SRI VENKATESWARA UNIVERSITY:: TIRUPATI SVU COLLEGE OF SCIENCES DEPARTMENT OF CHEMISTRY

Syllabus for M.Sc. CHEMISTRY Choice Based Credit System (CBCS) (w.e.f. the Academic Year 2020-2021) Impart quality education & training in the field of chemistry to enable successful careers for the post graduate students in the field of research, education & industry applications of chemical sciences.

Mission

The Department of Chemistry strives:

- To get an ideal balance between knowledge creation and knowledge dissemination in the chemical sciences with a focus to train and mentor students to become responsible scientists and scientifically literate professionals to attain National and International impact.
- To contribute to the improvement of scientific and technological literacy, and the development of critical-thinking and problem-solving skills of all students in order to compete for the world of work and responsible citizenship

PROGRAM EDUCATIONAL OBJECTIVES:

At the end of the program, the student wills be able to:

PEO1	To demonstrate broad knowledge of descriptive chemistry.
PEO2	To impart basic analytical and technical skills to work effectively in various fields of chemistry.
PEO3	To motivate critical thinking and analysis skills to solve complex problems viz.,
	problem solving etc.
PEO4	To demonstrate an ability to conduct experiments in the above sub disciplines with
	mastery of appropriate techniques and proficiency using core chemical
	instrumentation and modeling method
PEO5	To develop laboratory competence in relating chemical structure to spectroscopic
	phenomena.
PEO6	To demonstrate the ability to synthesize, separate and characterize compounds using
	published reactions, protocols, standard laboratory equipment and modern
	instrumentation.

PROGRAM OUTCOMES: On completion of M.Sc. Chemistry programme, graduates will be able to -

PO1	Have a firm foundation in the fundamentals and application of current chemical and
	scientific theories in different areas of chemistry viz., Analytical, Environmental,
	Inorganic, Organic and Physical.
PO2	Understands the background of organic reaction mechanisms, complex chemical
	structures, and instrumental methods of chemical analysis, molecular rearrangements
	and separation techniques.
PO3	Familiarize with the importance of various elements present in the periodic table,
	coordination chemistry and structure of molecules, properties of compounds,
	structural determination of complexes using theories and instruments.
PO4	Understand about the physical aspects of atomic structure, dual behavior, reaction
	pathways with respect to time, various energy transformations, molecular assembly
	in nano-level, significance of electrochemistry, molecular segregation using their
	symmetry.
PO5	Create awareness and sense of responsibilities towards environment and apply
	knowledge to solve the issues related to Environmental pollution.

PO6	Continue to acquire relevant knowledge and skills appropriate to professional activities and demonstrate highest standards of ethical issues in the subject concerned. Ability to identify unethical behavior such as fabrication, falsification or misrepresentation of data and adoptive objective, unbiased and truthful actions in all aspects.
PO7	Be skilled in problem solving, critical thinking and analytical reasoning as applied to scientific problems.
PO8	Clearly communicate the results of scientific work in oral, written and electronic formats.
PO9	Explore new areas of research in both chemistry and allied fields of science and technology.
PO10	Design, analyze and carry out scientific experiments and interpret data to provide solutions to different industrial problems.
PO11	Independently carry out research to solve practical problems and present a substantial technical report.
PO12	Ability to think, acquire knowledge and skills through logical reasoning and to inculcate the habit of self-learning throughout life, through self- paced and self-directed learning aimed at personal development, and adapting to change academic demands of work place through knowledge/ skill development/ reskilling.

PROGRAM SPECIFIC OUTCOMES: At the end of the program, the student will be able to:

PSO1	Scientific Problem solving skills: Deep knowledge of the topic which can develop
	the problem solving skills using chemical principles.
PSO2	Analytical skills: Develop analytical skills such as synthesizing, separating,
	characterizing chemical compounds and chemical reactions with the help of
	sophisticated instruments
PSO3	Research skills: Develop research skills through dissertation/project work in
	different fields of chemistry such as organic, inorganic, analytical, physical and
	environmental.
PSO4	Learning skills on life processes: Acquire advanced level of knowledge in natural
	products as well as biological systems from the chemistry point of view.

S.V. UNIVERSITY, TIRUPATI SVU COLLEGE OF SCIENCES <u>M.Sc., CHEMISTRY</u> CBCS Pattern (With effect from 2020-21) The course of Study and Scheme of Examinations

Sl. No.	Course Code	Components of Study	Title of the Course	No. of Credits	IA Marks	End SEM Exam Marks	Total
1	CHE- 101	Core-Theory	Inorganic Chemistry- I	4	20	80	100
2	CHE- 102	Core-Theory	Organic Chemistry I	4	20	80	100
3	CHE- 103	Core-Theory	Physical Chemistry- I	4	20	80	100
4	CHE- 104	Core-Practical	Inorganic Practical- I	2	-	-	50
5	CHE- 105	Core-Practical	Organic Practical-I	2	-	-	50
6	CHE- 106	Core-Practical	Physical Practical I	2	-	-	50
7	CHE- 107	Compulsory Foundation	General Chemistry-I	2	10	40	50
6	CHE- 108	Elective Foundation	han Values and Professional Ethics – I	4	20	80	100
		Total		24			600

SEMESTER-I

SEMESTER-II

SI.	Course	Components of	Title of the Course	No. of	IA Mortea	End	Total
190.	Code	Study	The of the Course	Creans	WALKS	Exam	
						Marks	
1	CHE-	Core-Theory	Inorganic Chemistry- II	4	20	80	100
-	201	~ ~			• •		100
2	CHE- 202	Core-Theory	Organic Chemistry -II	4	20	80	100
3	CHE	Core Theory	Physical Chemistry II	1	20	80	100
5	203	Cole-Theory	Thysical Chemistry- II	+	20	80	100
4	CHE-	Core-Practical	Inorganic Practical- II	2	-	-	50
	204		-				
5	CHE-	Core-Practical	Organic Practical-II	2	-	-	50
	205		_				
6	CHE-	Core-Practical	Physical Practical -II	2	-	-	50
	206						
7	CHE-	Compulsory	General Chemistry-II	2	10	40	50
	207	Foundation					
6	CHE-	Elective	han Values and Professional	4	20	80	100
	208	Foundation	Ethics – II				
		Total		24			600

M Sc., (ANALYTICAL CHEMISTRY) SEMESTER-III

	Course Code	Components of Study	Title of the Course	No. of Credits	IA Marks	End SEM Exam Marks	Total
1	CHE- AC-301	Core-Theory	Inorganic Spectroscopy & Thermal Methods of Analysis	4	20	80	100
2	CHE- AC - 302	Core-Theory	Organic Spectroscopy	4	20	80	100
3	CHE- AC-303	Core-Practical	Classical Methods of Analysis	4	-	-	100
4	CHE- AC-304	Core-Practical	Instrumental Methods of Analysis-I	4	-	-	100
5	CHE- 305	Generic Elective* (Related to subject)	(a) Organic Chemistry III	4	20 20	80 80	100 100
		U /	(b)Physical Chemistry III (c)Green Chemistry				
6	CHE- 306	Open Elective (For other departments)	 (a) Spectral Techniques or (b) Chromatographic Techniques 	4	20	80	100
		Total		24			600

Course Code	Components of Study	Title of the Course	No. of Credits	IA Marks	End SEM
					Marks
CHE- AC-401	Core-Theory	Quality control and General principles	4	20	80
CHE- AC-402	Core-Theory	Instrumental Methods of Analysis	4	20	80
CHE- AC-403	Core-Practical	Instrumental Methods of Analysis-II	4	-	-
CHE- AC-404	Core-Practical/ Project work	Project work	4	-	-
CHE-	Generic Elective*	(a) Applied and	4	20	80
405	(Related to subject)	Environmental aspects	4	20	80
		(b) Bioinorganic,			

Bioorganic & Biophysical Chemistry

(c) Chemistry of Nanomaterials & Functional meterials

(a)Drug Chemistry

or

(b) Electroanalytical Techniques 4

24

20

80

1

2

3

4

5

6

CHE-

406

Open Elective*

(For other

departments)

Total

SEMESTER-IV

Total

100

100

100

100

100 100

100

600

*Among the Generic Elective a student shall choose any two.

M Sc., (ENVIRONMENTAL CHEMISTRY) SEMESTER-III Course Components of No. of IA End

	Code	Study	Title of the Course	Credits	Marks	SEM	
		-				Exam	
						Marks	
1	CHE-	Core-Theory	Physical Chemistry III	4	20	80	100
	EC-301						
2	CHE-	Core-Theory	Spectroscopy Applications	4	20	80	100
	EC-302						
3	CHE-	Core-Practical	Water Analysis	4	-	-	100
	EC-303						
4	CHE-	Core-Practical	Instrumental Methods of	4	-	-	100
	EC-304		Analysis-I				
5	CHE-	Generic Elective*	(a) Organic Chemistry III	4	20	80	100
	305	(Related to					
		subject)	Inorganic Spectroscopy &	4	20	80	100
		•	Thermal Methods of Analysis				
			(c) Green Chemistry				
6	CHE-	Open Elective	(a) Spectral Techniques	4	20	80	100
	306	(For other	or				
		departments)	(b) Chromatographic				
			Techniques				
		Total		24			600

	Course	Components of		No. of	IA	End	Total
	Code	Study	Title of the Course	Credits	Marks	SEM Evom	
						Exam Marks	
1	CHE-EC-	Core-Theory	Water pollution Monitoring	4	20	80	100
	401		and Environment laws				
2	CHE-EC-	Core-Theory	Air pollution, control	4	20	80	100
	402		Methods-Noise and Thermal				
			pollution				
3	CHE-EC-	Core-Practical	Instrumental Methods of	4	-	-	100
	403		analysis-II				
4	CHE-EC-	Core-Practical/	Project work	4	-	-	100
	404	Project work					
5	CHE-405	Generic	(a) Energy, Environment and	4	20	80	100
		Elective*	Soils	4	20	80	100
		(Related to	(b) Bioinorgania				
		subject)	Biographic &				
			Biophysical				
			Diophysical				
			(a) Chamistan of	-			
			(c) Chemistry of				
			Nanomaterials & Functional				
6	CHE 406	Open Elective*	(a) Drug Chamistry	4	20	80	100
0	CHE-406	(Eor other	(a)Drug Chemistry	4	20	80	100
		donontmonta)	UI (h) Electroprodution				
		departments)	(b) Electroanalytical				
			Tecnniques				
		Total		24			600
					1		550

SEMESTER-IV

*Among the Generic Elective a student shall choose any two.

M Sc., (INORGANIC CHEMISTRY) SEMESTER-III

	Course	Components of		No. of	IA	End	Total
	Code	Study	Title of the Course	Credits	Marks	SEM	
						Exam	

						Marks	
1	CHE-IC-	Core-Theory	Inorganic Spectroscopy &	4	20	80	100
	301		Thermal Methods of Analysis				
2	CHE-IC-	Core-Theory	Organic Spectroscopy	4	20	80	100
	302						
3	CHE-IC-	Core-Practical	Preparation of Inorganic	4	-	-	100
	303		complexes and				
			characterization				
4	CHE-IC-	Core-Practical	Instrumental Methods of	4	-	-	100
	304		Analysis-I				
5	CHE-305	Generic	(a) Organic Chemistry III	4	20	80	100
		Elective*					
		(Related to	(b)Physical Chemistry III	4	20	80	100
		subject)					
		0	(c)Green Chemistry				
6	CHE-306	Open Elective	(a) Spectral Techniques	4	20	80	100
-		(For other	or		-		
		denartments)	(b) Chromatographic				
		acput menus)	Techniques				
			reeninques				
		Total		24			600

	Course Code	Components of Study	Title of the Course	No. of Credits	IA Marks	End SEM Exam Marks	Total
1	CHE-IC- 401	Core-Theory	Coordination compounds, Organo metallic chemistry & Chemistry of non-transition elements	4	20	80	100
2	CHE-IC- 402	Core-Theory	Instrumental Methods of Analysis	4	20	80	100
3	CHE-IC- 403	Core-Practical	Instrumental Methods of Analysis-II	4	-	-	100
4	CHE-IC- 404	Core-Practical/ Project work	Project work	4	-	-	100
5	CHE-405	Generic Elective* (Related to subject)	 (a) Solid state and Photo Chemistry (b) Bioinorganic, Bioorganic & Biophysical (c) Chemistry of Nanomaterials & Functional meterials 	4 4	20 20	80 80	100 100
6	CHE-406	Open Elective* (For other departments)	(a)Drug Chemistry or (b) Electroanalytical Techniques	4	20	80	100
		Total		24			600

SEMESTER-IV

*Among the Generic Elective a student shall choose any two.

M Sc., (ORGANIC CHEMISTRY) SEMESTER-III

	Course	Components of		No. of	IA	End	Total
	Code	Study	Title of the Course	Credits	Marks	SEM	
						Exam	
						Marks	

1	CHE-OC- 301	Core-Theory	Organic Chemistry III	4	20	80	100
2	CHE-OC- 302	Core-Theory	Organic Spectroscopy & Applications	4	20	80	100
3	CHE-OC- 303	Core-Practical	Organic Estimations	4	-	-	100
4	CHE-OC- 304	Core-Practical	Multistep preparations	4	-	-	100
5	CHE-305	Generic Elective* (Related to	(a) Inorganic Spectroscopy & Thermal Methods of Analysis	4	20 20	80 80	100
		subject)	(b)Physical Chemistry III (c)Green Chemistry				100
6	CHE-306	Open Elective (For other departments)	(a) Spectral Techniques or (b) Chromatographic Techniques	4	20	80	100
		Total		24			600

	Course	Components of		No. of	IA	End	Total
	Code	Study	Title of the Course	Credits	Marks	SEM	
						Exam	
						Marks	
1	CHE-OC-	Core-Theory	Organic synthesis -I	4	20	80	100
	401						
2	CHE-OC-	Core-Theory	Organic Synthesis- II	4	20	80	100
	402						
3	CHE-OC-	Core-Practical	Spectral Identification of	4	-	-	100
	403		organic compounds				
4	CHE-OC-	Core-Practical/	Project work	4	-	-	100
	404	Project work					
5	CHE-405	Generic	Heterocycles & Natural	4	20	80	100
		Elective*	products	4	20	80	100
		(Related to	(h) Disinganaia	-			
		subject)	(b) Bioinorganic,				
			Bioorganic &				
			Biophysical Chemistry				
			(c) Chemistry of				
			Nanomaterials & Functional				
			meterials		• •		100
6	CHE-406	Open Elective*	(a)Drug Chemistry	4	20	80	100
		(For other	or				
		departments)	(b) Electro analytical				
			Techniques				
		Total		24			600

SEMESTER-IV

*Among the Generic Elective a student shall choose any two.

	Course	Components of		No. of	IA	End	Total				
	Code	Study	Title of the Course	Credits	Marks	SEM					
						Exam					
						Marks					
1	CHE-PC-	Core-Theory	Physical Chemistry III	4	20	80	100				

M Sc., (PHYSICAL CHEMISTRY) SEMESTER-III

	301						
2	CHE-PC-	Core-Theory	Organic Spectroscopy	4	20	80	100
	302						
3	CHE-PC-	Core-Practical	Practical-III	4	-	-	100
	303						
4	CHE-PC-	Core-Practical	Practical- III	4	-	-	100
	304						
5	CHE-305	Generic	(a) Organic Chemistry III	4	20	80	100
		Elective*					
		(Related to	(b) Inorganic Spectroscopy &	4	20	80	100
		subject)	Thermal Methods of Analysis				
			(c)Green Chemistry				
6	CHE-306	Open Elective	(a) Spectral Techniques	4	20	80	100
		(For other	or				
		departments)	(b) Chromatographic				
			Techniques				
		Total		24			600

			2				
	Course Code	Components of Study	Title of the Course	No. of Credits	IA Marks	End SEM Exam Marks	Total
1	CHE-PC- 401	Core-Theory	Electrochemistry	4	20	80	100
2	CHE-PC- 402	Core-Theory	Thermodynamics, Polymers and Solid state Chemistry	4	20	80	100
3	CHE-PC- 403	Core-Practical	PRACTICAL-I	4	-	-	100
4	CHE-PC- 404	Core-Practical/ Project work	Project work	4	-	-	100
5	CHE-405	Generic Elective* (Related to subject)	CHEMICAL KINETICS (b) Bioinorganic, Bioorganic & Biophysical (c) Chemistry of	4 4	20 20	80 80	100 100
			Nanomaterials & Functional meterials				
6	CHE-406	Open Elective* (For other departments)	(a)Drug Chemistry or (b) Electro analytical Techniques	4	20	80	100
		Total		24			600

SEMESTER-IV

*Among the Generic Elective a student shall choose any two.

CHE-	101		INOR	GANIC	C CHEI	STRY 1	[L-5,T-	1,P-0	40	Credits	
Pre-re	Pre-requisite: Understanding of graduate level chemistry											
Co	Course Objectives:											
• Co	• Comprehend the key features of coordination compounds, Crystal Field Theory, different properties											
and	and bonding by spectroscopic techniques											
• Stu	idy the p	olymor	phic for	ms of no	on-transi	ition ele	ments an	d their sy	ynthesis	and prop	perties	
• Un	derstand	l the bas	sics of r	eaction	mechan	ism and	the med	chanistic	concept	ts of Dis	sociative	(Id) and
As	sociative	e interch	nange M	Iechanis	m (Ia),	Taube's	s classifi	cation, T	rans eff	fect and	Electron	Transfer
Re	actions											
• Fai	miliarize	with th	e metho	ods of s	ynthesis	of meta	al carbon	yls and r	netal ni	trosyls, S	Synergist	ic effect,
EA	EAN and 18-electron rule											
Course Outcomes: At the end of the course, the student will be able												
CO1	D1 To understand the key features of coordination compounds, Crystal Field Theory, magnetic											
	propert	ies and	bonding	g in tran	sition m	etal con	plexes.					
CO2	To lear	n about	the poly	ymorphi	c forms	of Carb	on, Sulp	hur and H	Phospho	orus, synt	hesis and	l
	propert	ties of su	ulphur-n	itrogen	compou	inds, bo	ranes, car	rbides, si	licates a	and to kn	ow Wade	es rules.
CO3	Toexn	lain the	reactivi	ty of co	mplexes	in term	s of Vale	ence bon	1 and C	rvstal Fie	ld theori	25
000	Taube'	s classif	fication.	Trans e	ffect an	d Electr	on Trans	fer React	ions	i j star i re		,
CO4	To gain	1 knowl	edge on	synthes	is and st	tructure	s of diffe	rent meta	al carbo	nvls. svn	ergistic e	ffect
	and 18	electro	ı rule.	59110105	10 0010 5							
	201]	Mappin	g of cou	irse out	comes v	with the	program	n outco	mes	DO11	DO10
GOL	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	POIL	PO12
<u>CO1</u>	3	2	-	3	-	2	1	1	-	2	-	1
CO2	3	1	2	3	-	2	-	2		<u>l</u> -	-	1
CO3	3	2	-	3	2	1	1	2	2	1		1
004	5			3		1	-	2		-	2	1

CHE 101: INORGANIC CHEISTRY I

UNIT-I: CO-ORDINATION COMPOUNDS

Introduction to Crystal field Theory, CFSE and its calculation, Paring energy, Splitting of 'd' orbitals in Trigonal bi pyramidal, square planar, square pyramid and pentagonal bipyramidal geometries, Jahn –Teller effect, Application of CFT, OSSE, site Selection in Spinels, Short comings of CFT, Evidence for covalency – Nephelauxetic effect. MOT of co-ordinate bonds –M.O. Diagrams for octahedral, tetrahedral and square planar complexes. Experimental evidences for π - bonding – Crystallography, Infrared spectroscopy and Photoelectron spectroscopy.

UNIT-II: CHEMISTRY OF NON-TRANSITION ELEMENTS 15 Hrs

General characteristics of the non- transition elements special features of individual elements ; Synthesis' properties and structure of their Halides and Oxides, Polymorphism of Carbon, Phosphorus and Sulphur, Synthesis, properties and structure of boranes, Carboranes, borazines, Silicates, Carbides, Sulphur-nitrogen compounds. Electron counting in boranes, Wades rules (Poly hedral skeletal electron pair theory), Isopopoly and hetero poly acids.

UNIT-III: REACTION MECHANISMS IN COMPLEXES 15 Hrs

Reactivity of metal complexes. Inert and Labile complexes. Concept of Labile and Inert complexes in terms of Valence bond and Crystal Field theories. Taube's classification of complexes as labile and inert complexes. Dissociative (D) and Dissociative interchange Mechanism (Id) & Associative (A) and Associative interchange

Mechanism (Ia). Substitution reactions in octahedral complexes- Acid Hydrolysis -factors affecting Acid Hydrolysis - Base Hydrolysis-conjugate Base Mechanisms - Anation Reactions -Substitution Reactions in Square Planar complexes- Trans effect – Mechanisms of Trans effect: polarization and π -bonding theories.Electron Transfer Reaction-Inner Sphere and outer Sphere Mechanisms- Marcus theory.

UNIT-IV: METAL π COMPLEXES-I

15 Hrs

Nature of π bonding, Classification of π ligands, π donor ligands and π -acceptor ligands.

Metal Carbonyls: Synthesis of metal carbonyls, Structures of metal carbonyls of the types M(CO)n (M= Cr, Fe, Ni; n=4-6), $M_2(CO)n$ (M=Co, Fe, Mn; n=8-10), $M_3(CO)_{12}$ (M=Fe, Ru and Os), $M_4(CO)_{12}$ (M=Co, Rh, Ir). IR Spectraof metal carbonyls (i) Detection of bridging and terminal CO ligand, (ii) Synergistic effect, EAN and 18-electron rule. Electron counting methods (i) Oxidation state method and (ii) Neutral Atom method.

Metal Nitrosyls: Synthesis of metal Nitrosyls, bonding, Electron donation by nitric oxide, Models for NO bonding (i) Covalent model and (ii) Ionic models, Structures of metal nitrosyls (1) $[Fe_4S_3(NO)]$ (2) $[Fe_2(NO)_2I_2]$ (3) $[(\phi_3P)_2Ir(CO)Cl(NO)]^+$ (4) $[(\phi_3P)_2Ru(NO)_2Cl]$, Detection of bridging NO ligand, Applications of metal nitrosyls.

- F.A.Cotton and G. Wilkinson, Advanced In-organic chemistry VI Edition, 1999. John wiley & sons. Inc., New York.
- 2. James E. Huheey, Inorganic chemistry- Principles of structure and reactivity, VI Edition 1993. Harper Collins College Publishers, New York.
- 3. J.D. Lee: Concise Inorganic Chemistry (Blackwell)
- 4. Gary Wolfsburg: Inorganic Chemistry (5th Ed. (Viva Books)
- 5. W.L. Jolly: Modern Inorganic Chemistry (McGraw-Hill)
- 6. B.N Figgis: Introduction to Ligand Fields (John-Willey)
- 7. S.F.A. Kettle: Coordination compounds.
- 8. Coordination Chemistry. Bassalo & Jahnson.

CHE	-102		Organ	ic Chen	nistry I		L-	3,T-1,P	-2	40	Credits	
Pre-re	Pre-requisite: Understanding of graduate level Organic Chemistry											
 Course Objectives: Classify molecules based on stereochemical aspects study on optical and geometrical isomerism by the application of Cahn-Ingold-Prelog rules. Familiarize with different types of substitution reactions, able to predict products, including stereochemistry in aliphatic and aromatic nucleophilic substitution reactions, effect of neighboring group participation Understand thermodynamic and kinetic requirements, kinetic and thermodynamic control, potential energy diagrams, transition states and intermediates, methods of determining mechanisms, isotope effects in reactive intermediates Study about occurrence, isolation, structure establishment and synthesis of natural products-terpenoids. 												
Cours	Course Outcomes: At the end of the course, the student will be able											
C	01	To d stere	etect ste ocontro	reochen lled read	nical str	uctures	of the m	olecule	s, stereo	selectiv	e and	
C	202	To a grou react	scertain p partici ions, the	the ster pation a	reochem and to fa anism a	nistry of miliariz and the e	the proc e the va effect of	lucts wi rious ty substitu	th the end pes of a lients.	ffect of romatic	neighbo substitu	uring tion
C	203	To k trans	now the ition sta	concep tes in d	t of isot	ope effe	cts, pote diates	ential en	ergy dia	agrams a	and	
C	04	To fa degra	amiliariz adation	ze with s products	stereosp s of terp	ecific sy enoids	rthesis	of natur	ally occ	curring to	erpenoio	is and
		Ma	apping	of cours	se outco	mes wit	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	3	1	-	1	2	1	-	2	-
CO2	3	2	2	3		1	-	1	2	1	1	2
CO3	3	1	2	3	1	1	1	2		1	-	-
CO4	3	2	2	3	2	2	-	2	-	1	-	2

CHE102: Organic Chemistry I

UNIT-I: <u>Stereochemistry</u>

Sereoisomerism-Stereoisomers Classification – Configuration and conformation.

Molecular Three dimensional representations: Wedge, Fischer, Newman and Saw-horse formulae, their description and interconversions.

Molecular Symmetry & Chirality: Symmetry operations and symmetry elements (Cn & Sn). Criteria for Chirality. Dissymmetrization.

