2	_	_	_	_	_	2	2		

#### **CHE PC-405A: (GENERIC ELECTIVE): CHEMICAL KINETICS**

# UNIT – I: Catalysis 15 Hrs

**Homogeneous catalysis:** Steady state and equilibrium treatments of acid-base catalysis. Skrabal P^H diagrams, Protolytic and Prototropic mechanism. Acidity functions, Zucker, Hammett, Bunnett and Yates hypothesis in the elucidation of the mechanism. Enzyme catalysis – influence of concentration, P^H and temperature. **Heterogeneous Catalysis:** Mechanism of interface reactions, application of transition state theories to unimolecular and bimolecular surface reactions

## **UNIT – II: Photochemistry:**

**15 Hrs** 

Interaction of electromagnetic radiation with matter, laws of photochemistry, Quantum yield, types of excitations, Fate of excited molecule, transfer of excitation energy, kinetics of unimolecular and bimolecular photophysical process, Stern-Volmer equation, Kinetics of photochemical reaction rate constants and life times of reactive energy states, determination of rate constants of reactions, effect of light intensity on the rate of photochemical reactions.

# UNIT-III: Electrochemical relaxation methods, Photochemical methods, Isoptopic effect 15 Hrs

**Electrochemical relaxation methods:**Introduction, advantages of Electrochemical transient (or) relaxation techniques, application of these methods, various types of perturbation of a system, pulse polarography, chronopotentiametry, investigation of kinetic currents by chronopotentiametry.

**Photochemical methods**: Introduction , phenomena of ISC, fluorescence and phosphorescence, experimental arrangement of fluorescence measurements. Example of quenching reactions.

**Isotopic Effects**: Equilibrium isotope effects, equilibria in solution, primary kinetic isotopic effects semiclassical treatments, Quantum-mechanical Tunneling,Reactions of the Type H+H₂,Transfer of H⁺,H and H⁻ reactions of Huonium,Isotope effect with Havier atoms.

#### **Unit-IV: Photo Chemical and Radiation Chemical Reactions** 15 Hrs

Photochemical reactions photochemical primary process, reactions of electronically excited states of species, photo chemical thresholds, laws of photochemical equivalence, rotating-sector technique, multi photon excitation, photosensitization, radiation chemical primary process,

# chemiluminiscence.

- 1. K.K. Rohatgi Mukerjee. Fundamentals of Photochemistry.
- 2. C. Kalidas. Principles of fast reactions techniques and Applications.
- 3. V. Yegnaramam, C.A. Basha And G. Prabhakar Rao: Applications of Electrochemistry.
- 4. Keith J.Laidler: Chemical Kinetics.
- 5. J. Dalton: A New System of Chemical Philosophy.
- 6. Chemical Kinetics: Keith J. Laider.

(Compulsory Foundation)

CHE-I	PC-405B Bioinorganic, Bioorganic, L-5,T-1,P-0 4 Credits Biophysical Chemistry													
Pre-r	Pre-requisite: Understanding of Bioinorganic, Bioorganic, Biophysical Chemistry													
Cours	se Objec	tives:												
• Hig	ghlighter	metal o	complex	es as ox	ygen ca	rriers an	d electr	on trans	fer in b	iology.				
• M	Metal ion transport and storage in biological systems and importance of trace metals in biology.													
• Lea	• Learn physiological functions of carbohydrates, lipids, enzymes classification, stereospecificity.													
• The	• The basic concepts of biophysical chemistry in biochemical reactions, exergonic and endergonic													
	reactions.													
Cour														
	Course Outcomes: At the end of the course, the student will be able to													
CO1	CO1 Gain knowledge on metallo proteins in electron transfer processes.													
CO2	Know	the appl	ications	of trace	metal i	ons and	metal ic	ons as cl	nelating	agents i	n medic	ine.		
CO3	Achiev	e and de	evelop h	ighly st	ereosele	ctive sy	nthesis	of organ	ic comp	ounds a	ınd drug	s by		
	adoptin	ig envir	onmenta	ılly.										
CO4	Unders	tand the	rmodyn	amics o	f biopol	ymer re	actions	and to c	orrelate	free ene	ergy and	1		
	biopoly		rameters											
		Ma	apping o	of cours	se outco	mes wit	h the p	rogram	outcon	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	2	3		2		2		1	1	1		
CO ₂	3	3	3	3	_	2		2	-		1	3		
CO3	3	3	3	2	2			3	_	1	1	3		
CO4	3	2	2	3	2	2	_		-	2	-	1		

# CHE PC-405(B): (GENERIC ELECTIVE): BIOINORGANIC, BIOORGANIC, BIOPHYSICAL CHEMISTRY

#### UNIT-I: BIO-INORGANIC CHEMISTRY-I

**15 Hrs** 

Metal complexes as oxygen carriers –Heme proteins –Hemoglobin and myoglobin –Non heme proteins –hemerythrin and hemocyanin – model synthetic complexes of iron, cobalt and copper. Co-enzymes Vitamin  $B_{12}$ , carboxy peptidase and superoxidedismutase.