Optical isomerism: Molecular Symmetry and Chirality-Cahn-Ingold-Prelog rules R, S-nomenclature, stereoisomerism resulting from more than one chiral center, meso and pseudoasymmetric compounds - **Axial Chirality** - Stereochemistry of allenes spiranes - biphenyl derivatives and atropisomerism - **Planar chirality** - Ansa compounds and trans - Cycloalkenes - **Helicity**. Helically chiral compounds

Geometrical isomerism - E, Z - nomenclature - Physical and Chemical methods of determining the configuration of geometrical isomers-Stereoisomerism in 3, 4 and 5-membered cyclic compounds.

i) Aliphatic Nucleophilic Substitutions: The $S_N 2$, $S_N 1$, mixed $S_N 1$ and $S_N 2$, SET mechanisms. Reactivity- effects of substrates, attacking nucleophiles, leaving groups and reaction medium.Common carbocation rearrangements – primary, secondary and tertiary. The neighbouring group participation (NGP) -anchimeric assistance, NGP by σ and π - bonds, phenonium ions, norbornyl and norbornenyl systems, Classical and nonclassical carbocations, NGP by halogens and heteroatoms (O,N,S)

The S_N^i and S_N2' mechanisms. Nucleophilic substitution at an allylic, and vinylic carbons.

ii. Aromatic Nucleophilic Substitution: The S_NAr , S_N1 , benzyne and $S_{RN}1$ mechanisms. Reactivity - effect of substrate, structure, leaving group and attacking nucleophile. The von Richter, Sommelet - Hauser and Smiles rearrangements.

UNIT-III: Reactive Intermediates

Types of reactions, types of bond cleavage mechanisms, generation, structure, stability and reactivity of carbocations, carbanions, free radicals, carbenes, nitrenes and arynes. Thermodynamic and kinetic requirements, kinetic and thermodynamic control, potential energy diagrams, transition states and intermediates, methods of determining mechanisms, isotope effects.

UNIT-IV: Terpenoids

Classification of terpenoids, occurrence, isolation, general methods of structure determination. Isoprene and special isoprene rule. Structure determination and synthesis of the following representative molecules: Farnesol, Zingeberine, Cadinene and Abietic acid.

- 1. Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, John Wiley.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J Sundberg, Plenum.
- 3. Structure and Mechanism in Organic Chemistry C.K. Inglod, Cornell University Press.
- 4. Organic Chemistry, R.T Morrison and R.N. Boyd, Prentice Hall.
- 5. Principles of Organic Synthesis, R.O.C Norman and J. M. Coxon, Blackie Academic.
- 6. Stereochemistry, P.S. Kalsi, Wiley Eastern.
- 7. Text book of Organic Chemistry, M.C. Murry
- 8. Organic Chemistry, Vol I, I.L. Finar, ELBS Eds.

CHE-103	Physical Chemistry I	L-5,T-1,P-6	4Credits
Pre-requisite: B	asic knowledge about Physical Chemis	stry	

- Acquire knowledge in Quantum Chemistry, postulates of Quantum Mechanics., Applications of Schrodinger wave equation and Born-Oppenheimer approximation
- Study on Chemical Dynamics and theories in unimolecular, chain and fast reactions and determination of reaction rates.
- Familiarize with concepts of Thermodynamics and statistical thermodynamics, Gibbs- Duhem equation and Sackur-Tetrade equation
- Know about Thermodynamic and Kinetic concept of Electrochemistry and conductance, conductivity of electrolytes

Course Outcomes At the end of the course, the student will be able to

CO1	To know the concepts such as Operator algebra, Eigen values and Eigen functions,
	Degeneracy, Schrodinger wave equation and the postulates of Quantum Mechanics.

- CO2 To learn about theories of reaction rates, Lindemann, Lindemann-Hinshel wood, and RRKM theories.
- **CO3** To know about Thermodynamic concepts and entropy change in reversible process and irreversible process, Gibbs- Duhem equation, calculation of thermodynamic properties.
- CO4 To study the Thermodynamic and Kinetic Derivation of Nernst Equation and the derivation of Debye-Huckle Equation and its Verification

Mapping of course outcomes	with the program outcomes
----------------------------	---------------------------

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	3	2	1	-	2	1	2	1	1
CO2	3	1	2	3	1	1	1	-	2	1	-	1
CO3	3	2	1	3	2			3		1	2	2
CO4	3	2	2	3	-	1	1	-	1	2	-	2

CHE-103: Physical Chemistry I

UNIT-I: Quantum Chemistry-I

(A)Introduction to Exact Quantum Mechanical Results

Operator algebra, Eigen values and Eigen functions, Operators for momentum and energy, Degeneracy, Linear combination of Eigen functions of an operator, well behaved wave functions, Normalized and orthogonal functions, The schrodinger wave equation and the postulates of Quantum Mechanics, (B) **Applications of Schrodinger wave equation:** Particle in one dimensional and three dimensional box, harmonic oscillator, rigid rotor, hydrogen atom and its applications. Hydrogen like wave function, hydrogen like orbitals and their representation, polar plots, contour plots and boundary diagram. (C)**Approximate Methods:** The variation Theorem, Linear variation principle, perturbation Theory (first Order and non-degenerate), Application of variation Method and perturbation theory to the helium atom, The Born-Oppenheimer approximation.

UNIT-II: Chemical Dynamics

(A)**Theories of reaction rates:** Collision theory, steric factor. Theory of Absolute Reaction Rates-Reaction coordinate, activated complex and the transition state. Thermodynamic formiulation of reacton rates.

(B) **Unimolecular reactions:** Lindemann, Lindemann-Hinshel wood, and RRKM theories. Termolecular reactions. Complex reactions-Rate expressions for opposing, parallel and consecutive reaction (all first order type) (C) **Chain reactions:** Dynamic chain, hydrogen-bromine reaction, pyrolysis of acetaldehyde, decomposition of ethane, photochemical reactions- H₂-Br₂, H₂-Cl₂ reactions, Autocatalysis, H₂-O₂ reaction explosion limits. (D) **Fast Reactions:** Flow system – Temperature and pressure Jump Methods – Relaxation Techniques.

UNIT – III : Thermodynamics

(A) **Brief review of Thermodynamic concepts:** Enthalpy, entropy, free energy. Concept of Entropy – Entropy as a state function –Entropy change in reversible process and irreversible process – Temperature – Entropy diagrams – Entropy change and phase change – Entropy of mixing – Entropy and disorder. (B) **Statistical thermodynamics:** Partial molar properties: their significance and determination of partial molar properties, fugacity and its determination. Concept of distribution, thermodynamic probability and most probable Distribution, Ensemble averaging, postulates of ensemble averaging, canonical, grand canonical and micro- canonical ensembles, partition functions, translational, rotational, vibrational and electronic partition functions, Entropy of monatomic gases (Sackur-Tetrade equation)

UNIT-IV : Electrochemistry I

(A) Thermodynamic and Kinetic concept of Electrochemistry

Thermodynamic and Kinetic Derivation of Nernst Equation, Chemical and Concentration Cells with and without Transference, Liquid Junction Potential, Derivation of the Expression for Liquid Junction Potentials-its determination and elimination, Applications of EMF Measurements: (i)Solubility product, (ii)pH Determination, (iii) Potentiometric Titrations.; (B)Conductivity: Theory of Electrolytic Conductance, Derivation of Debye-Huckle Equation and its Verification, Debye- Falkenhagen Effect, and Wein Effect, kohlrausch law. Calculation of Solubility of Sparingly soluble Salt from Conductance Measurements.

Conductometric Titrations : Titration of Strong Acid Vs Strong Base (HCl vs NaoH) ; Titration of Weak Acid Vs Strong Base (AcoH vs NaoH); Titration of mixture of Strong and Weak Acids vs Strong Base ; Precipitation Titrations.

- 1. Physical Chemistry, P. W. Atkins (ELBS)
- 2. Quantum Chemistry, Ira N. Levine (Prentice Hall)
- 3. Atomic Structure and Chemical bond, Manas Chandra.
- 4. Chemical Kinetics, K.J. Laidler (Mc Graw Hill)
- 5. Kinetics and Mechanism of Chemical Transformations, J. Rajaraman and J. Kuriacose (Mcmilan)
- 6. Thermodynamics for chemists, S. Glasstone
- 7. Chemical thermodynamics, I.M. Klotz
- 8. Statistical Thermodynamics, M. Dole
- 9. Modern Electrochemistry, Vol. I & II, J.O. M. Bockris and A.K.N. Reddy (plen
- 10. An Introduction to Electrochemistry (3rded.), S. Glasstone (Affiliated East-West).

CHE 104	Core practical I: Inorganic Chemistry	L-5,T-1,P-0	2 Credits						
Pre-requisite: Understanding of graduate level Inorganic Chemistry practical.									

SEMI MICRO QUALITATIVE ANALYSIS

- Basic laboratory techniques of titration and analysis.
- Quantitative estimation of inorganic compounds through volumetric techniques.

Cours	Course Outcomes: At the end of the course, the student will be able											
CO1	CO1 To demonstrate mastery of basic semi-micro qualitative analysis of simple salts and interprets analytical data and will make scientific claims that are supported by the observations.											
CO2	2 To familiarize with techniques of titration and calculation of errors											
CO3	3											
CO4	04											
	Mapping of course outcomes with the program outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1
										0	1	2
CO1	3	2	2	3	2	-	1	1	-	1	2	-
CO2	3	2	2	3	1	1	-	1	2	1	1	2
CO3)3											
CO4	CO4											

CHE 104: Core practical I: Inorganic Chemistry

Semi Micro Qualitative Analysis

I. Qualitative Analysis of a mixture containing four cations including two less common cations (viz., W, Mo, Se, Te, V, Ce, Th, Zr, Li and U).

CHE 105	Core practical I: Organic CheImistry	L-5,T-1,P-0	2 Credits							
Pre-requisite: Understanding of graduate level Organic Chemistry practical.										

- Identification of single organic component by systematic qualitative analysis
- Single step preparations

Course Outcomes: At the end of the course, the student will be able

- **CO1** To familiarize the systematic procedures of analysis of organic components, conformational tests for various functional groups.
- **CO2** To understand the mechanisms and familiarize with methodologies to prepare biologically important molecules.

CO3
CO4

Manning of course outcomes with the program outcomes	Mapping of	course outcome	s with the 1	program outcomes
--	------------	----------------	---------------------	------------------

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
CO1	3	2	2	3	1	2	2	1	2	-	2	-
CO2	3	2	2	3	2	2	-	1	1	2	-	2
CO3												
CO4												

CHE : 105 : PRACTICAL – II : ORGANIC CHEMISTRY

a) Identification of single organic component by systematic qualitative analysis. Aromatic acids

Phenols

Neutral compounds

Esters

Carbonyl compounds etc.

b) Single step preparations.

- 1. Preparation of aspirin
- 2. Preparation of p-nitroacetanilide
- 3. Preparation of p-bromoacetanilide
- 4. Hydrolysis

CHE 106	Core practical I: Physical CheImistry	L-5,T-1,P-0	2 Credits							
Pre-requisite: Understanding of graduate level Physical Chemistry practical.										

• Determination of critical solution temperature, eutectic composition and temperature of binary system.

Cours	Course Outcomes: At the end of the course, the student will be able												
CO1 To study the determination of critical solution temperature, eutectic composition, distribution coefficient, adsorption of different													
CO2	To calibrate the statistical data												
CO3	3												
CO4	CO4												
	Mapping of course outcomes with the program outcomes												
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1 PO1 PO1												
										0	1	2	
CO1	3	2	2	3	_	2	2	1	-	2	1	1	
CO2	3 2 2 2 1 2 - 1 1 2 - 2												
CO3	CO3												
CO4													

CHE: 106: PRACTICAL – III: Physical Chemistry

Syllabus

- Calibration of volumetric apparatus and statistical analysis of the data.
- Determination of critical solution temperature of phenol-water system and study the effect of electrolyte on CST.
- Determination of Eutectic composition and temperature of binary system
- Determination of distribution coefficient of benzoic acid between water and benzene.
- Study the adsorption of acetic acid on charcoal and analysis of the data on the basis of Langmuir and Freundlich adsorption isotherms.
- Determination of rate constant of acid hydrolysis of an ester and investigate the effect of catalyst concentration, reactant concentration and temperature.

CHE-107	General Chemistry I	L-5,T-1,P-0	2 Credits							
Pre-requisite: U	Pre-requisite: Understanding of graduate level Chemistry									

- Gain knowledge on precision and accuracy, Limit of detection, Limit of determination, Sensitivity and selectivity, statistical evaluation of data
- Familiarize with principles and concepts of flame emission spectroscopy and atomic absorption spectroscopy and their applications .

Course Outcomes: At the end of the course, the student will be able

 CO1
 To know about mean and median values, standard deviation and coefficient of variation.

 CO2
 To know about mean and median values, standard deviation and coefficient of variation.

CO2 To acquire knowledge on principle and instrumentation of AAS and difference between flame AAS and furnace AAS.
 CO3

CO4

	Mapping of course outcomes with the program outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	3	1	2	-	2	-	1	1	2
CO2	3	2	2	3	1	-	2	1	-	2	-	2
CO3												
CO4												

CHE107: General Chemistry I

UNIT-I: TREATMENT OF ANALYTICAL DATA

15 Hrs

Precision and accuracy –mean and median values –Standard deviation – coefficient of variation, Types of errors: Determinate and indeterminate errors, confidence limits, significant figures, computations, minimization of errors, statistical evaluation of data –T-test ,F- test , and X^2 –test. Correlation coefficient and coefficient of determination; Limit of detection (LOQ); Limit of determination(LOD) Sensitivity and selectivity of an analytical method.

UNIT-II: FLAME EMISSION AND ATOMIC ABSORPTION SPECTROSCOPY 15 Hrs

(a) **Flame Emission Spectroscopy**: Principles, chemical reactions in flames, Interferences, evaluation methods, flame photometer and experimental technique, procedure for determinations, limitations and disadvantages. Applications

(b)**Atomic Absorption Spectroscopy: Flame AAS:** Principle, Instrumentation – Sources of radiation (HCL and EDL), Different types of burners, Interferences- Physical, Chemical, spectral and back ground correction, and methods of minimization

GF AAS: Principle and technique –Comparison between Flame AAS and furnace AAS, Applications of AAS, Comparison between Atomic Absorption & Flame Photometry.

- 1. H.W. Willard, LL. Merritt and J.A. Dean: Instrumental Methods of Analysis
- 2. Vogel's Text book of Quantitative Inorganic Analysis.
- 3. Analytical Chemistry
- 4. Instrumental Methods of Analysis H. Kaur

CH	E 108	Hu	man Va	lues an Ethi	d Profe cs-I	essional	L-3	3,T-1,P-	2	4	Credit	S
Pre-re	quisite:	Unders	tanding	of grad	uate lev	el Huma	ın Value	es and p	rofessio	nal ethic	cs	
Course	e Objec	tives:										
• Ana	lyze val	yze values in various ethical professions										
• Und	erstand moral concepts, character and conduct multiple											
• Con	cept of	ept of ethical values with respect to individual and society al interests at stake in areal world situation or practice and assess own athical values with										
• ethic	cal inter	al interests at stake in areal-world situation or practice and assess own ethical values with ct to social context and problems										
resp	ect to so	ct to social context and problems Outcomes: At the end of the course, the student will be able to										
Course	• Outcomes: At the end of the course, the student will be able to											
CO1	To know about the needs and importance of professional ethics.											
CO2	To ana	alyze na	ture of V	Values,	basic M	oral Cor	cepts c	haracter	and Co	nduct.		
CO3	To gai	n know	ledge or	n individ	lual and	society	ethical	values, a	ahimsa,	satya ar	nd	
	brahm	acharya	•									
CO4	To un	derstand	lvalues	of Bhag	avd Git	a, variou	ıs religi	ons, reli	gious to	lerence,	, Gandhi	ian
	ethics.											
		Ma	apping o	of cours	e outco	mes wit	h the p	rogram	outcon	ies		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	1	3	2	1	1	2	3	-	1	2
CO2	3	-	2	3	1	2		2	3	2	-	2
CO3	3	1		3	2		1				1	3
CO4	3	1	2	3		2	2	2	2	2	-	3

CHE 107: ELECTIVE FOUNDATION (HUMAN VALUES AND PROFESSIONAL ETHICS – I) Chapter I: Definition and Nature of Ethics – Is relation to Religion, Politics, Business, Law, Medicine and Environment. Need and Importance of Professional Ethics – Goals – Ethical Values in Various Professions.

Chapter II: Nature of Values – Good and Bad, Ends and Means, Actual and Potential Values, Objective and Subjective Values, Analysis of Basic Moral Concepts – Right, Ought, Duty, Obligation, Justice, Responsibility and Freedom, Good Behavior and Respect for Elders, Character and Conduct.

Chapter III: Individual and Society: Ahimsa (Non-Violence), Satya (Truth), Brahmacharya (Celibacy), Asteya (Non Possesion) and Aparigraha (Non-stealing). Purusharthas (Cardinal virtues) - Dharma (Righteousness), Artha (Wealth), Kama (Fulfillment Bodily Desires), Moksha (Liberation), Crime and Theories of Punishment – (a) Reformative, Retributive and Deterrent, (b) Views on Manu and Yajnavalkya

Chapter IV: Bhagavd Gita – (a) Niskama Karma, (b) Buddhism – The Four Nobel Truths – Arya astanga marga, (c) Jainism - Mahavratas and Anuvratas. Values Embedded in Various Religions, Religious Tolerence, Gandhian Ethics.

Books for study:

- 1. Johns S Mackenjie: A Manual of ethics
- 2. "The Ethics of Management" by Larue Tone Hosmer, Richard D. Irwin Inc.
- 3. "Ethics in Management" by S.A. Shelekar, Himalaya Publishing House.

- 4. Harold H. Titus: Ethics for Today
- 5. Maitra, S.K: Hindu Ethics
- 6. William Lilly: Introduction to Ethics
- 7. Manu: Manava Dharma Sastra or the Institute of Manu: Comprising the Indian System of Duties: Religious and Civil (ed) G.C. Haughton.
- 8. Sasruta Samhita: Tr. Kaviraj Kunjanlal, Kunjanlal Brishagratha, Chowkamba Sanskrit Series, Vol I,II and III, Varanasi, Vol I PP, 16-20, 21-32 and 74-77 only.
- 9. Charaka Samhita: Tr. Dr. Ram Karan Sarma and Vaidya Bhagavan Dash, Chowkambha Sanskrit Series Office. Varanasi I, II, III Vol I PP 183-191.
- 10. Ethics, Theory and Contemporary Issues. Barbara Mackinnon, Wadsworth/Thomson Learning, 2001.
- 11. Analyzing Moral Issues, Judith A. Boss, Mayfield Publishing Company, 1999.
- 12. I.C. Sharma Ethical Philosophy of India. Nagin& Co Julundhar.

CHE -	201		Inorg	anic Che	emistry	' II		L-5, T-	1, P-0	4	Credits		
Pre-re	Pre-requisite: Understanding of graduate level chemistry												
C	Course Objectives:												
•	• Understand magnetic properties of transition metal complexes and various reactions on ligands												
,	with respect to synthesis.												
• (• Gain knowledge on electronic spectra of complex molecules of octahedral and tetrahedral												
1	geometry												
•	• Understand magnetic properties viz., diamagnetism and paramagnetism and other related												
]	properti	es of co	mplex n	nolecules									
•]	Familiar	rize wit	h differ	ent cata	lytic re	actions	of com	plex mol	ecules	and fact	ors effec	cting the	
	reaction	s.		1 0 1									
Cours	e Outco	mes: A	t the end	1 of the c	ourse, t	the stude	ent will t	be able	andr	nonantiaa	notura o	f	
COI	hondin	a and st	with the	footures	of met	al comp	lavos	eparation	s and p	roperties	, nature o	91	
CO^{2}	To kno	g and st	t Russel	Saunder		ling sol	itting of	enerav le	vels in	octahedr	al field a	nd	
02	differe	ntiate be	tween (Jrgel dia	orams a	and Tan	abe-Sug	ano diagr	ams			lu	
CO3	To und	erstand	about th	ne laws o	f Hund	s Curie	and Wei	iss magn	etism a	nd magne	etic susce	entibility	
0.00	determ	ination	bv Gouv	's and F	aradv r	nethods.			etisiii u	ing inggin		priomity	
CO4	To gain	n knowl	edge on	Induced	reactio	ns, Free	radical	reactions	Therm	al decon	position		
	reaction	ns, Chai	in reaction	ons.		,			, ,		1		
I	Mapping of course outcomes with the program outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	2	3	-	2	1	2	-	2	-	1	
CO2	3	1	1	3	1	2	-	2	-	1	-	1	
CO3	3	-	2	3	-	2	1	-	2	1	1	-	
CO4	3	1	1	3	1	2	-	1	-	1	-	1	

CHE 201: INORGANIC CHEISTRY II

UNIT – I: TRANSITION METAL II – COMPLEXES II

Transition metal π – complexes with unsaturated organic molecules – alkenes, alkynes, diene, dienyl and Cyclopentadienyl complexes and arene complexes-general methods of preparation, properties, nature of bonding and structural features – Important reactions relating to Nucleophilic and Electrophilic attack on ligands and to organic synthesis.

UNIT – II: ELECTRONIC SPECTRA OF COMPLEXES

Russel-Saunders coupling – Spectroscopic term symbols- Derivation of term symbols of p^2 and d^2 configuration, Hole Formulation, Energy ordering of terms (Hund's Rules), Splitting of energy levels and spectroscopic states in Octahedral field, Selection rules – Break – down of selection rules, Orgel diagrams, Definition and utility–Orgel Diagrams for d^1 to d^9 configurations in Octahedral and tetrahedral fields. Interpretation of electronic spectra of high spin octahedral and tetra hedral complexes of Ti(III), V(III), Cr(III), Mn(II), Fe(II), Fe(III), Co(III), Co(II), Ni(II) and Cu(II) complexes, Calculation of Dq and B¹ parameters for Cr(III) and Ni(II) complexes. Tanabe – Sugano diagrams, Differences between Orgel diagrams and Tanabe – Sugano diagrams, Tanabe – Suganodiagrams of d^2 to d^6 and d^8 configurations. Charge transfer spectra- LMCT and MLCT.

UNIT - III: MAGNETIC PROPERTIES OF TRANSITION METAL COMPLEXES15 HrsDiamagnetism and paramagnetism-orbital and spin contributions, spin-orbit coupling, Hundsthird rule

15 Hrs

and Energies of J levels – Curie law and Curie – Weiss law- Ferromagnetism and antiferromagnetism – Temperature independent magnetism Magnetic susceptibility and its determination by Gouy's and Faraday methods.Calculation of magnetic moment from magnetic susceptibility, spin-only formula, Orbital contribution to magnetic moment (Oh and Td Complexes) –Paramagnetism and crystalline fields – Ti (III), V (III), VO²⁺, Cr (III), Mn (II), Fe (III), Co(II), Ni (II) and Cu (II). Magnetic Exchange in copper acetate and other dimmers – spin cross over in complexes.

UNIT -IV: CATALYSIS

15 Hrs

Homogeneous catalysis, Metal ion catalyzed reactions – Redox potentials and processes – Mechanism of redox processes involving ligands – Factors affecting redox potentials - other types of metal catalyzed reactions – Reactions involving Ag (I), Cu (II) and Os (VIII) – Reactions of Oxyanions – Factors affecting rate (General discussion only) – Induced reactions – Free radical reactions – Thermal decomposition of peroxy disulphate – Fe(III) – S_2O_8 reactions – chain reactions – H-Br reactions, $H_2O_2 - S_2O_8$ reactions.

- 1. Inorganic Chemistry principles of Structure and Reactivity 6th Edition. James E. Huheey.
- 2. Organometallic Chemistry: R.C. Mehrotra and Singh.
- 3. R. S. Drago: Structural methods in Inorganic Chemistry.
- 4. H. H. Willard, L. L. Merritt, Jr., J. A. Dean and F. A. Settle, Jr.: Instrumental Methods of Analysis (CBS Publishers).
- 5. R. L. Carlin: Magnetic Chemistry. R. L. Datta and A. Syamal: Elements of Magnetic Chemistry.

CHE	-202		Orga	nic Che	emistry	II	L-	3, T-1,]	P-2	4	Credits	
Pre-re	Pre-requisite: Understanding of Organic Chemistry											
Course	Course Objectives:											
• Able	• Able to recognize, classify, explain, and apply fundamental organic reactions such as E_2 , E_1 ,											
E _{1CE}	E_{1CB} .											
• Fall	• Familiar with molecular rearrangements involving electron deficient carbon, nitrogen and											
• Prov	vide Ha	ntzsch-V	Widman	n nome	enclature	n. e for the	three	and four	r memb	ered he	terocycl	es Be
able	to pred	lict syntl	hetic ro	ites and	chemic	al reacti	ons of the	hese het	erocycle		terocyci	C 5. D C
• Be f	familiar	with oc	currenc	e, isolat	tion, stru	uctural e	elucidati	on and	synthes	is of nat	tural pro	oducts-
alka	loids			,	,				5		1	
Course	e Outco	omes: A	t the end	d of the	course,	the stud	ent will	be able				
CO1	To fa	miliariz	e the m	lechanis	ms of l	E1, E2 a	and E _{1C}	в reacti	ons, ste	roselect	ivity an	ıd
	synpy	rolytic	eliminat	tions ar	nd use	of isoto	opes, cl	nemical	trappin	g and	crossov	er
	experi	ments.										
CO2	To le	earn the	rearran	gements	s involv	ing elee	ctron de	eficient	carbon,	nitroge	n and o	oxygen
	atoms	and ele	ctron ri	ch carbo	on atom	and far	niliarize	with th	e limita	tions ar	nd applie	cations
	of rea	ctions.										
CO3	To lea	arn the	synthesi	is of the	ree and	four m	embered	d hetero	cycles,	mechan	ism of	ring
	openii	ng react	ions and	d the ef	fect of	electron	donatii	ng and v	withdray	wing su	bstituen	ts in
	selecti	ivity of 1	ring ope	ning rea	ictions.							
CO4	To un	derstanc	l the stru	ictural e	lucidati	on and s	synthesi	s of alka	uloids us	sing spe	cific rea	gents.
Mapping of course outcomes with the program outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	3	_	2	1	1	2	_	1
CO2	3	3	2	2	3	2	2	-	1	-	1	1
CO3	3	3	2	2	3	2	2	1	1	1	2	
CO4	3	3	2	2	3	-	2	-	1	1	-	1

CHE-202 : ORGANIC CHEMISTRY II

UNIT-I: Reaction mechanism-I

15 Hrs

Electrophilic addition to carbon carbon double bond: Stereoselective addition to carbon carbon double bond; anti addition- Bromination and epoxidation followed by ring opening. Syn addition of OsO₄ and KMnO₄.

Elimination reactions Elimination reactions E_2 , E_1 , E_{1CB} mechanisms. Orientation and stereoselectivity in E_2 eliminations. Pyrolytic syn elimination and α -elimination, elimination Vs substitution. Facors influencing the elimination reactions

Determination of reaction mechanism: Determination of reaction mechanism: Energy profiles of addition and elimination reactions, transition states, product isolation and structure of intermediates, use of isotopes, chemical trapping, crossover experiments. Use of IR and NMR in the investigation of reaction mechanism.

UNIT-II: Molecular Rearrangements:

Rearrangements to electron deficient Carbon atom:

Pinacol-Pinacolone, Wagner-Meerwein, Dienone-Phenol and Demjonove Rearrngements Rearrangements to electron deficient Nitrogen atom:

Hofmann, Curtius, Schimidt and Beckmann Rearrangements.

Rearrangements to electron deficient Oxygen atom: Baeyer-Villiger and Dakins Rearrangements Rearrangements to electron rich Carbon atom: Favorski and Neber Rearrangements Aromatic and Sigmatropic Rearrangements: Fries and Claisen Rearrangements

UNIT III: Three and four membered heterocycles:

Systematic nomenclature (Hantzsch-Widmann system) and Replacement nomenclature for monocyclic heterocycles (Three and four membered rings). Synthesis and chemical reactions of aziridines, oxiranes, thiiranes, azetidines, oxetanes, and thietanes.

UNIT-IV: Alkaloids

Occurrence, isolation, general methods of structure elucidation and physiological action, degradation, classification based on nitrogen heterocyclic ring, structure elucidation and synthesis of the following: Atropine, Papaverine and Quinine.

Books Suggested:

- 1. Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, John Wiley.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J Sundberg, Plenum.
- 3. Structure and Mechanism in Organic Chemistry C.K. Inglod, Cornell University Press.
- Organic Chemistry, R.T Morrison and R.N. Boyd, Prentice Hall. 4.
- 5. Modern Organic Reactions, H.O. House, Benjamin.
- Principles of Organic Synthesis, R.O.C Norman and J. M. Coxon, Blackie Academic. 6.
- 7. Stereochemistry, P.S. Kalsi, Wiley Eastern.
- 8. Text book of Organic Chemistry, M.C. Murry
- 9. Text book of Organic Chemistry, Fessendon and Fessendon.
- 10. Text book of Organic Chemistry, T.W. Solomon,
- 11. Organic Chemistry, Vol II, I.L. Finar, ELBS Eds.
- Heterocyclic chemistry T.L Gilchrist, Longman Scientific Technical 12.
- 13. An Introduction to the Heterocyclic compounds, R M Acheson, John Wiley.

CHE -203	Physical chemistry II	L-5,T-1,P-6	4 Credits
Pre-requisite: Ba	asic knowledge about Physical Chemis	try	

15 Hrs

- Learn Angular momentum and Molecular Orbital Theory and application of Huckel theory to organic molecules.
- Know about concepts in Surface Chemistry, concept of electric double layer model and Micelles.
- Get knowledge on symmetry and group theory their use in spectroscopy, Mulliken character tables.
- Understand Irreversible Electrode phenomenon controlled potential electrolysis and polarography.

Course Outcomes At the end of the course, the student will be able

- **CO1** To know about Pauli Exclusion principle and Slater determinant, atomic orbitals, Simple molecular orbitals and Huckel theory of conjugated systems.
- **CO2** To learn Gibbs adsorption isotherm, BET equation and correlate limitations, critical micellar concentration (CMC) and factors affecting the CMC of surfactants.

CO3 To identify Relation between order of a finite group and its sub-group, conjugacy, Symmetry point group (MLS, MHS and MSS) and orthogonality theorem.

CO4 To acquire knowledge on DC-Polarography, AC-Polarography, Controlled Potential Electrolysis, to derive equation for Tafel plots, half-wave potentials for reversible system.

Mapping of course outcomes with the program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	3	-	2	1	1	-	1	1	1
CO2	3	2	2	3	2	2	2	-	2	-	2	-
CO3	3	2	2	3	-	-	1	1	-	1	1	1
CO4	3	2	-	2	2	1	1	_	2	1	1	1

CHE-AC-203 Physical Chemistry III

UNIT-I: Quantum Chemistry-II

15 Hrs

(A) Angular momentum: Angular momentum, Rotations and angular momentum, Eigen functions and Eigen values of angular momentum, Ladder operator, addition of angular momenta, spin, antisymmetry and pauli Exclusion principle. Slater determinant. ;

(B) Molecular Orbital TheoryAtomic Orbitals, Simple Molecular Orbitals, Hybrid Atomic Orbitals, Shapes and energies of Molecular Orbital, Systems of Organic Molecules (Ex: Methane, Ethylene, Acetylene). Huckel theory of conjugated systems, Π-bond order and charge density calculations, application of Huckel theory to ethylene, butadiene and benzene.

UNIT-II: Surface Chemistry

Surface tension, capillary action, pressure difference across curved surface, (Laplace equation), vapour pressure of droplets (Kelvin equation), Gibbs adsorption isotherm, BET adsorption isotherm, derivation of BET equation, limitations of BET equation, estimation of surface area from BET equation, Surface films on liquids. Concept of electric double layer model- Helmholtz perrin, Gouy- Chapman and stern models (no derivation)

Micells: Surface active agents, classification of surface active agents micellisation, hydrophobic interaction, critical micellar concentration (CMC), factors affecting the CMC of surfactants, thermodynamics of micellisation, emulsions, reverse micelles.

UNIT-III: SYMMETRY AND GROUP THEORY

Definition of a group, rules that are set for a group, sub-group, order of a group, Relation between order of a finite group and its sub-group, conjugacy relation and class of a group, symmetry elements and symmetry operation. Symmetry point group (MLS, MHS and MSS), Schoenflies symbols -

15 Hrs

Representation of groups by matrices (representation for C_n, C_{nv}, D_{nh} etc. groups to be worked out

explicitly), character of a representation, group multiplication tables, reducible - irreducible representations The great orthogonality theorem (without proof) - character tables (H_2O , NH_3) and their use in spectroscopy, Mulliken character tables.

UNIT-IV: ELECTROCHEMISTRY- II

15 Hrs

Irreversible Electrode phenomenon: Reversibility and irreversibility, Dissolution and deposition potentials, Decomposition voltage, overvoltage, diffusion overvoltage, charge transfer overvoltage, concentration overvoltage-hydrogen and oxygen overvoltages, Tafel plots, Exchange current density and Transfer coefficient, Butler-Volmer equation for one electron transfer processes.

Polarography:Theory, classification, principle, Instrumentation of Polarography, DME, HMDE diffusion current, Ilkovic equation, DC-Polarography, AC-Polarography, Controlled Potential Electrolysis, Millicoulometry, Equation for half-wave potentials, for reversible system when oxidant alone, reductant alone and both are present.

- 1. P.W. Atkins: Physical Chemistry (ELBS).
- 2. Ira N. Levine: Quantum Chemistry (Prentice Hall).
- 3. R. Mcweeny: Coulson's Valence (ELBS).
- 4. J.O.M. Bockris and A.K.N. Reddy, Modern Electrochemistry, vol.I & II (Plenum).
- 5. S. Glasstone; An Introduction to Electrochemistry (3rd ed.)(Affiliated East-West).
- 6. V. Moroi: Micelles, theoretical and applied aspects (Plenum).
- 7. Maron and prutton: principles of physical Chemistry.
- 8. Silbey, Alberty, Bawendi. Physical Chemistry. Jhon-Wiley & Sons. 4th edition-2006.
- 9. D.N. Bajpai: Advanced physical Chemistry: S. Chand & Company, 1998.

CHE 204	Core practical I: Inorganic Chemistry	L-5,T-1,P-0	2 Credits						
Pre-requisite: Understanding of graduate level Inorganic Chemistry practical.									
SEMI MICRO (• Separation • Preparation	QUALITATIVE ANALYSIS and determination of the two component of metal complexes	ent mixtures.							

Cours	Course Outcomes: At the end of the course, the student will be able												
CO1	CO 1: To separate and determine the two component mixtures.												
CO2	CO 2: To acquire knowledge in the preparation of metal complexes												
CO3													
CO4													
	Mapping of course outcomes with the program outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	2	3	2	1	-	2	-	3	3	1	
CO2	3	3 2 2 3 - 1 2 - 2 3 3 1											
CO3													
CO4													

CHE 204: Core practical I: Inorganic Chemistry

I. Quantitative Analysis:

Separation and determination of two component mixtures:

- (i) Separation of Al(III) and Determination of Fe (III)
- (ii) Separation of Cu(II) and Determination of Zn (II)
- (iii) Separation of Ca(II) and Determination of Mg (II)
- (iv) Separation of Cu(II) and Determination of Ni (II)
- (v) Determination of Ferrocyanide and Ferricyanide

II. Preparation of Metal Complexes:

- (i) Tetra(ammine) copper (II) sulphate.
- (ii) Mercury tetra(thiocyanato) cobaltate(II).
- (iii) Hexa(ammine) Nickel (II) chloride.
- (iv) Tris(acetylacetonato) Manganese (III) chloride.
- (v) Tris (ethylenediammine) Nickel (II) thiosulpha

CHE 106	Core practical II: Organic CheImistry	L-5,T-1,P-0 2 Credits								
Pre-requisite: Understanding of graduate level Organic Chemistry practical.										

- Familiarize with two component mixture separation and identification.
- preparation of derivatives and purification by different methods

CO1	To familiarize with binary mixture separation and to gain hands-on-experience in purification of the

CO2 To get knowledge about the chemical behavior of different components and mechanisms.CO3

CO4	
	Mapping of course outcomes with the program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1
										0	1	2
CO1	3	2	2	3	2	-	1	2	-	1	1	1
CO2	3	2	2	3	-	2	-	1	2	1	-	2
CO3												
CO4												

CHE: 205: PRACTICAL - II: ORGANIC CHEMISTRY

Separation and Identification of two component organic mixture by systematic qualitative analysis.

Binary mixture of

Acid + Neutral Phenol + Neutral Base + Neutral Acid + Ether insoluble component Phenol + Ether insoluble component Base + Ether insoluble component

CHE 206	Core practical II: Physical CheImistry	Core practical II:L-5,T-1,P-0Physical CheImistry							
Pre-requisite: Understanding of graduate level Physical Chemistry practical.									
Course ObjectivFamiliarize wiColorometric a	es: th conductometric, potentiometric and and pHmetric methods of analysis	redox methods of a	nalysis						
Course Outcomes: At the end of the course, the student will be able									

CO1	To study the determination of cell constant and verification of Onsagar equation, strength of strong
CO2	To get knowledge on the applications of conductometry, potentiometry, coulometry and pH metry.
CO3	
CO4	
	Manning of course outcomes with the program outcomes

Mapping of course outcomes with the program outcomes PO5 PO6 PO7 PO8 PO10 PO11 PO12 PO1 PO₂ PO3 PO4 PO9 **CO1** 3 2 2 3 3 1 1 2 1 1 1 -**CO2** 3 2 2 3 2 2 1 1 1 2 --CO3 **CO4**

CHE: 106: PRACTICAL – III: Physical Chemistry

Syllabus

- 1. Conductometry:
 - (a) Getermination of cell constant
 - (b) Verification of Onsagar equation
 - (c) Determination of dissociation constant of a weak acid
 - (d) Titration of a strong acid with a strong base
 - (e) Titration of a weak acid with a strong base

2. Potentiometry:

- (a) Titration of a strong acid with a strong base
- (b) Titration of a weak acid with a strong base
- (c) Redox titration
- 3. Coulometry: Estimation of Manganese
- 4. pH metry: Strong acid, Strong base titrations.

CHE-207	General Chemistry II	L-5,T-1,P-0	2 Credits								
Pre-requisite: Understanding of graduate level Chemistry											
Course Objecti	Course Objectives:										
Gain knowl	• Gain knowledge on the principles of different electro analytical methods.										
• Familiarize	with chromatographic techniques.	-									
Course Outcomes: At the end of the course, the student will be able											
CO1 To acquir	CO1 To acquire knowledge on ion selective electrodes, solid membrane electrodes and glass electrodes										
and											
CO2 To learn	general principles and classifications of chro	omatographic separati	ons and applications of								

	TLC, G	LC										
CO3												
CO4												
Mapping of course outcomes with the program outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1
										0	1	2
CO1	3	2	2	3	1	2	-	2	2	-	1	1
CO2	3	-	2	3	1	2	1	2	-	2	1	1
CO3												
CO4												

CHE 204-A: General Chemistry II

UNIT-I: ELECTRO ANALYTICAL METHODS

Theory of potentiometry, calculation electrode potential at the equivalence. Finding of equivalence volume, derivative and linear titration plots. Ion-sensitive electrodes –types of ion sensitive electrodes – metal based cation and anion sensitive electrodes, solid membrane electrodes, glass electrodes. Liquid ion-exchange electrodes, gas sensing membrane electrodes, Amperometric titrations - Anodic stripping voltammetry, chronoamperometry, chronopotentiometry, Cyclic Voltammetry, Differential Pulse Polarography, linear sweep voltammetry, square wave voltammetry.

UNIT-II: CHROMATOGRAPHY

General principles and classifications of chromatographic separations

Thin layer chromatography: Classification, principle, experimental technique, sample application, development of plate, retardation factor.

Gas liquid chromatography: Gas liquid chromatography - instrumentation (columns and detectors), retention time and retention volume. Chromatographic behaviour of solutes, column efficiency and resolution, column processes and band broadening, time of analysis and resolution, Van-Deemter equation.

High performance liquid chromatography: Theory and instrumentation-column performance, gradient elution, delivery system, sample introduction, separation columns, detectors and applications of HPLC.

- 1. H.W. Willard, LL. Merrit and J.A.Dean: Instrumental Methods of Analysis. Affiliated East-West).
- 2. G.H. Jeffery J. Bassett, J. Mendham and R.C. Denny. Vogel"s Text Book of Quantitative Chemical Analysis (ELBS).
- 3. D.A. Skoog and D.M. West: Principles of Instrumental Analysis (Holt, Rinehart and Wilson).
- 4. J.G. Dick : Analytical Chemistry (McGraw Hill).
- 5. D. Midgley and K. Torrance : potentiometric Water Analysis (John Wiley).

CHE	208	H	Iuman `	Values a	and pro	fessiona	l L-	3,T-1,P	-2	4	Credits	5
		ethics-II										
Pre-requisite: Understanding of Human Values and professional ethics												
Cours	Course Objectives:											
• Gai	n knowl	edge or	i value e	ducation	n, famil	y values	and adj	ustabili	ty			
• Dev	elop_et	hics to	wards	medical	, health	care p	orofessi	onals a	nd ethi	cal issu	ies in	genetic
eng	ineering	1 41		.		• • • • • • • • • • • • • • • • • • • •			. 1		. 1	1
• Un	derstand	i the in	nportanc	e or so	cial eth	ics towa	irds org	gan trad	e, num	an train	c king	numan
right Kno	its viola	t on viro	nmontol	athiog	es.	aal arriga	nollui	ion and	protoot	ion of a	nironm	ant
		mog	t the on	d of the	ecologie	the stud	$\frac{1}{2}$, pollu	ho oblo	protect.			lent
Cours		ines: A		1 of the	course,				10			
CO1	To un	derstand	d the cor	icepts of	f human	values,	respons	sibilities	of fam	ily value	es and st	tatus
	of wo	men in t	family a	nd socie	ety.							
CO2	To acc	quire kn	owledge	e on diff	erent m	edical et	hics the	e views	of chara	ka and s	sushruta	on
	moral	respons	sibilities	of med	ical prac	ctitioners						
CO3	To gai	n know	ledge of	n social	ethics a	nd under	stand tl	he chara	cteristic	es of eth	ical prol	blems
	in mai	nageme	nt.									
CO4	To far	niliarize	e enviro	nmental	ethics,	ethical th	neory an	nd ecolo	gical cr	isis.		
Mapping of course outcomes with the program outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	3	1	2	1	-	3	1	1	1
CO2	3	1	1	3	-	2	_	3	3	1	1	1
CO3	3	2	2	3	2	2	2	2	2	3	-	1
CO4	3	1	1	3	1	2	-	-	2	3	1	1

CHE 207: ELECTIVE FOUNDATION (HUMAN VALUES AND PROFESSIONAL ETHICS-II)

Chapter I: Value Education – Definition – Relevance to present day – Concept of human values - Self introspection – Self-esteem. Family values-Components, Structure and responsibilities of family Neutralization of anger – Adjustability – Threats of family life – Status of women in family and society – Caring for needy and elderly – Time allotment for sharing ideas and concerns.

Chapter II: Medical ethics – Views of Charaka, Sushruta and Hippocratus on moral responsibility of medical practitioners. Code of ethics for medical and healthcare professionals. Euthanasia, Ethical obligation to animals, Ethical issues in relation to health care professionals and patients. Social justice in health care, human cloning, problem of abortion. Ethical issues in genetic engineering and Ethical issues raised by new biological technology or knowledge.

Chapter III: Social ethics – Organ trade, Human trafficking, Human rights violation and social disparities, Feminist ethics, Surrogacy/pregnancy. Ethics of media – Impact of Newspapers, Television, Movies and Internet, Business ethics – Ethical standards of business – Immoral and illegal practices and their solutions. Characteristics of ethical problems in management, ethical theories, causes of unethical behavior, Ethical abuses and work ethics.

Chapter IV: Environmental ethics – Ethical theory, man and nature - Ecological crisis, Pest control, Pollution and waste, Climate change, Energy and pollution, Justice and environmental health.

- 1. Johns S Mackenjie: A Manual of ethics
- 2. "The Ethics of Management" by Larue Tone Hosmer, Richard D. Irwin Inc.
- 3. Management Ethics Integrity at work by Joseph A. Petrick and John F. Quinn, Response Books, New Delhi.
- 4. "Ethics in Management" by S.A. Shelekar, Himalaya Publishing House.
- 5. Harold H. Titus: Ethics for Today
- 6. Maitra, S.K: Hindu Ethics
- 7. William Lilly: Introduction to Ethics
- 8. Sinha: A Manual of Ethics
- 9. Manu: Manava Dharma Sastra or the Institute of Manu: Comprising the Indian System of Duties: Religious and Civil (ed) G.C. Haughton.
- 10. Sasruta Samhita: Tr. KavirajKunjanlal, KunjanlalBrishagratha, Chowkamba Sanskrit Series, Vol I,II and III, Varanasi, Vol I PP, 16-20, 21-32 and 74-77 only.
- 11. Charaka Samhita: Tr. Dr. Ram Karan Sarma and Vaidya Bhagavan Dash, Chowkambha Sanskrit Series Office. Varanasi I, II, III Vol I PP 183-191.
- 12. Ethics, Theory and Contemporary Issues. Barbara Mackinnon, Wadsworth/Thomson Learning, 2001.
- 13. Text Book for Intermediate First Year Ethics and Human Values, Board of Intermediate Eduction Telugu Academy, Hyderabad.
- 14. I.C. Sharma Ethical Philosophy of India. Nagin& Co Julundhar.

CHE-AC- 301	Inorganic Spectroscopy and	L-5,T-1,P-0	4 Credits		
	Thermal Methods of Analysis				

Pre-requisite: Understanding of Basic Inorganic Spectroscopy and Thermal Methods of Analysis												
Course Objectives:												
• Gain knowledge on thermal methods of analysis and principles and applications to inorganic												
mater	materials.											
• Famil	• Familiarize with basics of Mossbauer and NQR spectroscopy.											
• Learn	the pro	perties	like g-fa	ictor, nu	clear sp	in, hype	erfine co	oupling c	constant	s.		
• Study	the ES	R instru	mentati	on, vario	ous appl	ications	and pho	otoelecti	ron spec	troscop	у.	
Course	e Outco	mes :A	t the end	l of the	course,	the stud	ent will	be able				
CO1	To know about TG and DTA and applications of different scanning calorimetry.											
CO2	To gai	in know	ledge or	1 Dopple	er shift a	and cher	nical sh	ift, basio	e princip	oles and	applicat	tions of
	NQR	spectros	copy.									
CO3	To lea	rn zero	field spl	litting ar	nd Kram	ner's deg	generacy	y, relaxa	tion pro	cesses,		
	instru	mentatic	on and a	pplication	ons of E	SR.						
CO4	To kn	low abo	ut photo	electric	effect a	and Koo	pmans t	theorem	and im	part the	applicat	tions of
	X-ray	and UV	/ photoe	electron	S	pectrosc	copy.					
	Mapping of course outcomes with the program outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	-	2	1	1	-	2	2	1
CO2	3	2	2	3	2	2	-	2	1	2	2	-
CO3	3	2	2	3	2	2	1	2		2		1
CO4	3	2	2	3	2	-	-1		2	-	2	1

CHE-AC- 301: Inorganic Spectroscopy and Thermal Methods of Analysis

UNIT -I: THERMAL METHODS OF ANALYSIS

Thermo gravimetry –Principle, Factors affecting the results, instrumentation. Application with special reference to $CuSO_45H_2O$, $CaC_2O_42H_2O$. Different thermal analysis – principle, instrumentation, difference between TG and DTA, applications with special reference to the clays and minerals.Different scanning calorimetry –principle, and applications to inorganic materials like chlorates and perchlorates, ammonium nitrate.

UNIT -II: MOSSBAUER SPECTROSCOPY and NQR

Mossbauer spectroscopy: Basic principles, Recoil energy, Doppler shift, Chemical shift, Quadrapole effects, Magnetic effects. Instrumentation, spectral parameters and spectrum display.

Aapplication of the technique to the studies of (1) bonding and structures of Fe^{2+} and Fe^{3+} compounds, (2) Sn^{2+} and Sn^{4+} compounds.

NQR spectroscopy: Basic principles of NQR spectroscopy, quadrupole nuclei, quadrupole moments, electric field gradient, coupling constant and applications.

UNIT –III: ELECTRON SPIN RESONANCE SPECTROSCOPY

Basic Principles, Hyper fine splitting, Factors affecting the 'g' value. Isotropic and anisotropic hyperfine coupling constants, Hamiltonian and spin densities. Zero field splitting and Kramer's degeneracy, Relaxation process and line widths. Instrumentation and Applications. The EPR spectrum of bis(salicylidimine)-copper(II) complex, study of inorganic free radicals, biological applications of Electron Spin Resonance (Study of free radicals and Iron-sulfur proteins)

UNIT -- IV: PHOTO ELECTRON SPECTROSCOPY

Photoelectric effect, Koopmans's theorem, ionization energy.

15 Hrs

15 Hrs

15 Hrs

X-ray photoelectron spectroscopy (ESCA): Principle, Binding energies, Chemical shift, Applications of XPES to Qualitative analysis, to surface studies and structural analysis. Ultraviolet photoelectron spectroscopy- Principle, application of UPES in studying the molecular orbitals of O_2 and N_2 molecules. Block diagram of photoelectron spectrophotometer. Sources of radiation, detectors. Auger spectra – Principle, Applications of Auger spectra to surface studies and use of Auger spectra as a finger print tool.

- 1. F.A. Cotton and G. Wilkinson, Advanced In-organic chemistry VI Edition, 1999. John wiley & sons. Inc., New York.
- 2. J.E. Huheey, E.A. Keiter and R.L. Keiter: Inorganic Chemsitry, Principles of Structure and Reactivity (4th Ed.) (Addison-Wesley)
- 3. Gary Wulfsberg: Inorganic Chemistry (5th Ed. (Viva Books)
- 4. J.D. Lee: Concise Inorganic Chemistry (Blackwell)
- 5. W.L. Jolly: Modern Inorganic Chemsitry (McGraw-Hill)
- 6. R.L. Carlin: Magneto-chemsitry (Springer-Verlag)
- 7. R.L. Dutta and A. Syamal: Elements of Magnetochemsitry (Affiliate East-West).
- 8. K. Hussain Reddy Text book of Bioinorganic chemistry

CHE-AC 302	Organic Spectroscopy and	L-5,T-1,P-0	4Credits
	Applications		
Pre-requisite:	Understanding of Organic Spectroscopy	and Applications	

• Familiarize with the instrumentation of UV and visible spectroscopy, applications of identifying the structures of the molecules.												
	- Understand ID substrametry and applications to accortain the fundamental successive											orving
• Und		hondo	uomeu	y and a	opiicano	JIS to as	scentam		lamenta	r groups	by obs	erving
abso	orption	Dands									1	c
• Stu	dy on th	e applic	ations o	t NMR	spectros	scopy in	ascerta	ining th	e stereo	chemica	l structu	ures of
the	molecul	les.										
• Unc	lerstand	the wo	orking p	principle	e and fi	ragment	ation ru	les of	differen	t molec	ules in	Mass
spee	ctroscop	у										
Cours	e Outco	omes: A	t the end	d of the	course,	the stud	ent will	be able	to			
CO1	To ge	t experie	ence to c	calculate	$\lambda \max$	values f	for diene	es, enon	es, poly	enes, aro	omatic a	ınd
	hetero	oaromati	ic comp	ounds.					1 2			
CO2	To far	niliarize	with th	e absorr	otion ba	nds of tl	he mole	cules wi	th speci	fic func	tional g	roups
				1					1		0	1
CO3	To int	erpret th	ne data t	o differe	ent type	s of prot	tons and	carbon	s presen	it in a m	olecule	so as
	to asc	ertain th	ne struct	ure of th	ne mole	cule bas	ed on th	e data p	rovided			
CO4	To ac	quire kn	lowledg	e about	specific	c fragme	entation	rules of	f differe	nt mole	cules w	hich are
	uniqu	e.										
Mapping of course outcomes with the program outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	2	2	2	-	1	2	2	1
CO2	3	2	2	3	2	2	-	2	-	2	2	-
CO3	3	2	2	3	2	2	1		2	2	2	2
CO4	3	2	2	3	2	2	1	2	-	2	2	-

CHE 302: CORE THEORY: ORGANIC SPECTROSCOPY AND APPLICATIONS

UNIT-I: ULTRAVIOLET AND VISIBLE SPECTROSCOPY: 15Hrs

Various electronic transitions (185-800 nm), effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, conjugated polyenes. Fisher-Woodward rules for conjugated dienes and carbonyl compounds, ultraviolet spectra of aromatic and heterocyclic compounds. Steric effect in biphenyls.