**Electron Transfer in Biology:** Structure and functions of metalloproteins in electron transfer processes –catalase –peroxidose –cytochromes and iron –sulphur proteins –synthetic models.

**UNIT – II: BIOINORGANIC CHEMISTRY- II:** Metal ion transport and storage in biological systems, Metal ions in Biology, Molecular mechanism of ion transport across membranes: ionophores, photosynthesis.

**Hydrolytic metalloenzymes:** Carbonic anyhdrase, carboxy peptidase, calcium in control processes, calcium and muscle contraction, calcium and secretion, calcium in blood clotting mechanisms. Therapeutic uses of enzymes.

**Importance of trace metals in biology:** Metal ions as chelating agents in medicine, trace metal ions and metal and non-metal deficiency. Biological nitrogen fixation, in-vivo and in-vitro nitrogen fixation.

**Carbohydrates:** Structure and biological functions of mucopolysaccharides, glycoproteins, and glycolipids- Role of sugars in biological recognition-Blood group substances

**Lipids:** Essential fatty acids-structure and function of triglycerols, Glycerophospholipids, cholesterol, bile acids prostaglandins- composition and functioning of lipoproteins

**Enzymes:** Nomenclature and classification, properties, factors affecting enzyme catalysis, enzyme inhibition- reversible and irreversible inhibition. Uses of enzymes in food drink industry and clinical laboratories.

#### **UNIT-IV: BIOPHYSICAL CHEMISTRY:**

Standard free energy change in biochemical reactions, exergonic and endergonic reactions, hydrolysis of ATP, thermodynamics of biopolymer solutions, chain configuration of bio polymers, and calculation of average dimensions. Membrane equilibrium, ion transport through cell membrane. dialosis and its function. Structure and functions of proteins, enzymes, DNA and RNA in living systems, forces involved in bio polymer interactions, electrostatic forces, hydrophobic forces, molecular expansion, and dispersion forces.

- 1. M.N. Hughes, The Inorganic chemistry of Biological Processes, John wiley and Sons, New York 2nd Edition, 1981.
- 2. A Text book of Biochemistry, A.V.S.S. Rama Rao
- 3. Physical chemistry by Atkenes
- 4. Physical chemistry by Albertz.
- 5. Bio physical chemistry by Van Holde
- 6. Bio Physics by Narayanam
- 7. Organic Chemistry, Vol. 2, I. L. Finar, ELBS.
- 8. Chemistry of Natural Products, P.S. Kalsi, Kalyani Publishers.
- 9. Chemistry of Organic Natural Products, O. P. Agarwal, Vols., 1 & 2, Geol Pubs.
- 10. Natural products Chemistry K.B.G. Torssell, John Wiley, 1983.
- 11. Burger's Medicinal Chemistry, M.E. Wolff, John Wiley
- 12. Medicinal Chemistry, A. Kar, New Age International

CHE P	C 406A	406A Drug Chemistry L-3,T-1,P-2 4Credits											
Pre-requisite: Understanding of Drug Chemistry													
Cou	ırse Ob	jectives	<b>::</b>										
• ′	To learn about the natural products as leads for new drugs												
• ]	Determination of cardiovascular drugs												
• '	To study Autacoids												
•	Interpretation of Antipyretics												
Cours	ourse Outcomes: At the end of the course, the student will be able to												
CO1	Know a	about na	tural pr	oducts.									
CO2	CO2 Know Interpretation of cardiovascular drugs.												
CO3	Know t	he Anal	lyzing al	bout pro	stagland	dins.							
CO4	Know	the De	efinition	, Class	ification	, Nom	enclatur	e, Struc	cture a	nd Syn	thesis o	of anti-	
	inflamr	natory c											
		Ma	apping o	of cours	se outco	mes wit	th the p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	3	3	-	ı	2	-	-	2	3	
CO2	3	3	3	3	_	2	-	2	-	2	_	3	
CO3	3	3		3	-	3	-	2	-	3	-	3	
CO4	3	-	3	-	3	2	-	-	-	2	-	3	

CHE: PC: 406 (A): (OPEN ELECTIVE): DRUG CHEMISTRY

### UNIT - I: NATURAL PRODUCTS AS LEADS FOR NEW DRUGS

Occurrence, Structure and therapeutic uses of Drugs acting on Central Nervous System

Morphine alkaloids (morphine, codeine, thebaine, heroin, pethidine)

Cannabinoids (9-cannabinol, Tetrahydrocannabinol)

Neuromuscular Blocking Agents (Curare, Decamethonium)

Vinca Alkaloids (Vincristin and Vinblastin), Taxol and Taxotere, podophyllotoxin, Etoposide, Teniposide.

#### UNIT - II: CARDIOVASCULAR DRUGS

Definition, Classification, Nomenclature, Structure and Synthesis.