UNIT – II: INFRARED SPECTROSCOPY

Instrumentation and sample handling. Characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ether, phenols and amines. Detailed study of vibrational frequencies of carbonyl compounds (ketones, aldehydes, esters, amides, acids, anhydrides, lactones, lactams and conjugated carbonyl compounds). Effect of hydrogen bonding and solvent effect on vibrational frequencies, overtones, combination bands and fermi resonance, FT-IR

UNIT -III: NMR SPECTROSCOPY:

¹H NMR spectroscopy: Magnetic properties of nuclei, Principles of NMR. Instrumentation, CW and pulsed FT instrumentation, equivalent and nonequivalent protons, enantiotopic and diastereotopic protons, Chemical shifts, factors affecting the chemical shifts, electronegativity and anisotropy, shielding and deshielding effects, Signal integration, Spin-spin coupling: vicinal, germinal and long range, Coupling constants and factors affecting coupling constants.

Applications of ¹H NMR spectroscopy: Reaction mechanisms (cyclic bromonium ion, electrophilic and

15Hrs

15Hrs

Course Objectives

Г
nucleophilic substitutions, carbocations and carbanions), E, Z isomers, conformation of cyclohexane and decalins, keto-enol tautomerism, hydrogen bonding, proton exchange processes (alcohols, amines and carboxylic acids), C-N rotation. Stereochemistry, hindered rotation, Karplus curve variation of coupling constant with dihedral angle. Simplification of complex spectra, nuclear magnetic double resonance, contact shift reagents, nuclear Overhauser effect (NOE).

¹³C NMR spectroscopy: General considerations, chemical shift (aliphatic, olefinic, alkyne, aromatic, heteroaromatic and carbonyl carbon), coupling constants. Two dimensional NMR spectroscopy-COSY.

UNIT-IV: MASS SPECTROMETRY

15Hrs

Introduction, ion production, type of ionization, EI, CI, FD, and FAB-factors affecting fragmentation, ion analysis, ion abundance. Mass spectral fragmentation of organic compounds, common functional groups, molecular-ion peak, metastable peak, Mc. Lafferty rearrangement. Nitrogen rule, isotope labeling. High resolution mass spectrometry, Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.

Books suggested:

- 1. Organic spectroscopy, W. Kemp 5th Ed, ELBS
- 2. Spectroscopy of organic compounds, RM Silversteen and others, 5th Ed, John Wiley
- 3. Spectroscopy of organic compounds, P.S. Kalsi, Wiley, 1993.
- 4. NMR in chemistry-A multi nuclear introduction, William Kemp, Mc Millan, 1986.
- 5. Spectroscopic methods in Organic chemistry, DH Williams & I Flemmi

CHE A	AC 303	&	(Core-Pr	actical:		L	-5,T-1,P	-0	4	Credits	5	
304			Classica	l Metho	ods of A	nalysis							
Pro_ro	anisita	Under	standing	of Ana	lytical (homistr	v- Prac	tical					
110-10	a contest and the standing of Analytical Chemistry-Tractical.												
Cours	Course Objectives:												
• Gai	Gain knowledge on synthesis of inorganic complexes.												
• Ana	alysis of	ores, al	loys and	l water.									
• Acc	juire kn	owledge	e on wor	king pri	nciple c	of colori	metry.						
• Esti	mation	of meta	l ions by	v comple	ex metri	c and co	lorimet	tric meth	od.				
Cours	e Outco	mes: A	t the end	d of the	course,	the stud	ent will	be able					
CO1	To kno	w the b	asic prin	ciples o	f instru	mental n	nethods	of analy	/sis.				
CO2	To gair	n knowl	edge on	chemist	ry of all	loys.							
CO3	To Uno	lerstand	the con	nplexity	, theory	and wo	rking p	rinciple of	of colou	rimetry			
CO4	To fam	iliarize	with lav	vs of col	lorimetr	ic titrati	ons.						
		M	apping	of cours	se outco	omes wit	th the p	orogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	-	1	3		2	3	2	1	-	1	-	
CO2	3	2	2	3	2	2	3	2		1	1	2	
CO3	3	2		3	-	2	-	2	1	2	-	-	
CO4	3	2	2	3	2	-	1	2	2	1	1	2	

CHE -AC -303: Core-Practical Classical Methods of Analysis PRACTICAL -I

1. Analysis of ores and alloys:

- a) Brass/Bronze
- b) Cement
- c) Illmenite/Chalcopyrite
- d) Dolamite
- e) Copper and Nickel alloy
- II. Water Analysis:
 - a) Determination of dissolved Oxygen
 - b) Determination of BOD of Waste water
 - c) Determination of COD of Waste water
 - d) Hardness of Water
 - e) Chloride, sulphates, carbonates and bicarbonates.

CHE AC 304 Core-Practical PRACTICAL -II -Instrumental methods of analysis

- 1. Colorimetric Determinations:
 - a) Determination of manganese
 - b) Determination of nickel
 - c) Determination of iron by 1,10 Pheren-thiroline
 - d) Determination of chromium
 - e) Determination of Phosphate
 - f)Determination of Pesticides
 - g) Determination of Nitrite.

CHE-A	C-305	4	Org	anic Ch	emistry	y III]	L-3,T-1	,P-2	4	Credits	
Pre-re	equisite	: Under	standing	g of Orga	anic Che	emistry						
Cours	e Obje	ctives: (Course	Objectiv	ves:							
• Fan	• Familiarize with the applications of different reagents in organic synthesis, Mechanisms and											
ster	stereochemistry.											
• Stu	Study the methods of preparation and applications of organometallic reagents.											
• Uno	derstand	l topoci	ty, pro	chirality	, auxill	ary and	l reager	nt-contro	olled m	ethods	in asyn	nmetric
syn	thesis.	C 11	cc (. 1	1	1.				. ·	•.1 •	1
• App		15 OF CH	inerent (oxiaizin	g and re	eaucing	agents	in orga	mc synt	inesis w	in regi	on and
Cours		omes A	t the on	d of the	course	the stur	lant will	be able	to			
Cours	Course Outcomes: At the end of the course, the student will be able to											
CO1	1 To familiarize with the specific functions of the reagents particularly diazomethane,											
	N-bro	mosuce	inimide	, Ziegle	r Natta	catalys	st, 1,3-d	ithianes	and M	Ierrifield	l resin	in the
GOA	synth	esis of a	variety	of com	<u>plex mo</u>	lecules.						
CO2	Toga	in knov	vledge i	n the sy	nthesis	of diffe	erent org	ganomet	tallic rea	agents a	nd also	stereo
CO2	and re	egio spec		and sele	ctivity c	or reaction	ons with	organo		reagent	.S 11 - 1	
COS	10 u	nderstan	a diast	ereoseie	ctivity,	stereos	electivit	y and s	substrate	e contro	med au	xillary
CO4		onire ki	nowledg	e about	the rea	gente w	which car		idation i	n varioi	is comr	ounde
0.04	and a	lso the r	eagents	that car	uie rea	ective a	nd com	nlete rea	fuctions	to syntl	is comp hesize v	arious
	comp	ounds	cagents	that cat	4505 501	cenve a	na comj		uctions	to synt	ilesize v	anous
	Mapping of course outcomes with the program outcomes											
	PUI	PO2	PU3	PU4	PU5	PU0	PO/	PUð	PO9	PO10	PUII	PO12
CO1	3	2	2	3	2	2	1	2	1	2	2	1
CO2	3	2	2	3	2	2	1	2	1	-	2	1
CO3	3	2	2	3	2	2	-	-	1	1	2	-
CO4	3	2	2	3	2	2	1	2	-	2	2	1

CHE-AC-303A Core-Theory Organic Chemistry III

UNIT I: REAGENTS IN ORGANIC SYNTHESIS

Use of the following reagents in organic synthesis: Anhydrous AlCl₃, Boran trifluoride, N-Bromosuccinimide, Diazomethane, Dicyclohexylcarbodiimide, Lead tetraacetate, Zieglar-Natta catalysts, DDQ, Dithianes, Merrifield resin.

UNIT-II: ORGANOMETALLIC REAGENTS

Synthesis and applications of Grignard reagents, Organolithium, Zinc, Copper, Mercury, Palladium and Rhodium compounds in Organic Synthesis, Homogeneous catalytic hydrogenation and hydroformylation reactions

UNIT III: ASYMMETRIC SYNTHESIS

Topocity - Prochirality- Substrate selectivity - Diastereoselectivity and enantioselectivity-Substrate controlled methods-use of chiral substrates - examples

Auxiliary controlled methods-Use of chiral auxiliaries-Chiral enolates-alkylation of chiral imines – Stereoselective Diels-Alder reaction

Reagent controlled methods-Use of chiral reagents-Asymmetric oxidation-Sharpless epoxidation-Asymmetric reduction-Use of lithium aluminium hydride and borate reagents.

UNIT IV: METHODS OF ORGANIC SYNTHESIS

i). *Oxidations:* (a) Alcohols to carbonyls-Chromium (iv) oxidants-Dimethylsulfoxide oxidation,

15 Hrs

15 Hrs

15 Hrs

periodate xidation, Oppenauer oxidation, oxidation with manganese dioxide, oxidation with silver carbonate (b) Alkenes to epoxides-peroxide induced epoxidations. (c) Alkenes to diols-oxidation with potassium permanaganate, osmium tetraoxide, Prevost reaction (d) Ketones to esters-Bayer-Villiger oxidation (e) Oxidative bond cleavage-cleavage of alkenes by transition metals. (f) Oxidation of alkyl or alkenyl fragments-selenium dioxide and chromium trioxide oxidations.

ii). *Reductions* : Reduction with lithium aluminium hydride, sodium borohydride, alkoxides, bismethoxy ethoxy aluminium hydride, Boran aluminium hydride and derivatives-catalytic,hydrogenationdissolving metal reductions, Non-Metallic reducing agents including enzymatic and microbial reductions.

Suggested Books

- 1. Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, John Wiley.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J. Sundberg, Plenum.
- 3. Structure and Mechanism in Organic Chemistry, C.K. Inglod, Cornell University Press.
- 4. Organic Chemistry, R.T Morrison and R.N. Boyd, Prentice Hall.
- 5. Name reactions and reagents in organic synthesis, B.P. Muway and M.G Ellord, John Wiley.
- 6. Principles of Organic Synthesis, R.O.C Norman and J.M Coxon, Blackie Academic & Professional.
- 7. Reaction Mechanism in Organic Chemistry, P.S. Kalsi, New Age International.
- 8. Principles of organometallic chemistry, P. Powell, ELBS.
- 9. Organo transition metal chemistry-Applications to organic synthesis, S.G. Davis, Pergmon.
- 10. Stereochemistry to Organic Compounds, D. Nasipuri, New Age International.
- 11. Stereochemistry, P.S. Kalsi, Wiley Eastern.

CHE-A	-AC-305B Physical Chemistry III L-5,T-1,P-0 4Credits											
Pre-r	equisite	Unders	standing	of grad	uate lev	el Physi	cal Che	mistry				
Cours • Lea • Ap • Fan spec • Ge the Cours	 Learn applications of Group Theory, symmetry criteria and symmetry restrictions Applications of X-ray Diffraction and Electron Diffraction on solid state chemistry Familiarize with the applications of Microwave spectroscopy, infrared spectroscopy and Raman spectroscopy Get knowledge on concept of Thermodynamics of polymer dissolution and Flory-Huggins theory of polymer solutions Course Outcomes: At the end of the course, the student will be able to CO1 To know the determination of Character Co-ordinate of C ₂ V point group based on 3N											
COI	1 To know the determination of Character Co-ordinate of C_2V point group based on 3N											
CO2	To lear method	n the Br of X-ra	agg con	ditions-l	Miller In	ndices- l crystals.	Laue me	ethod, B	ragg me	ethod, D	ebye Sc	herrer
CO3	To stud selectio	y the rig n rules a	gid rotat and V	or mode ibration	el, stark al- rotat	effect, v ional Ra	ibration Iman sp	-rotation	n spectro py.	oscopy,	PQR br	anches,
CO4	To stud solubili	y the co ty paran	ncepts oneter, co	on heat o oncept o	of dissol f Flory-	ution, re Huggins	egular so theory	olution t of poly	heory, I mer solu	Hildebra ations	nd	
		Ma	apping	of cours	se outco	mes wit	h the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	-	2	1	-	2	1	2	1
CO2	3	2	2	3	2	2	2	1	-	2	-	2
CO3	3	2	2	3	2	2	1	-	2	-	2	2
CO4	3	2	2	3	-	2		2	-	2	-	2

CHE-AC-303B CORE-THEORY PHYSICAL CHEMISTRY III

UNIT-I Applications of Group Theory

Construction of reducible and irreducible representations, Determination of Character Coordinate of C_2V point group based on 3N Coordinates. Standard reduction formula, Determination of normal modes of vibrations of SO₂, NH₃, POcl₃, Ptcl₄²⁻·H₂O₂ molecules. Mutual exclusion Principle, Direct Product, Accidental Degeneracy and Fermi resonance Group Theory and Spectroscopy: IR Spectral activity of NH₃ molecule, selection rules, symmetry Criteria for optical activity, symmetry restrictions on dipole moments, symmetry and stereo isomerism. Prediction of IR and Raman Spectral activity of H₂O and CO₂.

UNIT-II: X-ray Diffraction:

(A) Solid State Chemistry: Dislocation of Solids, Schottky and Frenkel defects, insulaters, a, d semiconductors, Band theory of solids, solid state reactions.

(B) Bragg conditions-Miller Indices- Laue method, Bragg method, Debye Scherrer method of X-ray structural analysis of crystals. Index reflections, identification of unit cells from systematic absences in diffraction pattern- structure of simple lattices and X-ray intensities- structure factor and its relation to intensity and electron density- Description of procedure for X-ray structure analysis (NaCl and KCl)

(C) Electron Diffraction: Scattering intensity Vs scattering angle, Wierlequation, and its importance. Measurement techniques, Elucidation of structures of simple gas phase molecules, Low energy electron diffraction (LEED) for the study of surfaces.

15 Hrs

UNIT-III: SPECTROSCOPHY

Microwave spectroscopy: classification of molecules, rigid rotator model, effect of isotopic substitution on the transition frequencies, intensities- stark effect.

Infrared spectroscopy: Linear harmonic oscillator, zero point energy, anharmonity, Mores potential energy diagram, fundamental and overtone transitions, hot bands and combinations bands. Vibration-rotation spectroscopy, PQR branches, selection rules, factors affecting the band positions and intensities for IR region. **Raman spectroscopy:** Classical and quantum theories of Raman effect, pure rotational, pure vibrational Raman spectroscopy, selection rules, mutual exclusion principle, resonance Raman spectroscopy and coherent antistokes Raman spectroscopy. Vibrational- rotational Raman spectroscopy.

UNIT-IV: POLYMER SOLUTIONS

Thermodynamics of polymer dissolution, effect of molecular weight on solubility, solubility of crystalline and amorphous polymer, heat of dissolution, regular solution theory, Hildebrand solubility parameter, Flory-Huggins theory of polymer solutions, conformational entropy, osmotic pressure and viscosity of polymer solutions. Molecular weight determination by light scattering, ultra-centrifugation and sedimentation equilibrium method. Liquid Crystals- synthesis and applications

Books Suggested

- 1. F.A. Cotton : Introduction to Group theory for chemists.
- 2. Geroge Davidson Elsevier : Introductory Group Theory for Chemists.
- 3. Gurdeep Raj, Ajay Bhagi&Vinod Jain : Group Theory and Symmetry in Chemistry
- 4. Instrumental methods of analysis M.H. Willard, Meritt Jr. and J.A. Dean
- 5. Principles of instrumental analysis Skoog and West
- 6. F. W. Billmeyer, Jr.: Text Book of Polymer Science. Wiley Interscience.
- 7. V. R. Gowariker, N. V. Viswanathan, Jayadev Sreedhar: Polymer Science. New Age international Publishers.

CHE AC 306	Spectral Techniques	L-5,T-1,P-0	4 Credits		
Pre-requisite: U	Inderstanding of Spectral Techniques				

15 Hrs

Course Objectives:

- Familiarize with the instrumentation of UV and visible spectroscopy, applications of identifying the structures of the molecules.
- Understand IR spectrometry and applications to ascertain the fundamental groups by observing absorption bands.
- Study on the applications of flame atomic absorption spectroscopy.
- Understand the working principle and fragmentation rules of different molecules in Mass spectroscopy.

Course Outcomes: At the end of the course, the student will able

CO1 To know the basic principles of spectroscopy.

CO2 To familiarize with the analysis of various functional groups by using different spectroscopic techniques.

CO3 To Understand the applications of AAS.

CO4 To gain knowledge about Mass spectral fragmentation of organic compounds and common functional groups.

Mapping of course outcomes with the program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	-	3	-	2	3	2	1	-	1	2
CO2	3	2	2	3	2	2	3	2	-	1	-	2
CO3	3	2	-	2	2	-	2		1		1	1
CO4	3	2	2	3	_	2	_	1	-	1		2

CHE : AC : 306(A): (OPEN ELECTIVE) SPECTRAL TECHNIQUES

UNIT – I: ULTRAVIOLET AND VISIBLE SPECTROSCOPY

Various electronic transitions (185-800nm.), Beer-Lambert Law, effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, Fieser-Woodward rules for conjugated dienes and carbonyl compounds

UNIT – II : INFRARED SPECTROSCOPY

Instrumentation and sample handling, characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ethers, phenols, amines, ketones, aldehydes, esters, amides, acids and anhydrides. Effect of hydrogen bonding.

UNIT – III:ATOMIC ABSORPTION SPECTROSCOPY: FLAME AAS:

Principle, Instrumentation – Sources of radiation (HCL and EDL), Different types of burners, Interferences- Physical, Chemical, spectral and back ground correction, and methods of minimization GF AAS: Principle and technique –Comparison between Flame AAS and furnace AAS, Applications of AAS, Comparison between Atomic Absorption & Flame Photometry.

UNIT -IV: MASS SPECTROMETRY

Principle, instrumentation, different methods of ionization, EI, CI, FD and FAB, Mass spectra-molecular ion, base peak, meta-stable peak, nitrogen rule and Mc Lafferty rearrangement. Mass spectral fragmentation of organic compounds and common functional groups. Normal and branched alkanes, alkenes, cycloalkanes, benzene and its derivatives, alcohols and phenols, ethers, aldehydes and ketones, carboxylic acids and their derivatives , amines and nitro compounds. Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.

Books Suggested:

1. Organic spectroscopy, W. Kemp 5th Ed, ELBS .2.

15 Hrs

15 Hrs

15 Hrs

- 2. Spectroscopy of organic compounds, RM Silversteen and others 5th Ed, John Wiley 1991
- 3. Spectroscopy of organic compounds, PS Kalsi, Wiley, 1993
- 4. NMR in chemistry A Multi nuclear introduction, William Kemp, Mc Millan 1986
- 5. Spectroscopic methods in Organic Chemistry, DH Williams & I Flemmi TMH . 2005

CHE A	AC 306	Chr	omatog	raphic	Technie	ques	L-	5,T-1,P	-0	4	Credits	
Pre-re	quisite:	Unders	tanding	of grad	uate lev	el Chroi	natogra	phic Teo	chnique	S		
Cours	Course Objectives:											
• Fan	Familiarize with Classification of Chromatographic methods.											
• Und	• Understand Demonstration experiment in TLC.											
• Stud	dy on th	e applic	ations of	f High-I	Perform	ance Lic	juid Chi	romatog	raphy (I	HPLC).		
• Und	• Understand the working principle of gas chromatography.											
Cours	e Outco	mes: A	t the end	1 of the	course,	the stud	ent will	able to				
	course outcomes. At the end of the course, the student will able to											
CO1	CO1 To know the stationary and mobile phases in chromatographic techniques.											
CO2	To fam	iliarize	applicat	ions of a	different	t chroma	atograpł	nic meth	ods.			
CO3	To Unc	lerstand	the prin	ciple of	chroma	atograph	ic techn	iques.				
CO4	To gair	n knowle	edge on	the norr	nal phas	se and re	everse p	hase.				
		Ma	apping	of cours	se outco	mes wit	h the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	2	3	-	2	3	2	1	1	1	1
CO2	CO2 3 2 2 3 2 2 3 2 1 1 - 2											
CO3	3	2	1	2	2	-	2		2	-	1	1
CO4	3	2	2	3	1	2	-	1	-	1	-	2

CHE AC 306 : Chromatographic Techniques

Unit –**I**: Introduction - Classification of Chromatographic methods – Column chromatography-Adsorption phenomenon: Nature of adsorbents-Solvent systems-Differential migration-Separation of mixture of o-/p-nitro anilines (A demonstration experiment).

Unit –**II:** Thin-Layer Chromatography (TLC)-Coating materials and preparation of TLC plates-Solvents for development-Detection of compounds in TLC- R_f values in TLC-Applications of TLC in chemistry-Preparative TLC – Demonstration experiment in TLC.

Unit –**III:** High-Performance Liquid Chromatography (HPLC) - Application of HPLC- HPLC instrument-Stationary phases in HPLC-Normal and reversed phase HPLC: A comparison- Normal phase HPLC: Principle-Retention times in Normal and reversed phase HPLC- Reversed phase HPLC: Principle.

Unit –**IV:** Gas-Liquid Chromatography- Instruments for Gas-Liquid Chromatography- Gas-Chromatographic Columns and the Stationary Phase- Application of Gas-Liquid Chromatography- Gas-Solid Chromatography.

Reference Books:

- 1. Analytical chemistry: G L David Krupadanam, D. Vijaya prsad, K. Varaprasad Rao, KLN Reddy, C. Sudhakar.
- 2. Analytical chemistry: Skoog West Holler.
- 3. Modern Analytical Chemistry : David Harvey DePauw University.
- 4. J.G. Dick. Analytical Chemistry, Mc Grraw Hill, New Delhi, (1973).

CHE-EC-301 Physical Chemist	ry III L-5,T-1,P-0	4 Credits
-----------------------------	--------------------	-----------

Pre-requisite: Understanding of graduate level Physical Chemistry

Course Objectives:

- Learn applications of Group Theory, symmetry criteria and symmetry restrictions
- Applications of X-ray Diffraction and Electron Diffraction on solid state chemistry
- Familiarize with the applications of Microwave spectroscopy, infrared spectroscopy and Raman spectroscopy
- · Get knowledge on concept of Thermodynamics of polymer dissolution and Flory-Huggins theory of polymer solutions

Course Outcomes: At the end of the course, the student will be able to

To know the determination of Character Co-ordinate of C₂V point group based on 3N **CO1** Coordinates and to learn the Mutual exclusion Principle.

- CO₂ To learn the Bragg conditions-Miller Indices- Laue method, Bragg method, Debye Scherrer method of X-ray structural analysis of crystals.
- CO3 To study the rigid rotator model, stark effect, vibration-rotation spectroscopy, PQR branches, selection rules and Vibrational- rotational Raman spectroscopy.
- **CO4** To study the concepts on heat of dissolution, regular solution theory, Hildebrand solubility parameter, concept of Flory-Huggins theory of polymer solutions

2

	Mapping of course outcomes with the program outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	2	3	-	2	1	_	2	-	2	2	
CO2	3	2	2	3	2	2		1	2	2	1	1	

2

2

2

_

1

1

2

2

CHE-EC-303B CORE-THEORY PHYSICAL CHEMISTRY III

UNIT-I Applications of Group Theory

2

2

CO3

CO4

3

3

2

2

3

3

Construction of reducible and irreducible representations, Determination of Character Co-ordinate of C₂V point group based on 3N Co-ordinates. Standard reduction formula, Determination of normal modes of vibrations of SO₂, NH₃, POCl₃, PtCl₄²⁻·H₂O₂ molecules. Mutual exclusion Principle, Direct Product, Accidental Degeneracy and Fermi resonance Group Theory and Spectroscopy: IR Spectral activity of NH₃ molecule, selection rules, symmetry Criteria for optical activity, symmetry restrictions on dipole moments, symmetry and stereo isomerism. Prediction of IR and Raman Spectral activity of H₂O and CO₂.

UNIT-II: X-ray Diffraction:

(A) Solid State Chemistry Dislocation of Solids, Schottky and Frenkeldefects, insulaters, a,d semiconductors, Band theory of solids, solid state reactions.

(B) Bragg conditions-Miller Indices- Laue method, Bragg method, Debye Scherrer method of X-ray structural analysis of crystals. Index reflections, identification of unit cells from systematic absences in diffraction pattern- structure of simple lattices and X-ray intensities- structure factor and its relation to intensity and electron density- Description of procedure for X-ray structure analysis (NaCl and KCl)

(C) Electron Diffraction: Scattering intensity Vs scattering angle, Wierlequation, and its importance. Measurement techniques, Elucidation of structures of simple gas phase molecules, Low energy electron diffraction (LEED) for the study of surfaces.

UNIT-III: SPECTROSCOPHY

Microwave spectroscopy: classification of molecules, rigid rotator model, effect of isotopic

15 Hrs

2

15 Hrs

2

2

substitution on the transition frequencies, intensities- stark effect.

Infrared spectroscopy: Linear harmonic oscillator, zero point energy, anharmonity, Mores potential energy diagram, fundamental and overtone transitions, hot bands and combinations bands. Vibration-rotation spectroscopy, PQR branches, selection rules, factors affecting the band positions and intensities for IR region. **Raman spectroscopy:** Classical and quantum theories of Raman effect, pure rotational, pure vibrational Raman spectroscopy, selection rules, mutual exclusion principle, resonance Raman spectroscopy and coherent antistokes Raman spectroscopy. Vibrational- rotational Raman spectroscopy.

UNIT-IV: POLYMER SOLUTIONS

15 Hrs

Thermodynamics of polymer dissolution, effect of molecular weight on solubility, solubility of crystalline and amorphous polymer, heat of dissolution, regular solution theory, Hildebrand solubility parameter, Flory-Huggins theory of polymer solutions, conformational entropy, osmotic pressure and viscosity of polymer solutions. Molecular weight determination by light scattering, ultra-centrifugation and sedimentation equilibrium method. Liquid Crystals- synthesis and applications

Books Suggested

- 1. F.A. Cotton : Introduction to Group theory for chemists.
- 2. Geroge Davidson Elsevier : Introductory Group Theory for Chemists.
- 3. Gurdeep Raj, Ajay Bhagi&Vinod Jain : Group Theory and Symmetry in Chemistry
- 4. Instrumental methods of analysis M.H. Willard, Meritt Jr. and J.A. Dean
- 5. Principles of instrumental analysis Skoog and West
- 6. F. W. Billmeyer, Jr.: Text Book of Polymer Science. Wiley Interscience.
- 7. V. R. Gowariker, N. V. Viswanathan, Jayadev Sreedhar.: polymer Science. New Age international Publishers.

CHE-EC 302	Organic Spectroscopy and	L-5,T-1,P-0	4Credits					
	Applications							
Pre-requisite: Understanding of Organic Spectroscopy and Applications								

Course Objectives: • Familiarize with the instrumentation of UV and visible spectroscopy, applications of identifying the structures of the molecules. • Understand IR spectrometry and applications to ascertain the fundamental groups by observing absorption bands • Study on the applications of NMR spectroscopy in ascertaining the stereochemical structures of the molecules. • Understand the working principle and fragmentation rules of different molecules in Mass spectroscopy Course Outcomes: At the end of the course, the student will be able to **CO1** To get experience to calculate λ max values for dienes, enones, polyenes, aromatic and heteroaromatic compounds. CO₂ To familiarize with the absorption bands of the molecules with specific functional groups To interpret the data to different types of protons and carbons present in a molecule so as **CO3** to ascertain the structure of the molecule based on the data provided To acquire knowledge about specific fragmentation rules of different molecules which are **CO4** unique. Mapping of course outcomes with the program outcomes PO2 PO4 PO5 PO6 PO7 PO8 **PO9** PO1 PO3 PO10 PO11 **PO12 CO1** 2 2 2 3 2 3 2 2 2 1 1 _ **CO2** 3 2 2 3 2 2 2 1 2 2 1 _ 3 2 2 3 2 2 2 2 2 2 **CO3** 1 _

CHE-EC 302: CORE THEORY: ORGANIC SPECTROSCOPY AND APPLICATIONS

2

UNIT-I: ULTRAVIOLET AND VISIBLE SPECTROSCOPY:

3

Various electronic transitions (185-800 nm), effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, conjugated polyenes. Fisher-Woodward rules for conjugated dienes and carbonyl compounds, ultraviolet spectra of aromatic and heterocyclic compounds. Steric effect in biphenyls.

2

UNIT – II: INFRARED SPECTROSCOPY

CO4

3

2

2

Instrumentation and sample handling. Characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ether, phenols and amines. Detailed study of vibrational frequencies of carbonyl compounds (ketones, aldehydes, esters, amides, acids, anhydrides, lactones, lactams and conjugated carbonyl compounds). Effect of hydrogen bonding and solvent effect on vibrational frequencies, overtones, combination bands and fermi resonance, FT-IR

UNIT -III: NMR SPECTROSCOPY:

¹H NMR spectroscopy: Magnetic properties of nuclei, Principles of NMR. Instrumentation, CW and pulsed FT instrumentation, equivalent and nonequivalent protons, enantiotopic and diastereotopic protons, Chemical shifts, factors affecting the chemical shifts, electronegativity and anisotropy, shielding and deshielding effects, Signal integration, Spin-spin coupling: vicinal, germinal and long range, Coupling constants and factors affecting coupling constants.

Applications of ¹H NMR spectroscopy: Reaction mechanisms (cyclic bromonium ion, electrophilic and nucleophilic substitutions, carbocations and carbanions), E, Z isomers, conformation of cyclohexane and

15Hrs

15Hrs

15Hrs

2

2

2

2

_

decalins, keto-enol tautomerism, hydrogen bonding, proton exchange processes (alcohols, amines and carboxylic acids), C-N rotation. Stereochemistry, hindered rotation, Karplus curve variation of coupling constant with dihedral angle. Simplification of complex spectra, nuclear magnetic double resonance, contact shift reagents, nuclear Overhauser effect (NOE).

¹³C NMR spectroscopy: General considerations, chemical shift (aliphatic, olefinic, alkyne, aromatic, heteroaromatic and carbonyl carbon), coupling constants. Two dimensional NMR spectroscopy-COSY.

UNIT-IV: MASS SPECTROMETRY

15Hrs

Introduction, ion production, type of ionization, EI, CI, FD, and FAB-factors affecting fragmentation, ion analysis, ion abundance. Mass spectral fragmentation of organic compounds, common functional groups, molecular-ion peak, metastable peak, Mc. Lafferty rearrangement. Nitrogen rule, isotope labeling. High resolution mass spectrometry, Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.

Books suggested:

- 1. Organic spectroscopy, W. Kemp 5th Ed, ELBS
- 2. Spectroscopy of organic compounds, RM Silversteen and others, 5th Ed, John Wiley
- 3. Spectroscopy of organic compounds, P.S. Kalsi, Wiley, 1993.
- 4. NMR in chemistry-A multi nuclear introduction, William Kemp, Mc Millan, 1986.
- 5. Spectroscopic methods in Organic chemistry, DH Williams & I Flemmi.

CHE EC 303 & 304	Core practical I: Environmental Chemistry -	L-5,T-1,P-0	4 Credits							
Practical										
Pre-requisite: Understanding of Environmental Chemistry- Practical.										
Course Objectiv	es:									
Familiarize	• Familiarize with water analysis									
• Study of soil analysis.										
 Know about instrumentation and analysis of mixtures by potentiometry 										

• Identification of cations by flame photometry

Course Outcomes: At the end of the course, the student will be able

CO1 To get an idea about water analysis.

CO2 To understand the basic principles of soil analysis.

CO3 To familiarize with instrumentation of potentiometric techniques.

CO4 To gain knowledge on flame photometry and its applications.

Mapping of course outcomes with the program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	-	2	2		2	2	-	2
CO2	3	2	2	3	3	2	3	2	-	2	2	2
CO3	3	2	3	2	3	-	-	2	-	1	-	2
CO4	3	2	2	3	3	2	2	-	2	2	2	2

CHE- EC-303: Core-Practical PRACTICAL-I

WATER & SOIL ANALYSIS

Water Analysis

- a. Alkalinity
- b. Acidity
- c. Temporary, Permanent and total hardness
- d. Sulphate
- e. Phosphorus
- f. Nitrites
- g. Cholorides
- h. D.O, BOD and COD
- i. Insecticides

Soil Analysis:

Determination Of:

- a) pH
- **b**) Conductivity
- c) Ca
- d) Mg
- e) Heavy metals like Cr, Pb, Cd, Zn.

CHE EC-304: Core-Practical PRACTICAL-II – INSTRUMENTAL METHODS OF ANALYSIS

1) Potentiometry:

a)Mixture of Acids

b)Mixture of Halides

2) Flame Photometry: Determination of Na, K, and Li.

CHE-EC-305A	05A Organic Chemistry III L-3,T-1,P-2 4Credits									
Pre-requisite: Understanding of Organic Chemistry										
Course Objectives: Course Objectives:										
• Familiarize with the applications of different reagents in organic synthesis, Mechanisms and stereochemistry.										
• Study the methods of preparation and applications of organometallic reagents.										

- Understand topocity, prochirality, auxillary and reagent-controlled methods in asymmetric synthesis.
- Applications of different oxidizing and reducing agents in organic synthesis with region and stereo controlled products.

Course	Course Outcomes: At the end of the course, the student will be able to											
CO1	To fa	miliariz	e with	the spe	cific fu	nctions	of the	reagent	s partic	ularly c	liazome	thane,
	N-bromosuccinimide, Ziegler Natta catalyst, 1,3-dithianes and Merrifield resin in the											
	synthesis of a variety of complex molecules.											
CO2	To gain knowledge in the synthesis of different organometallic reagents and also stereo											
	and regio specificity and selectivity of reactions with organometallic reagents											
CO3	To understand diastereoselectivity, stereoselectivity and substrate controlled auxillary											
	controlled reactions											
CO4	To ac	quire kr	owledge	e about	the reag	gents wl	hich cau	ises oxi	dation i	n variou	is comp	ounds
	and al	so the r	eagents	that cau	ises sele	ective ar	nd comp	lete red	uctions	to synth	nesize v	arious
	compo	ounds.										
	Mapping of course outcomes with the program outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	2	2	1	2	1	2	2	_
CO2	3	2	2	3	2	2	-	2	1	1	2	1

CHE-EC-305A Core-Theory Organic Chemistry III

2

2

2

2

_

2

2

_

2

UNIT I: REAGENTS IN ORGANIC SYNTHESIS

2

2

2

2

3

3

2

2

CO3

CO4

3

3

Use of the following reagents in organic synthesis: Anhydrous AlCl₃, Boran trifluoride, N-Bromosuccinimide, Diazomethane, Dicyclohexylcarbodiimide, Lead tetraacetate, Zieglar-Natta catalysts, DDQ, Dithianes, Merrifield resin.

UNIT-II: ORGANOMETALLIC REAGENTS

Synthesis and applications of Grignard reagents, Organolithium, Zinc, Copper, Mercury, Palladium and Rhodium compounds in Organic Synthesis, Homogeneous catalytic hydrogenation and hydroformylation reactions

UNIT III: ASYMMETRIC SYNTHESIS

Topocity - Prochirality- Substrate selectivity - Diastereoselectivity and enantioselectivity-Substrate controlled methods-use of chiral substrates - examples

Auxiliary controlled methods-Use of chiral auxiliaries-Chiral enolates-alkylation of chiral imines – Stereoselective Diels-Alder reaction

Reagent controlled methods-Use of chiral reagents-Asymmetric oxidation-Sharpless epoxidation-Asymmetric reduction-Use of lithium aluminium hydride and borate reagents.

UNIT IV: METHODS OF ORGANIC SYNTHESIS

i). Oxidations: (a) Alcohols to carbonyls-Chromium (iv) oxidants-Dimethylsulfoxide oxidation, periodate xidation, Oppenauer oxidation, oxidation with manganese dioxide, oxidation with silver carbonate (b) Alkenes to epoxides-peroxide induced epoxidations. (c) Alkenes to diols-oxidation with potassium permanaganate, osmium tetraoxide, Prevost reaction (d) Ketones to esters-Bayer-Villiger oxidation (e) Oxidative bond cleavage-cleavage of alkenes by transition metals. (f) Oxidation of alkyl or alkenyl fragments-selenium dioxide and chromium trioxide oxidations.

15 Hrs

1

2

15 Hrs

1

15 Hrs

ii). *Reductions* : Reduction with lithium aluminium hydride, sodium borohydride, alkoxides, bismethoxy ethoxy aluminium hydride, Boran aluminium hydride and derivatives-catalytic,hydrogenationdissolving metal reductions, Non-Metallic reducing agents including enzymatic and microbial reductions.

Suggested Books

- 1. Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, John Wiley.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J. Sundberg, Plenum.
- 3. Structure and Mechanism in Organic Chemistry, C.K. Inglod, Cornell University Press.
- 4. Organic Chemistry, R.T Morrison and R.N. Boyd, Prentice Hall.
- 5. Name reactions and reagents in organic synthesis, B.P. Muway and M.G Ellord, John Wiley.
- 6. Principles of Organic Synthesis, R.O.C Norman and J.M Coxon, Blackie Academic & Professional.
- 7. Reaction Mechanism in Organic Chemistry, P.S. Kalsi, New Age International.
- 8. Principles of organometallic chemistry, P. Powell, ELBS.
- 9. Organo transition metal chemistry-Applications to organic synthesis, S.G. Davis, Pergmon.
- 10. Stereochemistry to Organic Compounds, D. Nasipuri, New Age International.
- 11. Stereochemistry, P.S. Kalsi, Wiley Eastern.

CHE-EC- 305B	Inorganic Spectroscopy and Thermal Methods of Analysis	L-5,T-1,P-0	4Credits								
Pre-requisite: Understanding of Basic Inorganic Spectroscopy and Thermal Methods of Analysis											
Course Objectives:											
• Gain knowledge on thermal methods of analysis and principles and applications to inorganic materials											
Familiarize wit	• Familiarize with basics of Mossbauer and NQR spectroscopy.										
• Learn the properties like g-factor, nuclear spin, hyperfine coupling constants											
• Study the ESR instrumentation, various applications and photoelectron spectroscopy.											
Course Outeon	and the and of the course the student	t will be able									

Course Outcomes : At the end of the course, the student will be able

CO1	To know about TG and DTA and applications of different scanning calorimetry.											
CO2	To ga	in know	ledge or	n Doppl	er shift	and cher	mical sh	ift, basi	c princij	ples and	applica	tions of
	NQR spectroscopy.											
CO3	To learn zero field splitting and Kramer's degeneracy, relaxation processes,											
	instrumentation and applications of ESR.											
CO4	To know about photoelectric effect and Koopmans theorem and impart the applications of											
	X-ray and UV photoelectron spectroscopy.											
	Mapping of course outcomes with the program outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3		2	1		1	2	2	1
CO2	3	2	2	3	2	2	-	2	-	2	2	-
CO3	3	2	2	3	2	2	1	1	2	2	1	-
CO4	3	2	2	3	2	-	-	1	1	-	2	1

CHE-EC- 301: Inorganic Spectroscopy and Thermal Methods of Analysis

UNIT -I: THERMAL METHODS OF ANALYSIS

Thermo gravimetry –Principle, Factors affecting the results, instrumentation. Application with special reference to $CuSO_45H_2O$, CaC_2O_4 2H₂O. Different thermal analysis – principle, instrumentation, difference between TG and DTA, applications with special reference to the clays and minerals.Different scanning calorimetry –principle, and applications to inorganic materials like chlorates and perchlorates, ammonium nitrate.

UNIT -II: MOSSBAUER SPECTROSCOPY and NQR

Mossbauer spectroscopy: Basic principles, Recoil energy, Doppler shift, Chemical shift, Quadrapole effects, Magnetic effects. Instrumentation, spectral parameters and spectrum display.

Aapplication of the technique to the studies of (1) bonding and structures of Fe^{2+} and Fe^{3+} compounds, (2) Sn^{2+} and Sn^{4+} compounds.

NQR spectroscopy: Basic principles of NQR spectroscopy, quadrupole nuclei, quadrupole moments, electric field gradient, coupling constant and applications.

UNIT –III: ELECTRON SPIN RESONANCE SPECTROSCOPY

Basic Principles, Hyper fine splitting, Factors affecting the 'g' value. Isotropic and anisotropic hyperfine coupling constants, Hamiltonian and spin densities. Zero field splitting and Kramer's degeneracy, Relaxation process and line widths. Instrumentation and Applications. The EPR spectrum of bis(salicylidimine)-copper(II) complex, study of inorganic free radicals, biological applications of Electron Spin Resonance (Study of free radicals and Iron-sulfur proteins)

UNIT -- IV: PHOTO ELECTRON SPECTROSCOPY

Photoelectric effect, Koopmans's theorem, ionization energy.

X-ray photoelectron spectroscopy (ESCA): Principle, Binding energies, Chemical shift, Applications of XPES to Qualitative analysis, to surface studies and structural analysis. Ultraviolet photoelectron spectroscopy- Principle, application of UPES in studying the molecular orbitals of O_2 and N_2 molecules. Block diagram of photoelectron spectrophotometer. Sources of radiation, detectors. Auger spectra – Principle, Applications of Auger spectra to surface studies and use of Auger spectra as a finger print tool.

Books Suggested

15 Hrs

15 Hrs

15 Hrs

- 1. F.A. Cotton and G. Wilkinson, Advanced In-organic chemistry VI Edition, 1999. John wiley & sons. Inc., New York.
- 2. J.E. Huheey, E.A. Keiter and R.L. Keiter: Inorganic Chemsitry, Principles of Structure and Reactivity (4th Ed.) (Addison-Wesley)
- 3. Gary Wulfsberg: Inorganic Chemistry (5th Ed. (Viva Books)
- 4. J.D. Lee: Concise Inorganic Chemistry (Blackwell)
- 5. W.L. Jolly: Modern Inorganic Chemsitry (McGraw-Hill)
- 6. R.L. Carlin: Magneto-chemsitry (Springer-Verlag)
- 7. R.L. Dutta and A. Syamal: Elements of Magnetochemsitry (Affiliate East-West).
- 8. K. Hussain Reddy Text book of Bioinorganic chemistry

CHE-EC- 306 A	Spectral Techniques	L-5,T-1,P-0	4Credits
Pre-requisite: U	Inderstanding of Basic Spectral Techn	iques	
Course Objectiv	ves:		
 Familiarize with 	h the instrumentation of UV and visi	ble spectroscopy, ap	plications of identifying
the structures o	f the molecules.		
• Understand IR absorption band	spectrometry and applications to asc ds	ertain the fundamen	tal groups by observing
• Study on the ap	plications of flame atomic absorption	spectroscopy.	
• Understand the spectroscopy	e working principle and fragmentat	ion rules of differ	ent molecules in Mass
Course Outcom	es : At the end of the course, the stude	nt will be able	

CO1	To know the basic principles of spectroscopy												
CO2	To familiarize with the analysis of various functional groups by using different spectroscopic techniques.												
CO3	To Unc	To Understand the applications of AAS.											
CO4	To gain knowledge about Mass spectral fragmentation of organic compounds and common functional groups												
	Mapping of course outcomes with the program outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	1	1	3	-	2	3	2	1	-	1	1	
CO2	3	2	2	3	2	2	3	2	-	1	-	2	
CO3	3	2	-	2	2	-	2		1		1	-	
CO4	3	2	2	3	-	2	1	1	-	1	-	2	

CHE : EC : 306(A): (OPEN ELECTIVE) SPECTRAL TECHNIQUES

UNIT – I: ULTRAVIOLET AND VISIBLE SPECTROSCOPY

Various electronic transitions (185-800nm.), Beer-Lambert Law, effect of solvent on electronic transitions , ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, Fieser-Woodward rules for conjugated dienes and carbonyl compounds

UNIT – II : INFRARED SPECTROSCOPY

Instrumentation and sample handling, characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ethers, phenols, amines, ketones, aldehydes, esters, amides, acids and anhydrides. Effect of hydrogen bonding.

UNIT - III: ATOMIC ABSORPTION SPECTROSCOPY: FLAME AAS:

Principle, Instrumentation - Sources of radiation (HCL and EDL), Different types of burners, Interferences-Physical, Chemical, spectral and back ground correction, and methods of minimization GF AAS: Principle and technique –Comparison between Flame AAS and furnace AAS, Applications of AAS, Comparison between Atomic Absorption & Flame Photometry.

UNIT -IV: MASS SPECTROMETRY

Principle, instrumentation, different methods of ionization, EI, CI, FD and FAB, Mass spectra-molecular ion, base peak, meta-stable peak, nitrogen rule and Mc Lafferty rearrangement. Mass spectral fragmentation of organic compounds and common functional groups. Normal and branched alkanes, alkenes, cycloalkanes, benzene and its derivatives, alcohols and phenols, ethers, aldehydes and ketones, carboxylic acids and their derivatives, amines and nitro compounds. Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.

Books Suggested:

- 1. Organic spectroscopy, W.Kemp 5th Ed, ELBS .2.
- Spectroscopy of organic compounds, RM Silversteen and others 5th Ed, John Wiley 1991
 Spectroscopy of organic compounds, PS Kalsi, Wiley, 1993
- 4. NMR in chemistry A Multi nuclear introduction, William Kemp, Mc Millan 1986
- 5. Spectroscopic methods in Organic Chemistry, DH Williams & I Flemmi TMH . 2005

15 Hrs

15 Hrs

15 Hrs

CHE E	C 306	B Cl	hromat	ographi	ic Techi	niques	L-	5,T-1,P	-0	40	Credits	
Pre-re	quisite:	Unders	tanding	of Chro	matogra	aphic Te	chnique	es				
Cours	Course Objectives:											
Familiarize with Classification of Chromatographic methods												
Understand Demonstration experiment in TLC												
• Study on the applications of High-Performance Liquid Chromatography (HPLC)												
Understand the working principle of gas chromatography.												
Course Outcomes: At the end of the course, the student will be able												
CO1 To know the stationary and mobile phases in chromatographic techniques.												
CO2	CO2 To familiarize applications of different chromatographic methods											
CO3	To Unc	lerstand	the prin	ciple of	chroma	tograph	ic techn	iques				
CO4	To gair	ı knowle	edge on	the norr	nal phas	se and re	everse p	hase				
		Ma	apping o	of cours	se outco	mes wit	h the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	1	3	-	2	3	2	1	-	1	1
CO2	3	2	2	3	2	2	3	2		1	-	2
CO3	3	2	-	2	2	1	2	-	2	-	1	1
CO4	3	2	2	3	-	2	1	2	-	1	-	2

CHE : EC : 306(B): (OPEN ELECTIVE) CHROMATOGRAPHIC TECHNIQUES

Unit –**I:** Introduction - Classification of Chromatographic methods – Column chromatography-Adsorption phenomenon: Nature of adsorbents-Solvent systems-Differential migration-Separation of mixture of o-/p-nitro anilines (A demonstration experiment).

Unit –**II:** Thin-Layer Chromatography (TLC)-Coating materials and preparation of TLC plates-Solvents for development-Detection of compounds in TLC- R_f values in TLC-Applications of TLC in chemistry-Preparative TLC – Demonstration experiment in TLC.

Unit –**III:** High-Performance Liquid Chromatography (HPLC) - Application of HPLC- HPLC instrument-Stationary phases in HPLC-Normal and reversed phase HPLC: A comparison- Normal phase HPLC: Principle-Retention times in Normal and reversed phase HPLC- Reversed phase HPLC: Principle.

Unit –**IV:** Gas-Liquid Chromatography- Instruments for Gas-Liquid Chromatography- Gas-Chromatographic Columns and the Stationary Phase- Application of Gas-Liquid Chromatography- Gas-Solid Chromatography.

Reference Books:

- 1. Analytical chemistry: G L David Krupadanam, D.Vijaya prsad, K.Varaprasad Rao, KLN Reddy, C.Sudhakar.
- 2. Analytical chemistry: Skoog West Holler.
- 3. Modern Analytical Chemistry : David Harvey DePauw University.
- 4. J.G.Dick. Analytical Chemistry, McGrraw Hill, New Delhi, (1973).

CHE-I	C- 301	In Tl	organic hermal]	: Spectr Method	oscopy s of An	and alysis	L-	5,T-1,P	-0	4	Credits	
Pre-re	quisite	: Unders	standing	of Basi	c Inorga	anic Spe	ctroscor	oy and T	Thermal	Method	ls of An	alysis
~	<u> </u>		0		U	Ĩ	1	•				2
Cours	Course Objectives:											
• Gain mater	• Gain knowledge on thermal methods of analysis and principles and applications to inorganic materials											
• Fami	Familiarize with basics of Mossbauer and NQR spectroscopy.											
• Learn	arn the properties like g-factor, nuclear spin, hyperfine coupling constants											
• Study	Study the ESR instrumentation, various applications and photoelectron spectroscopy.											
Cours	Course Outcomes : At the end of the course, the student will be able											
CO1	To know about TG and DTA and applications of different scanning calorimetry.											
CO2	To ga	in know	ledge or	1 Doppl	er shift	and cher	nical sh	ift, basi	c princij	ples and	applica	tions of
	NQR	spectros	scopy.									
CO3	To lea	ırn zero	field spl	litting a	nd Kran	ner's deg	generacy	y, relaxa	tion pro	ocesses,		
	instru	mentatio	on and a	pplication	ons of E	ESR.						
CO4	To kno	ow abou	t photoe	electric	effect a	nd Koop	omans t	heorem	and im	part the	applica	tions of
	X-ray a	and UV	photoel	ectron s	spectros	copy.						
	Mapping of course outcomes with the program outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	-	2	2	-	1	-	2	2
CO2	3	2	2	3	2	2	1	2	2	2	2	-
CO3	3	2	2	3	2	2	-	1	-	2	-	2
CO4	3	2	2	3	2	-	2	-	1	-	2	2

CHE-IC- 301: INORGANIC SPECTROSCOPY AND THERMAL METHODS OF ANALYSIS

UNIT -I: THERMAL METHODS OF ANALYSIS

Thermo gravimetry –Principle, Factors affecting the results, instrumentation. Application with special reference to $CuSO_45H_2O$, $CaC_2O_4 2H_2O$. Different thermal analysis – principle, instrumentation, difference between TG and DTA, applications with special reference to the clays and minerals.Different scanning calorimetry –principle, and applications to inorganic materials like chlorates and perchlorates, ammonium nitrate.

UNIT -II: MOSSBAUER SPECTROSCOPY and NQR

Mossbauer spectroscopy: Basic principles, Recoil energy, Doppler shift, Chemical shift, Quadrapole effects, Magnetic effects. Instrumentation, spectral parameters and spectrum display.