Cardiac glycosides (ex: Digoxin, Digitoxin);

Antihypertensive drugs (ex: Methyl dopa, Clonidene hydrochloride);

Antiarrhythmic agents (ex: Quinidine sulfate);

Antisympathetic drugs (ex: Propranolol hydrochloride, Verapamil hydrochloride);

Vasopressor drugs (ex: Prenylamine, Buphenine).

### **UNIT – III: AUTACOIDS**

Definition, Occurrence, Isolation, Nomenclature, Classification, Synthesis, Biosynthesis and Stereochemical structures of Prostaglandins. Structural elucidation of  $PGE_1$ ,  $PGE_2$ ; Synthesis and biosynthesis of  $PGE_2$ ,  $PGF_{2\alpha}$ .

Structure and Biosynthesis of Thromboxane A2 and Prostacyclin (synthesis not expected).

#### UNIT – IV: ANTI-INFLAMMATORY DRUGS

Definition, Classification, Nomenclature, Structure and Synthesis of Paracetamol, Aspirin (Antipyretic), Salol, Cinchophen, Antipyrene, Phenylbutazone, Indomethacin, Tolmetin, Ibuprofen, Diclofenac and Naproxen.

- 1. Medicinal Chemistry by Ashitosh Kar
- 2. Medicinal Chemistry by D. Sriram, P. Yogeeswari
- 3. Medicinal Chemistry by David A. Williams, Thomas L. Lemke
- 4. Medicinal Chemistry by V. Alagarsamy
- 5. Biochemistry by U. Satyanarayana
- 6. Natural Products Chemistry and Applications by Sujata V. Bhat, B.A. Nagasampagi, S. Meenakshi
- 7. Medicinal Chemistry by V.K. Ahluwalia, Madhu Chopra
- 8. Medicinal Chemistry by Balkishen Razdar
- 9. Advanced Practical Medicinal Chemistry by Ashutosh Kar
- 10. Chemistry of Organic Natural Products by O. P. Agarwal, Vols., 1 & 2, Geol Pubs.
- 11. Chemistry of Natural Products by S. V. Bhat, B.A. Nagasampagi, M. Sivakumar
- 12. Natural Products Chemistry by K.B.G. Torssell, John Wiley, 1983.

<b>CHE PC 406 B</b>	Electroanalytical Techniques	L-5,T-1,P-0	4 Credits
Pre-requisite: Un	nderstanding of Electroanalytical Techi	niques	

#### **Course Objectives:** To learn about the classification of electroanalytical methods Determination of types of currents Principle, instrumentation, reversible and irreversible cyclic voltammograms... Interpretation of Ion selective electrodes **Course Outcomes:** At the end of the course, the student will able to CO₁ Ability to interpret potentiometry and conductometry CO₂ Interpretation of results while adhering to DC Polarography. **CO3** Analysing and compiling the data and results in polarography. CO₄ Familiarize Types of ion sensitive electrodes. Mapping of course outcomes with the program outcomes PO₁ PO2 PO4 PO5 PO6 PO7 PO8 PO3 PO9 PO10 PO11 PO12 CO₁ 3 3 3 3 3 _ 2 2 3 CO₂ 3 3 3 2 3 2 2 3 _ -_ -CO₃ 3 3 3 3 2 3 3 CO₄ 3 3 3 2 3

CHE: PC: 406 (B): (OPEN ELECTIVE): ELECTRO ANALYTICAL TECHNIQUES

**Unit I:** Types and Classification of Electro analytical Methods.

- i) **Potentiometry-** Types of electrodes, Hydrogen gas, Calomel, Quin hydrone and glasselectrodes. Determination of pH. Potentiometric titrations.
- **ii)** Conductometry Definition of terms conductivity, specific conductivity, cell constant. Mobility of ions, Conductometric titrations.

**Unit II:** D.C Polarography:. Dropping mercury electrode- Instrumentation-polarogram. Types of Currents: Residual, Migration, Limiting. Two and Three electrode assemblies. Ilkovic equation(derivation not necessary) and its consequences. Types of limiting Currents: Adsorption, Diffusion, Kinetic. Applications of polarography in qualitative and quantitative analysis. Analysis of mixtures. Application to inorganic and organic compounds. Determination of stability constants of complexes.

**Unit III:** (i) A.C. polarography (ii) Square-wave polarography (iii) Pulse polarography (iv) Differential pulse polarography(V) Cyclic Voltammetry: Principle, instrumentation, reversible and irreversible cyclic voltammograms.

**Unit IV: Ion selective electrodes:** Ion-sensitive electrodes —types of ion sensitive electrodes —metal based cation and anion sensitive electrodes, solid membrane electrodes. Liquid ion-exchange electrodes, gas sensing membrane electrodes.

- 1. H.W. Willard, LL. Merrit and J.A. Dean: Instrumental Methods of Analysis. Affiliated East-West).
- 2. G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denny. Vogel's Text Book of Quantitative Chemical Analysis (ELBS).
- 3. D.A. Skoog and D.M. West: Principles of Instrumental Analysis (Holt, Rinehart and Wilson).
- 4. J.G. Dick: Analytical Chemistry (Mc Graw Hill).