Aapplication of the technique to the studies of (1) bonding and structures of Fe^{2+} and Fe^{3+} compounds, (2) Sn^{2+} and Sn^{4+} compounds.

NQR spectroscopy: Basic principles of NQR spectroscopy, quadrupole nuclei, quadrupole moments, electric field gradient, coupling constant and applications.

UNIT –III: ELECTRON SPIN RESONANCE SPECTROSCOPY

Basic Principles, Hyper fine splitting, Factors affecting the 'g' value. Isotropic and anisotropic hyperfine coupling constants, Hamiltonian and spin densities. Zero field splitting and Kramer's degeneracy, Relaxation process and line widths. Instrumentation and Applications. The EPR spectrum of bis(salicylidimine)-copper(II) complex, study of inorganic free radicals, biological applications of Electron Spin Resonance (Study of free radicals and Iron-sulfur proteins)

15 Hrs

15 Hrs

UNIT -- IV: PHOTO ELECTRON SPECTROSCOPY

15 Hrs

Photoelectric effect, Koopmans's theorem, ionization energy.

X-ray photoelectron spectroscopy (ESCA): Principle, Binding energies, Chemical shift, Applications of XPES to Qualitative analysis, to surface studies and structural analysis. Ultraviolet photoelectron spectroscopy- Principle, application of UPES in studying the molecular orbitals of O_2 and N_2 molecules. Block diagram of photoelectron spectrophotometer. Sources of radiation, detectors. Auger spectra – Principle, Applications of Auger spectra to surface studies and use of Auger spectra as a finger print tool.

Books Suggested

- 8. F.A. Cotton and G. Wilkinson, Advanced In-organic chemistry VI Edition, 1999. John wiley & sons. Inc., New York.
- 9. J.E. Huheey, E.A. Keiter and R.L. Keiter: Inorganic Chemsitry, Principles of Structure and Reactivity (4th Ed.) (Addison-Wesley)
- 10. Gary Wulfsberg: Inorganic Chemistry (5th Ed. (Viva Books)
- 11. J.D. Lee: Concise Inorganic Chemistry (Blackwell)
- 12. W.L. Jolly: Modern Inorganic Chemsitry (McGraw-Hill)
- 13. R.L. Carlin: Magneto-chemsitry (Springer-Verlag)
- 14. R.L. Dutta and A. Syamal: Elements of Magnetochemsitry (Affiliate East-West).
- 8. K. Hussain Reddy Text book of Bioinorganic chemistry

CHE-IC 302	Organic Spectroscopy and Applications	L-5,T-1,P-0	4Credits
Pre-requisite:	Understanding of Organic Spectroscopy	and Applications	

 Familiarize with the instrumentation of UV and visible spectroscopy, applications or identifying the structures of the molecules. Understand IR spectrometry and applications to ascertain the fundamental groups by observing absorption bands Study on the applications of NMR spectroscopy in ascertaining the stereochemical structures or the molecules. Understand the working principle and fragmentation rules of different molecules in Mass spectroscopy 										
 Understand IR spectrometry and applications to ascertain the fundamental groups by observing absorption bands Study on the applications of NMR spectroscopy in ascertaining the stereochemical structures o the molecules. Understand the working principle and fragmentation rules of different molecules in Mass spectroscopy 										
 Onderstand IR spectrometry and applications to ascertain the fundamental groups by observing absorption bands Study on the applications of NMR spectroscopy in ascertaining the stereochemical structures o the molecules. Understand the working principle and fragmentation rules of different molecules in Mass spectroscopy 										
 absorption bands Study on the applications of NMR spectroscopy in ascertaining the stereochemical structures of the molecules. Understand the working principle and fragmentation rules of different molecules in Mass spectroscopy Course Outcomes: At the end of the course, the student will be able to 										
 Study on the applications of NMR spectroscopy in ascertaining the stereochemical structures of the molecules. Understand the working principle and fragmentation rules of different molecules in Mass spectroscopy Course Outcomes: At the end of the course, the student will be able to 										
 the molecules. Understand the working principle and fragmentation rules of different molecules in Mass spectroscopy Course Outcomes: At the end of the course, the student will be able to 										
 Understand the working principle and fragmentation rules of different molecules in Mass spectroscopy Course Outcomes: At the end of the course, the student will be able to 										
spectroscopy Course Outcomes: At the end of the course, the student will be able to										
Course Outcomes: At the end of the course, the student will be able to										
course outcomes. At the end of the course, the student will be dole to										
CO1 To get experience to calculate λ max values for dienes, enones, polyenes, aromatic and										
heteroaromatic compounds.										
To familiarize with the absorption bands of the molecules with specific functional groups										
To fainmanze with the absorption bands of the molecules with specific functional groups										
To interpret the data to different types of protons and carbons present in a molecule so as										
to ascertain the structure of the molecule based on the data provided										
to ascertain the structure of the molecule based on the data provided										
CO4 To acquire knowledge about specific fragmentation rules of different molecules which a										
unique.										
Mapping of course outcomes with the program outcomes										
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12										
CO1 3 2 2 3 2 2 - 2 1 2 2 -										
CO2 3 2 2 3 2 2 2 1 2 2 2 1										
CO3 3 2 2 3 2										
CO4 3 2 2 3 2 2 1 - 2 2 -										

CHE-IC 302: CORE THEORY: ORGANIC SPECTROSCOPY AND APPLICATIONS

UNIT-I: ULTRAVIOLET AND VISIBLE SPECTROSCOPY:

Various electronic transitions (185-800 nm), effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, conjugated polyenes. Fisher-Woodward rules for conjugated dienes and carbonyl compounds, ultraviolet spectra of aromatic and heterocyclic compounds. Steric effect in biphenyls.

UNIT - II: INFRARED SPECTROSCOPY

Г

0

01.

......

Instrumentation and sample handling. Characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ether, phenols and amines. Detailed study of vibrational frequencies of carbonyl compounds (ketones, aldehydes, esters, amides, acids, anhydrides, lactones, lactams and conjugated carbonyl compounds). Effect of hydrogen bonding and solvent effect on vibrational frequencies, overtones, combination bands and fermi resonance, FT-IR

UNIT -III: NMR SPECTROSCOPY:

¹H NMR spectroscopy: Magnetic properties of nuclei, Principles of NMR. Instrumentation, CW and pulsed FT instrumentation, equivalent and nonequivalent protons, enantiotopic and diastereotopic

15Hrs

15Hrs

protons, Chemical shifts, factors affecting the chemical shifts, electronegativity and anisotropy, shielding and deshielding effects, Signal integration, Spin-spin coupling: vicinal, germinal and long range, Coupling constants and factors affecting coupling constants.

Applications of ¹H NMR spectroscopy: Reaction mechanisms (cyclic bromonium ion, electrophilic and nucleophilic substitutions, carbocations and carbanions), E, Z isomers, conformation of cyclohexane and decalins, keto-enol tautomerism, hydrogen bonding, proton exchange processes (alcohols, amines and carboxylic acids), C-N rotation. Stereochemistry, hindered rotation, Karplus curve variation of coupling constant with dihedral angle. Simplification of complex spectra, nuclear magnetic double resonance, contact shift reagents, nuclear Overhauser effect (NOE).

¹³C NMR spectroscopy: General considerations, chemical shift (aliphatic, olefinic, alkyne, aromatic, heteroaromatic and carbonyl carbon), coupling constants. Two dimensional NMR spectroscopy-COSY.

UNIT-IV: MASS SPECTROMETRY

15Hrs

Introduction, ion production, type of ionization, EI, CI, FD, and FAB-factors affecting fragmentation, ion analysis, ion abundance. Mass spectral fragmentation of organic compounds, common functional groups, molecular-ion peak, metastable peak, Mc. Lafferty rearrangement. Nitrogen rule, isotope labeling. High resolution mass spectrometry, Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.

Books suggested:

- 6. Organic spectroscopy, W. Kemp 5th Ed, ELBS
- 7. Spectroscopy of organic compounds, RM Silversteen and others, 5th Ed, John Wiley
- 8. Spectroscopy of organic compounds, P.S. Kalsi, Wiley, 1993.
- 9. NMR in chemistry-A multi nuclear introduction, William Kemp, Mc Millan, 1986.
- 10. Spectroscopic methods in Organic chemistry, DH Williams & I Flemm.

CHE	IC 33 8 304	ž 🛛	Core Inor	e practi ganic C	cal I & Chemist	II ry	L-	5,T-1,P	-0	4	Credits	5
Pre-re	Pre-requisite: Understanding of Inorganic Chemistry - Practical.											
 Course Objectives: Gain knowledge on synthesis of inorganic complexes Estimation of metal ions by complex metric and colorimetric method. 												
Cours	urse Outcomes: At the end of the course, the student will be able.											
CO1	To know the basic principles of instrumental methods of analysis.											
CO2	To familiarize with the analysis of organometallic complex salts.											
CO3	To Unc	lerstand	the con	plexity	, theory	and wor	king pr	inciple of	of colou	rimetry.		
CO4	To gair	n knowl	edge on	analysis	s of orga	anic com	ponents	8				
		Ma	apping	of cours	se outco	mes wit	h the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	3	1	2	3	2	-	1	1	-
CO2	3	2	2	3	2	2	3	2	-	1	-	2
CO3	3	2	1	2	2		2	-	2	-	1	1
CO4	3	2	2	3		2		1	2	1	-	2

CHE- IC -303: Core-Practical PRACTICAL-I

Preparation of Inorganic complexes and characterization:

- a) Tris thiourea Zinc (II) Sulphate
- **b**) Tris thiourea Copper(I) Sulphate
- c) Hexamine nickel (II) Chloride
- d) Chloropentamanine cobalt (III) Chloride
- e) Cis potassium diaquodioxalato chromate (III)
- f) Tris (acetylacetonato) manganese (III)
- g) Mercury tetrakristhiocyanato cobaltate (II)
- **h**) Sodium trioxalato ferrate (III)
- i) Tetrammine Copper (II) Sulphate
- j) Potassium hexathiocyanato chromate (III) tetrahydrate

CHE -IC -304 Core-Practical- PRACTICAL –II –Instrumental methods of analysis Colorimetric determinations:

- **k**) Determination of manganese
- l) Determination of nickel
- m) Determination of iron by 1,10 Pheren-thiroline
- **n**) Determination of chromium
- o) Determination of Phosphate
- **p**) Determination of Pesticides
- q) Determination of Nitrite.

CHE-IC-305A	Organic Chemistry III	L-3,T-1,P-2	4Credits

Pre-re	Pre-requisite: Understanding of Organic Chemistry											
Course	e Objec	ctives: C	Course (Objectiv	ves:							
• Fam	niliarize	with th	e applie	cations	of diffe	rent rea	gents in	ı organi	c synth	esis, M	echanisr	ns and
stere	eochem	istry.										
• Stuc	Study the methods of preparation and applications of organometallic reagents.											
• Und	Understand topocity, prochirality, auxillary and reagent-controlled methods in asymmetric											
synt	hesis.											
• App	lication	s of dif	ferent c	oxidizing	g and re	educing	agents	in organ	nic synt	hesis w	ith regi	on and
ster	eo contr	olled pr	oducts.	1 C 1		.1 . 1		1 11				
Cours	Course Outcomes: At the end of the course, the student will be able to											
CO1	1 To familiarize with the specific functions of the reagents particularly diazomethane,											
	N-bromosuccinimide, Ziegler Natta catalyst, 1,3-dithianes and Merrifield resin in the											
	synthesis of a variety of complex molecules.											
CO2	To gain knowledge in the synthesis of different organometallic reagents and also stereo											
<u> </u>	and re	gio spec	citicity a	and selec	<u>ctivity o</u>	f reaction	ons with	organo	metallic	reagent	ts	
CO3	To ur	derstan	d diaste	ereosele	ctivity,	stereose	electivity	y and s	ubstrate	e contro	olled au	xillary
004	contro	olled rea	ctions		.1			•	1	•		1
CO4	To ac	quire kn	lowledg	e about	the reag	gents w	hich cau	ises oxi	dation 1	n variou	us comp	ounds
	and al	so the r	eagents	that cau	ises sele	ective ai	nd comp	olete red	uctions	to synth	hesize v	arious
	compo	ounds.	••	. C		•	l. 41					
		IVI	apping	of cours	se outco	mes wi	in the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	2	2	1	2	-	2	2	1
CO2	3 2 2 3 2 2 - 2 2 2 2 2											
CO3	3	3 2 2 3 2 1 - 2 2 - 1										
CO4	3	2	2	3	2	2	-	2	-	2	2	2

CHE-IC-303A Core-Theory Organic Chemistry III

UNIT I: REAGENTS IN ORGANIC SYNTHESIS

Use of the following reagents in organic synthesis: Anhydrous AlCl₃, Boran trifluoride, N-Bromosuccinimide, Diazomethane, Dicyclohexylcarbodiimide, Lead tetraacetate, Zieglar-Natta catalysts, DDQ, Dithianes, Merrifield resin.

UNIT-II: ORGANOMETALLIC REAGENTS

Synthesis and applications of Grignard reagents, Organolithium, Zinc, Copper, Mercury, Palladium and Rhodium compounds in Organic Synthesis, Homogeneous catalytic hydrogenation and hydroformylation reactions

UNIT III: ASYMMETRIC SYNTHESIS

Topocity - Prochirality- Substrate selectivity - Diastereoselectivity and enantioselectivity-Substrate controlled methods-use of chiral substrates - examples

Auxiliary controlled methods-Use of chiral auxiliaries-Chiral enolates-alkylation of chiral imines – Stereoselective Diels-Alder reaction

Reagent controlled methods-Use of chiral reagents-Asymmetric oxidation-Sharpless epoxidation-Asymmetric reduction-Use of lithium aluminium hydride and borate reagents.

UNIT IV: METHODS OF ORGANIC SYNTHESIS

i). Oxidations: (a) Alcohols to carbonyls-Chromium (iv) oxidants-Dimethylsulfoxide ox

15 Hrs

15 Hrs

15 Hrs

15 Hrs oxidation.

periodate xidation, Oppenauer oxidation, oxidation with manganese dioxide, oxidation with silver carbonate (b) Alkenes to epoxides-peroxide induced epoxidations. (c) Alkenes to diols-oxidation with potassium permanaganate, osmium tetraoxide, Prevost reaction (d) Ketones to esters-Bayer-Villiger oxidation (e) Oxidative bond cleavage-cleavage of alkenes by transition metals. (f) Oxidation of alkyl or alkenyl fragments-selenium dioxide and chromium trioxide oxidations.

ii). *Reductions* : Reduction with lithium aluminium hydride, sodium borohydride, alkoxides, bismethoxy ethoxy aluminium hydride, Boran aluminium hydride and derivativescatalytic,hydrogenation-dissolving metal reductions, Non-Metallic reducing agents including enzymatic and microbial reductions.

Suggested Books

- 1. Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, John Wiley.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J. Sundberg, Plenum.
- 3. Structure and Mechanism in Organic Chemistry, C.K. Inglod, Cornell University Press.
- 4. Organic Chemistry, R.T Morrison and R.N. Boyd, Prentice Hall.
- 5. Name reactions and reagents in organic synthesis, B.P. Muway and M.G Ellord, John Wiley.
- 6. Principles of Organic Synthesis, R.O.C Norman and J.M Coxon, Blackie Academic & Professional.
- 7. Reaction Mechanism in Organic Chemistry, P.S. Kalsi, New Age International.
- 8. Principles of organometallic chemistry, P. Powell, ELBS.
- 9. Organo transition metal chemistry-Applications to organic synthesis, S.G. Davis, Pergmon.
- 10. Stereochemistry to Organic Compounds, D. Nasipuri, New Age International.
- 11. Stereochemistry, P.S. Kalsi, Wiley Eastern.

CHE-I	IC-305BPhysical Chemistry IIIL-5,T-1,P-04 Credits											
Pre-requisite: Understanding of graduate level Physical Chemistry												
 Course Objectives: Learn applications of Group Theory, symmetry criteria and symmetry restrictions. Applications of X-ray Diffraction and Electron Diffraction on solid state chemistry. Familiarize with the applications of Microwave spectroscopy, infrared spectroscopy and Raman 												
 spectroscopy. Get knowledge on concept of Thermodynamics of polymer dissolution and Flory-Huggins theory of polymer solutions. 												
Cours	Course Outcomes: At the end of the course, the student will be able to											
CO1	To kno	w the de	etermina	tion of (Characte	er Co-or	dinate o	of C_2V p	oint gro	up base	d on 3N	
	Coordinates and to learn the Mutual exclusion Principle.											
CO2	To learn the Bragg conditions-Miller Indices- Laue method, Bragg method, Debye Scherrer method of X-ray structural analysis of crystals.											
CO3	To stud selectio	y the rig	gid rotat and V	or mode ibration	l, stark (al- rotat	effect, v ional Ra	ibration aman sp	-rotation	n spectropy.	oscopy,	PQR br	anches,
CO4	O4 To study the concepts on heat of dissolution, regular solution theory, Hildebrand solubility parameter, concept of Flory-Huggins theory of polymer solutions											
Mapping of course outcomes with the program outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	-	2	2	-	1	-	2	-
CO2	3	2	2	3	2	2	1	2	2	2	1	-
CO3	3	2	2	3	2	2	1	1	-	2	-	2
CO4	3	2	2	3	_	2	1	_	2	2	1	2

CHE-AC-303B CORE-THEORY PHYSICAL CHEMISTRY III

UNIT-I Applications of Group Theory

Construction of reducible and irreducible representations, Determination of Character Co-ordinate of C_2V point group based on 3N Coordinates. Standard reduction formula, Determination of normal modes of vibrations of SO₂, NH₃, POCl₃, PtCl₄²⁻·H₂O₂ molecules. Mutual exclusion Principle, Direct Product, Accidental Degeneracy and Fermi resonance Group Theory and Spectroscopy: IR Spectral activity of NH₃ molecule, selection rules, symmetry Criteria for optical activity, symmetry restrictions on dipole moments, symmetry and stereo isomerism. Prediction of IR and Raman Spectral activity of H₂O and CO₂.

UNIT-II: X-ray Diffraction:

(A) Solid State Chemistry Dislocation of Solids, Schottky and Frenkeldefects, insulaters, a,d semiconductors, Band theory of solids, solid state reactions.

(**B**) Bragg conditions-Miller Indices- Laue method, Bragg method, Debye Scherrer method of X-ray structural analysis of crystals. Index reflections, identification of unit cells from systematic absences in diffraction pattern- structure of simple lattices and X-ray intensities- structure factor and its relation to intensity and electron density- Description of procedure for X-ray structure analysis (NaCl and KCl)

(C) Electron Diffraction: Scattering intensity Vs scattering angle, Wierlequation, and its importance. Measurement techniques, Elucidation of structures of simple gas phase molecules, Low energy electron diffraction (LEED) for the study of surfaces.

UNIT-III: SPECTROSCOPHY

15 Hrs

Microwave spectroscopy: classification of molecules, rigid rotator model, effect of isotopic substitution on the transition frequencies, intensities- stark effect.

Infrared spectroscopy: Linear harmonic oscillator, zero point energy, anharmonity, Mores potential energy diagram, fundamental and overtone transitions, hot bands and combinations bands. Vibration-rotation spectroscopy, PQR branches, selection rules, factors affecting the band positions and intensities for IR region. **Raman spectroscopy:** Classical and quantum theories of Raman effect, pure rotational, pure vibrational Raman spectroscopy, selection rules, mutual exclusion principle, resonance Raman spectroscopy and coherent antistokes Raman spectroscopy. Vibrational- rotational Raman spectroscopy.

UNIT-IV: POLYMER SOLUTIONS

15 Hrs

Thermodynamics of polymer dissolution, effect of molecular weight on solubility, solubility of crystalline and amorphous polymer, heat of dissolution, regular solution theory, Hildebrand solubility parameter, Flory-Huggins theory of polymer solutions, conformational entropy, osmotic pressure and viscosity of polymer solutions. Molecular weight determination by light scattering, ultra-centrifugation and sedimentation equilibrium method. Liquid Crystals- synthesis and applications

Books Suggested

- 1. F.A. Cotton : Introduction to Group theory for chemists.
- 2. Geroge Davidson Elsevier : Introductory Group Theory for Chemists.
- 3. Gurdeep Raj, Ajay Bhagi&Vinod Jain : Group Theory and Symmetry in Chemistry
- 4. Instrumental methods of analysis M.H. Willard, Meritt Jr. and J.A. Dean
- 5. Principles of instrumental analysis Skoog and West
- 6. F. W. Billmeyer, Jr.: Text Book of Polymer Science. Wiley Interscience.
- 7. V. R. Gowariker, N. V. Viswanathan, Jayadev Sreedhar.: polymer Science. New Age international Publishers.

CHE	IC 306 /	4	Spectr	al Tech	niques		L-	5,T-1,P	-0	4	Credits	5
Pre-re	Pre-requisite: Understanding of Spectral Techniques											
 Course Objectives: Familiarize with the instrumentation of UV and visible spectroscopy, applications of identifying the structures of the molecules. Understand IR spectrometry and applications to ascertain the fundamental groups by observing absorption bands. Study on the applications of flame atomic absorption spectroscopy. Understand the working principle and fragmentation rules of different molecules in Mass spectroscopy. 												
Cours	Course Outcomes: At the end of the course, the student will able											
CO1	CO1 To know the basic principles of spectroscopy.											
CO2	CO2 To familiarize with the analysis of various functional groups by using different spectroscopic techniques.											
CO3	CO3 To Understand the applications of AAS.											
CO4	CO4 To gain knowledge about Mass spectral fragmentation of organic compounds and common functional groups.											
Mapping of course outcomes with the program outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	3	1	2	3	2	1	-	1	-
CO2	3	2	2	3	2	2	3	2	-	1	2	2
CO3	3	2	1	2	2	1	2	-	2	-	1	-
CO4	3	2	2	3	1	2	-	1	-	1	-	2

CHE : IC : 306(A): (OPEN ELECTIVE) SPECTRAL TECHNIQUES

UNIT - I: ULTRAVIOLET AND VISIBLE SPECTROSCOPY

Various electronic transitions (185-800nm.), Beer-Lambert Law, effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, Fieser-Woodward rules for conjugated dienes and carbonyl compounds

UNIT – II : INFRARED SPECTROSCOPY

Instrumentation and sample handling, characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ethers, phenols, amines, ketones, aldehydes, esters, amides, acids and anhydrides. Effect of hydrogen bonding.

UNIT – III:ATOMIC ABSORPTION SPECTROSCOPY: FLAME AAS:

Principle, Instrumentation – Sources of radiation (HCL and EDL), Different types of burners, Interferences- Physical, Chemical, spectral and back ground correction, and methods of minimization GF AAS: Principle and technique –Comparison between Flame AAS and furnace AAS, Applications of AAS, Comparison between Atomic Absorption & Flame Photometry.

15 Hrs

15 Hrs

UNIT -IV: MASS SPECTROMETRY

15 Hrs

Principle, instrumentation, different methods of ionization, EI, CI, FD and FAB, Mass spectra-molecular ion, base peak, meta-stable peak, nitrogen rule and Mc Lafferty rearrangement. Mass spectral fragmentation of organic compounds and common functional groups. Normal and branched alkanes, alkenes, cycloalkanes, benzene and its derivatives, alcohols and phenols, ethers, aldehydes and ketones, carboxylic acids and their derivatives , amines and nitro compounds. Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.

Books Suggested:

- 6. Organic spectroscopy, W. Kemp 5th Ed, ELBS .2.
- 7. Spectroscopy of organic compounds, RM Silversteen and others 5th Ed, John Wiley 1991
- 8. Spectroscopy of organic compounds, PS Kalsi, Wiley, 1993
- 9. NMR in chemistry A Multi nuclear introduction, William Kemp, Mc Millan 1986
- 10. Spectroscopic methods in Organic Chemistry, DH Williams & I Flemmi TMH . 2005

CHE	C 306 B Chromatographic Techniques L-5,T-1,P-0 4Credits											
Pre-requisite: Understanding of graduate level Chromatographic Techniques												
Cours	Course Objectives:											
 Familiarize with Classification of Chromatographic methods. Understand Demonstration experiment in TLC 												
• One	 Understand Demonstration experiment in TLC. Study on the applications of High-Performance Liquid Chromatography (HPLC) 											
 Understand the working principle of gas chromatography. 												
Cours	Course Outcomes: At the end of the course, the student will able to											
C01	To know the stationary and mobile phases in chromatographic techniques.											
CO2	To familiarize applications of different chromatographic methods.											
CO3	To Understand the principle of chromatographic techniques.											
CO4	4 To gain knowledge on the normal phase and reverse phase.											
Mapping of course outcomes with the program outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	3	1	2	3	2	2	-	1	1
CO2	3	2	2	3	2	2	3	2	-	1	-	2
CO3	3	2	-	2	2	-	2	-	2	-	1	-
CO4	3	2	2	3	1	2	-	2	-	1	2	2

CHE IC 306 (B) : Chromatographic Techniques

Unit –**I:** Introduction - Classification of Chromatographic methods – Column chromatography-Adsorption phenomenon: Nature of adsorbents-Solvent systems-Differential migration-Separation of mixture of o-/p-nitro anilines (A demonstration experiment).

Unit –**II:** Thin-Layer Chromatography (TLC)-Coating materials and preparation of TLC plates-Solvents for development-Detection of compounds in TLC- R_f values in TLC-Applications of TLC in chemistry-Preparative TLC – Demonstration experiment in TLC.

Unit –**III:** High-Performance Liquid Chromatography (HPLC) - Application of HPLC- HPLC instrument-Stationary phases in HPLC-Normal and reversed phase HPLC: A comparison- Normal phase HPLC: Principle-Retention times in Normal and reversed phase HPLC- Reversed phase HPLC: Principle.

Unit –**IV:** Gas-Liquid Chromatography- Instruments for Gas-Liquid Chromatography- Gas-Chromatographic Columns and the Stationary Phase- Application of Gas-Liquid Chromatography- Gas-Solid Chromatography.

Reference Books:

- 5. Analytical chemistry: G L David Krupadanam, D. Vijaya prsad, K. Varaprasad Rao, KLN Reddy, C. Sudhakar.
- 6. Analytical chemistry: Skoog West Holler.
- 7. Modern Analytical Chemistry : David Harvey DePauw University.
- 8. J.G. Dick. Analytical Chemistry, Mc Grraw Hill, New Delhi, (1973).

Pre-requisite: Understanding of Organic Chemistry Course Objectives: Course Objectives: • Familiarize with the applications of different reagents in organic synthesis, Mechanisms an stereochemistry. • Study the methods of preparation and applications of organometallic reagents. • Understand topocity, prochirality, auxillary and reagent-controlled methods in asymmetri synthesis. • Applications of different oxidizing and reducing agents in organic synthesis with region an stereo controlled products. Course Outcomes: At the end of the course, the student will be able to CO1 To familiarize with the specific functions of the reagents particularly diazomethane N-bromosuccinimide, Ziegler Natta catalyst, 1,3-dithianes and Merrifield resin in the synthesis of a variety of complex molecules. CO2 To gain knowledge in the synthesis of different organometallic reagents and also stered and regio specificity and selectivity of reactions with organometallic reagents CO3 To acquire knowledge about the reagents which causes oxidation in various compounds and also the reagents that causes selective and complete reductions to synthesize various compounds. Mapping of course outcomes with the program outcomes PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 2 1 1 2 2	CHE-O	OC-301 Organic Chemistry III L-3,T-1,P-2 4Credits											
Course Objectives: Course Objectives: • Familiarize with the applications of different reagents in organic synthesis, Mechanisms an stereochemistry. • Study the methods of preparation and applications of organometallic reagents. • Understand topocity, prochirality, auxillary and reagent-controlled methods in asymmetri synthesis. • Applications of different oxidizing and reducing agents in organic synthesis with region an stereo controlled products. Course Outcomes: At the end of the course, the student will be able to CO1 To familiarize with the specific functions of the reagents particularly diazomethane N-bromosuccinimide, Ziegler Natta catalyst, 1,3-dithianes and Merrifield resin in the synthesis of a variety of complex molecules. CO2 To gain knowledge in the synthesis of different organometallic reagents and also stereor and regio specificity and selectivity of reactions with organometallic reagents CO3 To understand diastereoselectivity, stereoselectivity and substrate controlled auxillary controlled reactions CO4 To acquire knowledge about the reagents which causes oxidation in various compounds and also the reagents that causes selective and complete reductions to synthesize various compounds. Mapping of course outcomes with the program outcomes Mapping of 2 2 3 2 2 1 2 2	Pre-re	Pre-requisite: Understanding of Organic Chemistry											
 Study the methods of preparation and applications of organometallic reagents. Understand topocity, prochirality, auxillary and reagent-controlled methods in asymmetri synthesis. Applications of different oxidizing and reducing agents in organic synthesis with region an stereo controlled products. Course Outcomes: At the end of the course, the student will be able to CO1 To familiarize with the specific functions of the reagents particularly diazomethane N-bromosuccinimide, Ziegler Natta catalyst, 1,3-dithianes and Merrifield resin in the synthesis of a variety of complex molecules. CO2 To gain knowledge in the synthesis of different organometallic reagents and also stered and regio specificity and selectivity of reactions with organometallic reagents CO3 To understand diastereoselectivity, stereoselectivity and substrate controlled auxillary controlled reactions CO4 To acquire knowledge about the reagents which causes oxidation in various compounds and also the reagents that causes selective and complete reductions to synthesize various compounds. CO4 TO a 2 2 3 2 2 - 2 1 2 2 1 CO1 3 2 2 3 2 2 - 2 1 2 2 1 CO2 3 2 2 3 2 2 1 2 2 1 	• Fam	e Objec niliarize eochemi	tives: C with th istry.	Course (ne applie	Objectiv cations	v es : of diffe	rent rea	gents ir	n organi	c synth	esis, M	echanisı	ns and
Course Outcomes: At the end of the course, the student will be able to CO1 To familiarize with the specific functions of the reagents particularly diazomethane N-bromosuccinimide, Ziegler Natta catalyst, 1,3-dithianes and Merrifield resin in the synthesis of a variety of complex molecules. CO2 To gain knowledge in the synthesis of different organometallic reagents and also stered and regio specificity and selectivity of reactions with organometallic reagents CO3 To understand diastereoselectivity, stereoselectivity and substrate controlled auxillary controlled reactions CO4 To acquire knowledge about the reagents which causes oxidation in various compounds and also the reagents that causes selective and complete reductions to synthesize various compounds. Mapping of course outcomes with the program outcomes PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 3 2 2 3 2 2 1 2 2	 Stud Und synt 	 Study the methods of preparation and applications of organometallic reagents. Understand topocity, prochirality, auxillary and reagent-controlled methods in asymmetric synthesis. 											
Course Outcomes: At the end of the course, the student will be able toCO1To familiarize with the specific functions of the reagents particularly diazomethane N-bromosuccinimide, Ziegler Natta catalyst, 1,3-dithianes and Merrifield resin in the synthesis of a variety of complex molecules.CO2To gain knowledge in the synthesis of different organometallic reagents and also stered and regio specificity and selectivity of reactions with organometallic reagentsCO3To understand diastereoselectivity, stereoselectivity and substrate controlled auxillary controlled reactionsCO4To acquire knowledge about the reagents which causes oxidation in various compounds and also the reagents that causes selective and complete reductions to synthesize various compounds.Mapping of course outcomes with the program outcomesPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12CO1322322122	stere	eo contr	olled pr	oducts.	DATUIZIII	g and re	euuemg	agems	in organ	ne sym	.110515 W	iui iegi	on and
CO1To familiarize with the specific functions of the reagents particularly diazomethane N-bromosuccinimide, Ziegler Natta catalyst, 1,3-dithianes and Merrifield resin in the synthesis of a variety of complex molecules.CO2To gain knowledge in the synthesis of different organometallic reagents and also stered and regio specificity and selectivity of reactions with organometallic reagentsCO3To understand diastereoselectivity, stereoselectivity and substrate controlled auxillary 	Course	Course Outcomes: At the end of the course, the student will be able to											
CO2 To gain knowledge in the synthesis of different organometallic reagents and also stered and regio specificity and selectivity of reactions with organometallic reagents CO3 To understand diastereoselectivity, stereoselectivity and substrate controlled auxillary controlled reactions CO4 To acquire knowledge about the reagents which causes oxidation in various compounds and also the reagents that causes selective and complete reductions to synthesize various compounds. Mapping of course outcomes with the program outcomes PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 3 2 2 3 2 2 1 2 2 1	CO1	To familiarize with the specific functions of the reagents particularly diazomethane, N-bromosuccinimide, Ziegler Natta catalyst, 1,3-dithianes and Merrifield resin in the synthesis of a variety of complex molecules.											
CO3To understand diastereoselectivity, stereoselectivity and substrate controlled auxillary controlled reactionsCO4To acquire knowledge about the reagents which causes oxidation in various compounds and also the reagents that causes selective and complete reductions to synthesize various compounds.Mapping of course outcomes with the program outcomesPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12CO1322322-21221CO2322322122122	CO2	To gain knowledge in the synthesis of different organometallic reagents and also stereo and regio specificity and selectivity of reactions with organometallic reagents											
CO4To acquire knowledge about the reagents which causes oxidation in various compounds and also the reagents that causes selective and complete reductions to synthesize various compounds.Mapping of course outcomes with the program outcomesPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12CO1322322-21221CO23223221221	CO3	To understand diastereoselectivity, stereoselectivity and substrate controlled auxillary controlled reactions											
Mapping of course outcomes with the program outcomes PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 3 2 2 3 2 2 - 2 1 2 2 1 CO2 3 2 2 3 2 2 1 2 1 1 2 2	CO4	CO4 To acquire knowledge about the reagents which causes oxidation in various compounds and also the reagents that causes selective and complete reductions to synthesize various compounds.											
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 3 2 2 3 2 2 - 2 1 2 2 1 CO2 3 2 2 3 2 2 1 2 1 1 2 2	Mapping of course outcomes with the program outcomes												
CO1 3 2 2 3 2 2 - 2 1 2 2 1 CO2 3 2 2 3 2 2 1 2 2 1		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO2 3 2 2 3 2 2 1 2 1	CO1	3	2	2	3	2	2	-	2	1	2	2	1
	CO2	3	2	2	3	2	2	1	2	1	1	2	2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	CO3	3	2	2	3	2	2	1	-	2	-	-	2

CHE-OC-301Core-Theory Organic Chemistry III

UNIT I: REAGENTS IN ORGANIC SYNTHESIS

Use of the following reagents in organic synthesis: Anhydrous AlCl₃, Boran trifluoride, N-Bromosuccinimide, Diazomethane, Dicyclohexylcarbodiimide, Lead tetraacetate, Zieglar-Natta catalysts, DDQ, Dithianes, Merrifield resin.

UNIT-II: ORGANOMETALLIC REAGENTS

Synthesis and applications of Grignard reagents, Organolithium, Zinc, Copper, Mercury, Palladium and Rhodium compounds in Organic Synthesis, Homogeneous catalytic hydrogenation and hydroformylation reactions

UNIT III: ASYMMETRIC SYNTHESIS

Topocity - Prochirality- Substrate selectivity - Diastereoselectivity and enantioselectivity-Substrate controlled methods-use of chiral substrates - examples

Auxiliary controlled methods-Use of chiral auxiliaries-Chiral enolates-alkylation of chiral imines – Stereoselective Diels-Alder reaction

Reagent controlled methods-Use of chiral reagents-Asymmetric oxidation-Sharpless epoxidation-Asymmetric reduction-Use of lithium aluminium hydride and borate reagents.

15 Hrs

15 Hrs

UNIT IV: METHODS OF ORGANIC SYNTHESIS

15 Hrs

- i). Oxidations: (a) Alcohols to carbonyls-Chromium (iv) oxidants-Dimethylsulfoxide oxidation, periodate xidation, Oppenauer oxidation, oxidation with manganese dioxide, oxidation with silver carbonate (b) Alkenes to epoxides-peroxide induced epoxidations. (c) Alkenes to diols-oxidation with potassium permanaganate, osmium tetraoxide, Prevost reaction (d) Ketones to esters-Bayer-Villiger oxidation (e) Oxidative bond cleavage-cleavage of alkenes by transition metals. (f) Oxidation of alkyl or alkenyl fragments-selenium dioxide and chromium trioxide oxidations.
- **ii).** *Reductions* : Reduction with lithium aluminium hydride, sodium borohydride, alkoxides, bismethoxy ethoxy aluminium hydride, Boran aluminium hydride and derivatives-catalytic, hydrogenation-dissolving metal reductions, Non-Metallic reducing agents including enzymatic and microbial reductions.

Suggested Books

- 1. Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, John Wiley.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J. Sundberg, Plenum.
- 3. Structure and Mechanism in Organic Chemistry, C.K. Inglod, Cornell University Press.
- 4. Organic Chemistry, R.T Morrison and R.N. Boyd, Prentice Hall.
- 5. Name reactions and reagents in organic synthesis, B.P. Muway and M.G Ellord, John Wiley.
- 6. Principles of Organic Synthesis, R.O.C Norman and J.M Coxon, Blackie Academic & Professional.
- 7. Reaction Mechanism in Organic Chemistry, P.S. Kalsi, New Age International.
- 8. Principles of organometallic chemistry, P. Powell, ELBS.
- 9. Organo transition metal chemistry-Applications to organic synthesis, S.G. Davis, Pergmon.
- 10. Stereochemistry to Organic Compounds, D. Nasipuri, New Age International.
- 11. Stereochemistry, P.S. Kalsi, Wiley Eastern.

CHE-OC 302	Organic Spectroscopy and Applications	L-5,T-1,P-0	4Credits							
Pre-requisite: Understanding of Organic Spectroscopy and Applications										

• Fan	• Familiarize with the instrumentation of UV and visible spectroscopy, applications of identifying the structures of the molecules.											
• Unc	• Understand IR spectrometry and applications to ascertain the fundamental groups by observing											
abse	absorption bands											
• Stu	• Study on the applications of NMR spectroscopy in ascertaining the stereochemical structures of											
the	the molecules.											
• Unc	lerstan	d the	working	g princi	ple and	fragme	entation	rules of	of differe	ent mole	cules in	n Mass
spec	ctrosco	ру	A1	1 6 1		.1 .	1 .		1			
Cours	Course Outcomes: At the end of the course, the student will be able to											
COL												
COI	To get experience to calculate λ max values for dienes, enones, polyenes, aromatic and											
CO2	To familiarize with the absorption hands of the molecules with specific functional groups											
02	To rammanze with the absorption bands of the molecules with specific functional groups											
CO3	To interpret the data to different types of protons and carbons present in a molecule so as											
	to ascertain the structure of the molecule based on the data provided											
<u> </u>												
CO4	To a	cquire	knowled	lge abo	out specif	ic fragi	mentatio	on rules	s of diffe	rent mol	ecules v	which are
	unique.											
mapping of course outcomes with the program outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	2	2	3	2	2	1	-	1	2	2	1
CO2	3	2	2	3	2	2	1	2	1	2	2	-
CO3	3	2	2	3	2	2	1	2	-	2	2	2
CO4	3	2	2	3	2	2	-	2	1	2	2	1

CHE-IC 302: CORE THEORY: ORGANIC SPECTROSCOPY AND APPLICATIONS

UNIT-I: ULTRAVIOLET AND VISIBLE SPECTROSCOPY:

Various electronic transitions (185-800 nm), effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, conjugated polyenes. Fisher-Woodward rules for conjugated dienes and carbonyl compounds, ultraviolet spectra of aromatic and heterocyclic compounds. Steric effect in biphenyls.

UNIT – II: INFRARED SPECTROSCOPY

Course Objectives:

Instrumentation and sample handling. Characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ether, phenols and amines. Detailed study of vibrational frequencies of carbonyl compounds (ketones, aldehydes, esters, amides, acids, anhydrides, lactones, lactams and conjugated carbonyl compounds). Effect of hydrogen bonding and solvent effect on vibrational frequencies, overtones, combination bands and fermi resonance, FT-IR

UNIT –III: NMR SPECTROSCOPY:

¹H NMR spectroscopy: Magnetic properties of nuclei, Principles of NMR. Instrumentation, CW and pulsed FT instrumentation, equivalent and nonequivalent protons, enantiotopic and diastereotopic protons, Chemical shifts, factors affecting the chemical shifts, electronegativity and anisotropy,

15Hrs

15Hrs

shielding and deshielding effects, Signal integration, Spin-spin coupling: vicinal, germinal and long range, Coupling constants and factors affecting coupling constants.

Applications of ¹H NMR spectroscopy: Reaction mechanisms (cyclic bromonium ion, electrophilic and nucleophilic substitutions, carbocations and carbanions), E, Z isomers, conformation of cyclohexane and decalins, keto-enol tautomerism, hydrogen bonding, proton exchange processes (alcohols, amines and carboxylic acids), C-N rotation. Stereochemistry, hindered rotation, Karplus curve variation of coupling constant with dihedral angle. Simplification of complex spectra, nuclear magnetic double resonance, contact shift reagents, nuclear Overhauser effect (NOE).

¹³C NMR spectroscopy: General considerations, chemical shift (aliphatic, olefinic, alkyne, aromatic, heteroaromatic and carbonyl carbon), coupling constants. Two dimensional NMR spectroscopy-COSY.

UNIT-IV: MASS SPECTROMETRY

15Hrs

Introduction, ion production, type of ionization, EI, CI, FD, and FAB-factors affecting fragmentation, ion analysis, ion abundance. Mass spectral fragmentation of organic compounds, common functional groups, molecular-ion peak, metastable peak, Mc. Lafferty rearrangement. Nitrogen rule, isotope labeling. High resolution mass spectrometry, Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.

Books suggested:

- 11. Organic spectroscopy, W. Kemp 5th Ed, ELBS
- 12. Spectroscopy of organic compounds, RM Silversteen and others, 5th Ed, John Wiley
- 13. Spectroscopy of organic compounds, P.S. Kalsi, Wiley, 1993.
- 14. NMR in chemistry-A multi nuclear introduction, William Kemp, Mc Millan, 1986.
- 15. Spectroscopic methods in Organic chemistry, DH Williams & I Flemm.
| CHE | OC 303 | & | Co
rognic I | ore pra | ctical I: | ractical | L- | 5,T-1,P | -0 | 4 | Credits | 5 |
|------------|--|--|--------------------|----------|-----------|------------|----------|----------|----------|-----------|------------|---------|
| | 304 | U | i ganne i | 25timat | 10115 - 1 | Tactical | | | | | | |
| Pre-re | Pre-requisite: Understanding of Organic Chemistry - Practical. | | | | | | | | | | | |
| Cours | ourse Objectives: | | | | | | | | | | | |
| •] | Estimation of phenol, glucose, primary amine and ketone | | | | | | | | | | | |
| •] | Estimation and percentage purity of aspirin and paracetamol. | | | | | | | | | | | |
| •] | Multister | prepara | ations of | biologic | ally impo | ortant org | ganic mo | lecules. | | | | |
| •] | Familiari | Familiarize to identify the synthesized compounds by spectral methods. | | | | | | | | | | |
| Cours | e Outcomes: At the end of the course, the student will be able | | | | | | | | | | | |
| CO1 | To gain knowledge about the estimation/percent purity of different organic molecules. | | | | | | | | | | | |
| CO2 | To get purity. | hands- | on-expe | rience | with the | e synthe | esis and | determ | ination | of con | centration | ons and |
| CO3 | To acc
biologi | quire k
cally in | nowledg
portant | ge in h | andling | of tox | tic che | micals | in mul | ti step | prepara | tion of |
| CO4 | To gair | n experi | ence in t | he prop | osal of s | synthetic | c routes | to funct | ionalize | ed deriva | atives. | |
| | | M | apping | of cours | se outco | omes wit | th the p | rogram | outcon | nes | | |
| | PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 | | | | | | | | | | | |
| CO1 | 3 | 2 | 2 | 3 | 2 | 2 | 1 | 2 | 1 | - | 2 | - |
| CO2 | 3 | 2 | 2 | 3 | 2 | 2 | | 2 | 1 | 2 | 2 | 2 |
| CO3 | 3 | 2 | 2 | 3 | 2 | - | 1 | 2 | - | - | - | 2 |
| CO4 | 3 | 2 | 2 | 3 | 2 | 1 | - | 2 | 1 | 2 | - | 2 |

CHE-OC-303 Core-Practical Organic Estimations PRACTICAL –I

- 1) Estimation of phenol
- 2) Estimation of glucose
- 3) Estimation of primary amine
- 4) Estimation of ketone
- 5) Estimation of percentage purity of aspirin
- 6) Estimation of percentage purity of paracetamol.

CHE-OC-304 Core-Practical Multistep preparations PRACTICAL –II

- 1) Preparation of benzilic acid
- 2) Preparation of benzanilide
- 3) Preparation of o-chlorobenzoic acid
- 4) Preparation of symmetric tribromobenzene

30	5 A	Tł	iermal	Method	s of An	alysis						
Pre-re	equisite	Unders	standing	of Basi	c Inorga	nic Spe	ctrosco	py and T	Thermal	Method	s of An	alysis
Cours	e Objec	tives:										
•	Gain ki	nowledg	ge on t	hermal	method	ls of ar	alysis	and pri	inciples	and ap	plicatio	ons to
i	inorgani	ic mater	ials.									
•]	Familia	rize with	n basics	of Moss	sbauer a	nd NQR	spectr	oscopy.				
•	Learn th	le prope	rties like	e g-facto	or, nucle	ear spin,	hyperf	ine coup	ling cor	istants		
•	Study th	ie ESR i	nstrume	entation,	various	applica	tions a	nd photo	electror	spectro	scopy.	
Cours	e Outco	omes : A	At the en	d of the	course,	the stud	ent wil	l be able				
CO1	To kn	low the	basic pr	inciples	of instru	umental	method	ls of ana	lysis.			
CO2	To ga	in know	ledge of	n chemi	stry of a	lloys.						
CO3	To U	nderstan	d the co	mplexit	y, theor	y and w	orking	principle	e of cold	ourimetr	у	
CO4	To fa	miliarize	e with la	ws of c	olorime	tric titrat	ions.					
		Ma	apping	of cours	se outco	mes wit	h the p	orogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	-	3	2	2	3	2	1	-	1	-
CO2	3	2	2	3	2	2	3	2	2	1	1	2
CO3	3	1	3	3	2	2	-	2	-	2	1	-
CO4	3	2	2	3	2	1	1	2	1	1	-	2

Inorganic Spectroscopy and

L-5,T-1,P-0

CHE-OC- 305 A: Inorganic Spectroscopy and Thermal Methods of Analysis

UNIT -I: THERMAL METHODS OF ANALYSIS

CHE-OC-

Thermo gravimetry –Principle, Factors affecting the results, instrumentation. Application with special reference to $CuSO_45H_2O$, $CaC_2O_4 2H_2O$. Different thermal analysis – principle, instrumentation, difference between TG and DTA, applications with special reference to the clays and minerals.Different scanning calorimetry –principle, and applications to inorganic materials like chlorates and perchlorates, ammonium nitrate.

UNIT -II: MOSSBAUER SPECTROSCOPY and NQR

Mossbauer spectroscopy: Basic principles, Recoil energy, Doppler shift, Chemical shift, Quadrapole effects, Magnetic effects. Instrumentation, spectral parameters and spectrum display.

Aapplication of the technique to the studies of (1) bonding and structures of Fe^{2+} and Fe^{3+} compounds, (2) Sn^{2+} and Sn^{4+} compounds.

NQR spectroscopy: Basic principles of NQR spectroscopy, quadrupole nuclei, quadrupole moments, electric field gradient, coupling constant and applications.

UNIT –III: ELECTRON SPIN RESONANCE SPECTROSCOPY

Basic Principles, Hyper fine splitting, Factors affecting the 'g' value. Isotropic and anisotropic hyperfine coupling constants, Hamiltonian and spin densities. Zero field splitting and Kramer's degeneracy, Relaxation process and line widths. Instrumentation and Applications. The EPR spectrum of bis(salicylidimine)-copper(II) complex, study of inorganic free radicals, biological applications of Electron Spin Resonance (Study of free radicals and Iron-sulfur proteins)

15 Hrs

15 Hrs

15 Hrs

4Credits

Photoelectric effect, Koopmans's theorem, ionization energy.

X-ray photoelectron spectroscopy (ESCA): Principle, Binding energies, Chemical shift, Applications of XPES to Qualitative analysis, to surface studies and structural analysis. Ultraviolet photoelectron spectroscopy- Principle, application of UPES in studying the molecular orbitals of O_2 and N_2 molecules. Block diagram of photoelectron spectrophotometer. Sources of radiation, detectors. Auger spectra – Principle, Applications of Auger spectra to surface studies and use of Auger spectra as a finger print tool.

- 1. F.A. Cotton and G. Wilkinson, Advanced In-organic chemistry VI Edition, 1999. John wiley & sons. Inc., New York.
- 2. J.E. Huheey, E.A. Keiter and R.L. Keiter: Inorganic Chemsitry, Principles of Structure and Reactivity (4th Ed.) (Addison-Wesley)
- 3. Gary Wulfsberg: Inorganic Chemistry (5th Ed. (Viva Books)
- 4. J.D. Lee: Concise Inorganic Chemistry (Blackwell)
- 5. W.L. Jolly: Modern Inorganic Chemsitry (McGraw-Hill)
- 6. R.L. Carlin: Magneto-chemsitry (Springer-Verlag)
- 7. R.L. Dutta and A. Syamal: Elements of Magnetochemsitry (Affiliate East-West).
- 8. K. Hussain Reddy Text book of Bioinorganic chemistry

CHE-0	OC- 305E	3	Ph	ysical (Chemist	ry III	L-	5,T-1,P	-0	4	Credits	
Pre-r	Pre-requisite: Understanding of graduate level Physical Chemistry											
Cours	Course Objectives:											
• Lea	earn applications of Group Theory, symmetry criteria and symmetry restrictions.											
• Ap	pplications of X-ray Diffraction and Electron Diffraction on solid state chemistry.											
• Fai	miliarize	with the	e applica	ations of	f Microv	wave sp	ectrosco	opy, infr	ared spe	ectrosco	py and l	Raman
spe	ectroscopy	/.										
• Ge	t knowle	dge on	concep	ot of Th	hermody	namics	of pol	ymer di	ssolutio	on and	Flory-H	uggins
the	ory of po	lymer s	olutions									
Cours	se Outco	mes: A	t the end	l of the	course,	the stud	ent will	be able	to			
CO1	To knov	v the de	termina	tion of (Characte	er Co-or	dinate o	of C ₂ V p	oint gro	up base	d on 3N	
	Coordinates and to learn the Mutual exclusion Principle.											
CO2	To learn	the Br	agg con	ditions-l	Miller In	ndices- l	Laue me	ethod, B	ragg me	thod, D	ebye Sc	herrer
	method	of X-ra	y structi	ural ana	lysis of	crystals.						
CO3	To study	the rig	gid rotat	or mode	el, stark (effect, v	ibration	-rotatio	n spectr	oscopy,	PQR br	anches,
	selection	n rules a	and V	ibration	al- rotat	ional Ra	ıman sp	ectrosco	py.			
CO4	To study	the co	ncepts o	on heat o	of dissol	ution, re	egular so	olution t	heory, H	Hildebra	nd	
	solubilit	y paran	neter, co	ncept of	f Flory-	Huggins	theory	of poly	mer solu	itions		
		Ма	nning	of cours		mas wit	h tha n	roaram	outcon	105		
,		1716	apping (JI COUIS			n me p	rugralli	outcoll	105		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3 2 2 3 - 2 1 1 - 2 1										
CO2	3	2	2	3	2	2	1	-	2	2	1	-
CO3	3	2	2	3	2	2	2	2		2	-	2
CO4	3	2	2	3	-	2	1	1	1	2	2	2

CHE-OC-305B CORE-THEORY PHYSICAL CHEMISTRY III

UNIT-I Applications of Group Theory

Construction of reducible and irreducible representations, Determination of Character Co-ordinate of C_2V point group based on 3N Coordinates. Standard reduction formula, Determination of normal modes of vibrations of SO₂, NH₃, POCl₃, PtCl₄²⁻·H₂O₂ molecules. Mutual exclusion Principle, Direct Product, Accidental Degeneracy and Fermi resonance Group Theory and Spectroscopy: IR Spectral activity of NH₃ molecule, selection rules, symmetry Criteria for optical activity, symmetry restrictions on dipole moments, symmetry and stereo isomerism. Prediction of IR and Raman Spectral activity of H₂O and CO₂.

UNIT-II: X-ray Diffraction:

(A) Solid State Chemistry Dislocation of Solids, Schottky and Frenkeldefects, insulaters, a,d semiconductors, Band theory of solids, solid state reactions.

(**B**) Bragg conditions-Miller Indices- Laue method, Bragg method, Debye Scherrer method of X-ray structural analysis of crystals. Index reflections, identification of unit cells from systematic absences in diffraction pattern- structure of simple lattices and X-ray intensities- structure factor and its relation to intensity and electron density- Description of procedure for X-ray structure analysis (NaCl and KCl)

(C) Electron Diffraction: Scattering intensity Vs scattering angle, Wierlequation, and its importance. Measurement techniques, Elucidation of structures of simple gas phase molecules, Low energy electron diffraction (LEED) for the study of surfaces.

UNIT-III: SPECTROSCOPHY

15 Hrs

Microwave spectroscopy: classification of molecules, rigid rotator model, effect of isotopic substitution on the transition frequencies, intensities- stark effect.

Infrared spectroscopy: Linear harmonic oscillator, zero point energy, anharmonity, Mores potential energy diagram, fundamental and overtone transitions, hot bands and combinations bands. Vibration-rotation spectroscopy, PQR branches, selection rules, factors affecting the band positions and intensities for IR region. **Raman spectroscopy:** Classical and quantum theories of Raman effect, pure rotational, pure vibrational Raman spectroscopy, selection rules, mutual exclusion principle, resonance Raman spectroscopy and coherent antistokes Raman spectroscopy. Vibrational- rotational Raman spectroscopy.

UNIT-IV: POLYMER SOLUTIONS

Thermodynamics of polymer dissolution, effect of molecular weight on solubility, solubility of crystalline and amorphous polymer, heat of dissolution, regular solution theory, Hildebrand solubility parameter, Flory-Huggins theory of polymer solutions, conformational entropy, osmotic pressure and viscosity of polymer solutions. Molecular weight determination by light scattering, ultra-centrifugation and sedimentation equilibrium method. Liquid Crystals- synthesis and applications

Books Suggested

- 1. F.A. Cotton : Introduction to Group theory for chemists.
- 2. Geroge Davidson Elsevier : Introductory Group Theory for Chemists.
- 3. Gurdeep Raj, Ajay Bhagi&Vinod Jain : Group Theory and Symmetry in Chemistry
- 4. Instrumental methods of analysis M.H. Willard, Meritt Jr. and J.A. Dean
- 5. Principles of instrumental analysis Skoog and West
- 6. F. W. Billmeyer, Jr.: Text Book of Polymer Science. Wiley Interscience.
- 7. V. R. Gowariker, N. V. Viswanathan, Jayadev Sreedhar.: polymer Science. New Age international Publishers.

CHE	OC 30	5	Spectr	al Tech	niques		L-	-5,T-1,P	- -0	4	Credits	5
	(A)											
Pre-re	equisite:	Unders	standing	of Spec	etral Tec	chniques	5					
	Course	Object	ives:									
• 1	Familiar	ize wit	h the in	nstrume	ntation	of UV	and v	isible s	pectrosc	copy, aj	pplicatio	ons of
i	dentifyi	ng the s	tructure	s of the	molecul	les.						
• 1	Understand IR spectrometry and applications to ascertain the fundamental groups by											
(observin	g absor	ption ba	nds.								
• 5	Study on the applications of flame atomic absorption spectroscopy.											
• 1	Understand the working principle and fragmentation rules of different molecules in Mass											
S	spectroscopy.											
Cours	se Outcomes: At the end of the course, the student will able											
CO1	CO1 To know the basic principles of spectroscopy											
	I O KIIO	w the ba	usic prin	cipies o	n speen	oscopy.						
CO2	To fai	niliarizo	e with	the ar	nalysis	of var	ious fu	nctiona	l group	os by	using a	different
	spectro	scopic t	echniqu	es.								
CO3	To Und	lerstand	the app	lication	s of AA	S.						
<u> </u>	Tarain	1			~~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	unal funa au		f			ام میر ما	
004	10 gair	I KNOWI nal grou	edge al	bout Ma	iss spect	ral frag	mentatio	on of org	ganic co	mpound	is and co	ommon
	runcuo		aps.	of cours	se outco	mes wi	th the n	rogram		nec		
		1710	apping				th the p	Togram		nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
<u>CO1</u>	2	1	1	2		2	2	2		1	1	1
	3	1	1	3	-	2	3	2	-	1		1
CO2	3	2	2	3	2	2	3	2	-	1	-	2
<u>CO3</u>	2	2		2	2	2	2		2		1	
CO3	3	$\frac{2}{2}$	- 2	3	-	$\frac{2}{2}$	1	2	1	- 1	1	- 2

CHE : OC : 306 (A): (OPEN ELECTIVE) SPECTRAL TECHNIQUES

UNIT – I: ULTRAVIOLET AND VISIBLE SPECTROSCOPY

Various electronic transitions (185-800nm.), Beer-Lambert Law, effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, Fieser-Woodward rules for conjugated dienes and carbonyl compounds

UNIT – II : INFRARED SPECTROSCOPY

Instrumentation and sample handling, characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ethers, phenols, amines, ketones, aldehydes, esters, amides, acids and anhydrides. Effect of hydrogen bonding.

UNIT – III:ATOMIC ABSORPTION SPECTROSCOPY: FLAME AAS: 15 Hrs

Principle, Instrumentation – Sources of radiation (HCL and EDL), Different types of burners, Interferences- Physical, Chemical, spectral and back ground correction, and methods of minimization GF AAS: Principle and technique –Comparison between Flame AAS and furnace AAS, Applications of AAS, Comparison between Atomic Absorption & Flame Photometry.

15 Hrs

UNIT -IV: MASS SPECTROMETRY

15 Hrs

Principle, instrumentation, different methods of ionization, EI, CI, FD and FAB, Mass spectra-molecular ion, base peak, meta-stable peak, nitrogen rule and Mc Lafferty rearrangement. Mass spectral fragmentation of organic compounds and common functional groups. Normal and branched alkanes, alkenes, cycloalkanes, benzene and its derivatives, alcohols and phenols, ethers, aldehydes and ketones, carboxylic acids and their derivatives , amines and nitro compounds. Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.

- 1. Organic spectroscopy, W.Kemp 5th Ed, ELBS .2.
- 2. Spectroscopy of organic compounds, RM Silversteen and others 5th Ed, John Wiley 1991
- 3. Spectroscopy of organic compounds, PS Kalsi, Wiley, 1993
- 4. NMR in chemistry A Multi nuclear introduction, William Kemp, Mc Millan 1986
- 5. Spectroscopic methods in Organic Chemistry, DH Williams & I Flemmi TMH . 2005

CHI 306	E OC	Chr	omatog	raphic	Technic	ques	L-	5,T-1,P	-0	40	Credits	
Pre-re	quisite:	Unders	tanding	of grad	uate leve	el Chroi	natogra	phic Tec	chniques	8		
Cours • Fan • Unc • Stud • Unc	 Course Objectives: Familiarize with Classification of Chromatographic methods. Understand Demonstration experiment in TLC. Study on the applications of High-Performance Liquid Chromatography (HPLC). Understand the working principle of gas chromatography. 											
Cours	e Outco	e Outcomes: At the end of the course, the student will able to										
CO1	To kno	w the st	ationary	and mo	bile pha	ases in c	hromate	ographic	technic	ques.		
CO2	To fam	iliarize	applicat	ions of o	different	t chroma	atograpł	nic meth	ods.			
CO3	To Und	lerstand	the prin	ciple of	chroma	ıtograph	ic techn	iques.				
CO4	To gain	knowle	edge on	the norr	nal phas	se and re	everse p	hase.				
		Ma	apping	of cours	se outco	mes wit	h the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2
C01	3	1	-	3	1	2	3	2	2	1	1	-
CO2	3	3 2 2 3 2 3 2 1 - 2										
CO3	3	2	-	2	2	-	2	-	2	-	1	-
CO4	3	2	2	3	2	2	-	1	-	1	1	2

CHE OC 306 (B) : Chromatographic Techniques

Unit –**I:** Introduction - Classification of Chromatographic methods – Column chromatography-Adsorption phenomenon: Nature of adsorbents-Solvent systems-Differential migration-Separation of mixture of o-/p-nitro anilines (A demonstration experiment).

Unit –**II:** Thin-Layer Chromatography (TLC)-Coating materials and preparation of TLC plates-Solvents for development-Detection of compounds in TLC- R_f values in TLC-Applications of TLC in chemistry-Preparative TLC – Demonstration experiment in TLC.

Unit –**III:** High-Performance Liquid Chromatography (HPLC) - Application of HPLC- HPLC instrument-Stationary phases in HPLC-Normal and reversed phase HPLC: A comparison- Normal phase HPLC: Principle-Retention times in Normal and reversed phase HPLC- Reversed phase HPLC: Principle.

Unit –**IV:** Gas-Liquid Chromatography- Instruments for Gas-Liquid Chromatography- Gas-Chromatographic Columns and the Stationary Phase- Application of Gas-Liquid Chromatography- Gas-Solid Chromatography.

Reference Books:

- 1. Analytical chemistry: G L David Krupadanam, D. Vijaya prsad, K. Varaprasad Rao, KLN Reddy, C. Sudhakar.
- 2. Analytical chemistry: Skoog West Holler.
- 3. Modern Analytical Chemistry : David Harvey DePauw University.
- 4. J.G. Dick. Analytical Chemistry, Mc Grraw Hill, New Delhi, (1973).

CHE-PC-301	Physical Chemistry III	L-5,T-1,P-0	4 Credits

Pre-r	Pre-requisite: Understanding of graduate level Physical Chemistry											
 Course Objectives: Learn applications of Group Theory, symmetry criteria and symmetry restrictions. Applications of X-ray Diffraction and Electron Diffraction on solid state chemistry. Familiarize with the applications of Microwave spectroscopy, infrared spectroscopy and Raman spectroscopy. Get knowledge on concept of Thermodynamics of polymer dissolution and Flory-Huggins theory of polymer solutions. 												
Cours		intes: A			course,				10 · .	1	1 201	
COL	To kno	w the de	etermina	tion of (er Co-or	dinate o	of $C_2 V p$	oint gro	up base	d on 3N	
000	Coordi	nates and	d to lear	n the M	utual ex	clusion	Princip	$\frac{1}{1}$		1 1 D	1 0	1
CO2	To lear	n the Br	agg con	ditions-	Miller Ii	ndices- I	Laue me	ethod, B	ragg me	ethod, D	ebye Sc	herrer
000	method	of X-ra	y structi	ural ana	lysis of	crystals.					DOD 1	
CO3	To stud	y the rig	gid rotat	or mode	l, stark	effect, v	ibration	-rotatio	n spectr	oscopy,	PQR br	anches,
004	selectio	n rules a	and v	1bration	al- rotat	ional Ra	aman sp	ectrosco	<u>ppy.</u>	T*1 1 1	1	
CO4	To stud	y the co	ncepts of	on heat of	of dissol	ution, re	egular so	olution t	heory, I	Hildebra	nd	
	solubili	ty paran	neter, co	oncept of	f Flory-	Huggins	s theory	of poly	mer son	itions		
		Ma	apping	of cours	e outco	mes wit	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	2	2	3	-	2	2	1	1	-	2	2
CO2	$202 \ 3 \ 2 \ 2 \ 3 \ 2 \ 2 \ 1 \ 2 \ 2 \ 2 \ - \ 1$											
CO3	XO3 3 2 2 3 2 2 - 2 - 1 2 2											
CO4	3	2	2	3	-	2	2	-	2	2	-	2

CHE-PC-301 CORE-THEORY PHYSICAL CHEMISTRY III

UNIT-I Applications of Group Theory

Construction of reducible and irreducible representations, Determination of Character Co-ordinate of C_2V point group based on 3N Coordinates. Standard reduction formula, Determination of normal modes of vibrations of SO₂, NH₃, POCl₃, PtCl₄²⁻·H₂O₂ molecules. Mutual exclusion Principle, Direct Product, Accidental Degeneracy and Fermi resonance Group Theory and Spectroscopy: IR Spectral activity of NH₃ molecule, selection rules, symmetry Criteria for optical activity, symmetry restrictions on dipole moments, symmetry and stereo isomerism. Prediction of IR and Raman Spectral activity of H₂O and CO₂.

UNIT-II: X-ray Diffraction:

(A) Solid State Chemistry Dislocation of Solids, Schottky and Frenkeldefects, insulaters, a,d semiconductors, Band theory of solids, solid state reactions.

(B) Bragg conditions-Miller Indices- Laue method, Bragg method, Debye Scherrer method of X-ray structural analysis of crystals. Index reflections, identification of unit cells from systematic absences in diffraction pattern- structure of simple lattices and X-ray intensities- structure factor and its relation to intensity and electron density- Description of procedure for X-ray structure analysis (NaCl and KCl).

(C) Electron Diffraction: Scattering intensity Vs scattering angle, Wierlequation, and its importance. Measurement techniques, Elucidation of structures of simple gas phase molecules, Low energy electron diffraction (LEED) for the study of surfaces.

UNIT-III: SPECTROSCOPHY

15 Hrs

Microwave spectroscopy: classification of molecules, rigid rotator model, effect of isotopic substitution on the transition frequencies, intensities- stark effect.

Infrared spectroscopy: Linear harmonic oscillator, zero point energy, anharmonity, Mores potential energy diagram, fundamental and overtone transitions, hot bands and combinations bands. Vibration-rotation spectroscopy, PQR branches, selection rules, factors affecting the band positions and intensities for IR region. **Raman spectroscopy:** Classical and quantum theories of Raman effect, pure rotational, pure vibrational Raman spectroscopy, selection rules, mutual exclusion principle, resonance Raman spectroscopy and coherent antistokes Raman spectroscopy. Vibrational- rotational Raman spectroscopy.

UNIT-IV: POLYMER SOLUTIONS

Thermodynamics of polymer dissolution, effect of molecular weight on solubility, solubility of crystalline and amorphous polymer, heat of dissolution, regular solution theory, Hildebrand solubility parameter, Flory-Huggins theory of polymer solutions, conformational entropy, osmotic pressure and viscosity of polymer solutions. Molecular weight determination by light scattering, ultra-centrifugation and sedimentation equilibrium method. Liquid Crystals- synthesis and applications

Books Suggested

- 8. F.A. Cotton : Introduction to Group theory for chemists.
- 9. Geroge Davidson Elsevier : Introductory Group Theory for Chemists.
- 10. Gurdeep Raj, Ajay Bhagi&Vinod Jain : Group Theory and Symmetry in Chemistry
- 11. Instrumental methods of analysis M.H. Willard, Meritt Jr. and J.A. Dean
- 12. Principles of instrumental analysis Skoog and West
- 13. F. W. Billmeyer, Jr.: Text Book of Polymer Science. Wiley Interscience.
- 14. V. R. Gowariker, N. V. Viswanathan, Jayadev Sreedhar.: polymer Science. New Age international Publishers.

CHE-PC 302	Organic Spectroscopy and	L-5,T-1,P-0	4Credits
	Applications		

Pre-re	Pre-requisite: Understanding of Organic Spectroscopy and Applications											
Course • Famider • Und abso • Stud the • Und spec	 Course Objectives: Familiarize with the instrumentation of UV and visible spectroscopy, applications of identifying the structures of the molecules. Understand IR spectrometry and applications to ascertain the fundamental groups by observing absorption bands Study on the applications of NMR spectroscopy in ascertaining the stereochemical structures of the molecules. Understand the working principle and fragmentation rules of different molecules in Mass spectroscopy 											
Cours		comes:	At the e		le course	, the su	ident w	III De al	sie to			
CO1	To g heter	et exper roaroma	rience to atic con	o calcul	ate λ maz s.	x values	s for die	enes, en	ones, pol	lyenes, a	romatic	and
CO2	To fa	amiliari	ze with	the abs	orption b	ands of	the mo	lecules	with spe	cific fun	ctional g	groups
CO3	To ir to as	nterpret scertain	the data the stru	a to diff acture of	erent typ f the mol	es of pi ecule ba	otons a ased on	nd carb the dat	ons pres a provide	ent in a n ed	nolecule	e so as
CO4	To a uniq	cquire l ue.	knowled	lge abo	ut specif	ic fragr	nentatio	on rules	of diffe	rent mol	ecules v	which are
		Ν	/Iappin	g of cou	irse outo	comes v	vith the	e progra	am outco	omes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3 2 2 3 2 2 2 2 2 -											
CO2	3	2	2	3	2	2	-	2	2	2	2	2
CO3	3	2	2	3	2	2	2	1	-	2	2	2
CO4	3	2	2	3	2	2	-	2	-	2	2	2

CHE-PC 302: CORE THEORY: ORGANIC SPECTROSCOPY AND APPLICATIONS

UNIT-I: ULTRAVIOLET AND VISIBLE SPECTROSCOPY:

Various electronic transitions (185-800 nm), effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, conjugated polyenes. Fisher-Woodward rules for conjugated dienes and carbonyl compounds, ultraviolet spectra of aromatic and heterocyclic compounds. Steric effect in biphenyls.

UNIT – II: INFRARED SPECTROSCOPY

Instrumentation and sample handling. Characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ether, phenols and amines. Detailed study of vibrational frequencies of carbonyl compounds (ketones, aldehydes, esters, amides, acids, anhydrides, lactones, lactams and conjugated carbonyl compounds). Effect of hydrogen bonding and solvent effect on vibrational frequencies, overtones, combination bands and fermi resonance, FT-IR

UNIT –III: NMR SPECTROSCOPY:

¹H NMR spectroscopy: Magnetic properties of nuclei, Principles of NMR. Instrumentation, CW and

15Hrs

15Hrs

pulsed FT instrumentation, equivalent and nonequivalent protons, enantiotopic and diastereotopic protons, Chemical shifts, factors affecting the chemical shifts, electronegativity and anisotropy, shielding and deshielding effects, Signal integration, Spin-spin coupling: vicinal, germinal and long range, Coupling constants and factors affecting coupling constants.

Applications of ¹H NMR spectroscopy: Reaction mechanisms (cyclic bromonium ion, electrophilic and nucleophilic substitutions, carbocations and carbanions), E, Z isomers, conformation of cyclohexane and decalins, keto-enol tautomerism, hydrogen bonding, proton exchange processes (alcohols, amines and carboxylic acids), C-N rotation. Stereochemistry, hindered rotation, Karplus curve variation of coupling constant with dihedral angle. Simplification of complex spectra, nuclear magnetic double resonance, contact shift reagents, nuclear Overhauser effect (NOE).

¹³C NMR spectroscopy: General considerations, chemical shift (aliphatic, olefinic, alkyne, aromatic, heteroaromatic and carbonyl carbon), coupling constants. Two dimensional NMR spectroscopy-COSY.

UNIT-IV: MASS SPECTROMETRY

15Hrs

Introduction, ion production, type of ionization, EI, CI, FD, and FAB-factors affecting fragmentation, ion analysis, ion abundance. Mass spectral fragmentation of organic compounds, common functional groups, molecular-ion peak, metastable peak, Mc. Lafferty rearrangement. Nitrogen rule, isotope labeling. High resolution mass spectrometry, Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.

- 1. Organic spectroscopy, W. Kemp 5th Ed, ELBS
- 2. Spectroscopy of organic compounds, RM Silversteen and others, 5th Ed, John Wiley
- 3. Spectroscopy of organic compounds, P.S. Kalsi, Wiley, 1993.
- 4. NMR in chemistry-A multi nuclear introduction, William Kemp, Mc Millan, 1986.
- 5. Spectroscopic methods in Organic chemistry, DH Williams & I Flemmi

CHE PC 303 &	Core practical I:	L-5,T-1,P-0	4 Credits					
304	Physical Chemistry-practicals I &							
	II							
Pre-requisite: Understanding of Inorganic Chemistry - Practical.								

Course	Course Objectives:											
• Stuc	• Study on chemical kinetics of different reactions											
• Flan	ne photo	ometry t	o deterr	nine dif	ferent ca	ations						
• Fam	iliarize	with co	nducton	netric tit	rations	of mixtı	ires					
Cole	orometr	ic estim	ation of	differer	t molec	ules.						
Course	e Outco	mes: A	t the end	d of the	course,	the stud	ent will	be able				
CO1	To stu	ıdy cher	nical kii	netics of	homog	eneous	solution	S				
CO2	To ga	in know	ledge of	n the de	terminat	tion of d	lifferent	cations	by flam	e photo	metry	
CO3	To un	derstand	d the pri	nciple a	nd work	king asp	ects of c	onducto	ometric	titration	s	
CO4	To ac	quire kn	owledge	e on the	implem	entation	n of cold	orometri	c estima	tions.		
		Ma	apping	of cours	e outco	mes wit	th the p	rogram	outcon	ies		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3 2 2 3 2 - 2 - 1 2 - 2											
CO2	3 2 2 3 3 2 - 2 2 2											
CO3	3	3	3	2	-	2	1	-	2	-	2	2
CO4	3	2	2	3	3	2	1	2	_	2	2	2

CHE-PC-303: Core-Practical PRACTICAL-I

1. Chemical Kinetics:

- a) Study of the kinetics of halogenations of acetone.
- b) Determination of activation energy of reaction between iodide and Persulphate
- c) Determination rate constant of oxidation of iodide ion by persulphate ion and study the effect of neutral salt (KCl) on this reaction.

2. Flame Photometry:

- a) Determination of Na
- b) Determination of K
- c) Determination of Cu

CHE- PC-304: Core-Practical PRACTICAL-II

- 1. <u>Conductometry:</u>
 - a) Titration of mixture of halides
 - b) Titration of mixture of HCl+HOAC
 - c) Saponification of an ester

2. Colorimetry:

- a) Estimation of Manganese
- b) Estimation of Iron
- c) Estimation of Phosphate
- d) Titration of copper Vs EDTA

(Mandatory Core)										
CHE PC 305 A	Organic Chemistry III	L-3,T-1,P-2	4Credits							
Pre-requisite: U	Jnderstanding of Organic Chemistry	I I								

Course Objectives: Course Objectives:

- Familiarize with the applications of different reagents in organic synthesis, Mechanisms and stereochemistry.
- Study the methods of preparation and applications of organometallic reagents.
- Understand topocity, prochirality, auxillary and reagent-controlled methods in asymmetric synthesis.
- Applications of different oxidizing and reducing agents in organic synthesis with region and stereo controlled products.

Course Outcomes: At the end of the course, the student will be able to

CO1	To familiarize with the specific functions of the reagents particularly diazomethane,
	N-bromosuccinimide, Ziegler Natta catalyst, 1,3-dithianes and Merrifield resin in the
	synthesis of a variety of complex molecules.

- **CO2** To gain knowledge in the synthesis of different organometallic reagents and also stereo and regio specificity and selectivity of reactions with organometallic reagents
- CO3 To understand diastereoselectivity, stereoselectivity and substrate controlled auxillary controlled reactions
 CO4 To acquire knowledge about the reagents which causes oxidation in various compounds
- CO4 To acquire knowledge about the reagents which causes oxidation in various compounds and also the reagents that causes selective and complete reductions to synthesize various compounds.

	Mapping of course outcomes with the program outcomes														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	2	2	3	2	2	1	2	-	2	2	2			
CO2	3	2	2	3	2	2	-	2	2	2	2	2			
CO3	3	2	2	3	2	2	1	1	2	-	2	-			
CO4	3	2	2	3	2	2	-	2	-	2	2	1			

CHE-PC-305A Core-Theory Organic Chemistry III

UNIT I: REAGENTS IN ORGANIC SYNTHESIS

Use of the following reagents in organic synthesis: Anhydrous AlCl₃, Boran trifluoride, N-Bromosuccinimide, Diazomethane, Dicyclohexylcarbodiimide, Lead tetraacetate, Zieglar-Natta catalysts, DDQ, Dithianes, Merrifield resin.

UNIT-II: ORGANOMETALLIC REAGENTS

Synthesis and applications of Grignard reagents, Organolithium, Zinc, Copper, Mercury, Palladium and Rhodium compounds in Organic Synthesis, Homogeneous catalytic hydrogenation and hydroformylation reactions

UNIT III: ASYMMETRIC SYNTHESIS

Topocity - Prochirality- Substrate selectivity - Diastereoselectivity and enantioselectivity-Substrate controlled methods-use of chiral substrates - examples

Auxiliary controlled methods-Use of chiral auxiliaries-Chiral enolates-alkylation of chiral imines – Stereoselective Diels-Alder reaction

Reagent controlled methods-Use of chiral reagents-Asymmetric oxidation-Sharpless epoxidation-Asymmetric reduction-Use of lithium aluminium hydride and borate reagents.

UNIT IV: METHODS OF ORGANIC SYNTHESIS

i). Oxidations: (a) Alcohols to carbonyls-Chromium (iv) oxidants-Dimethylsulfoxide oxidation, periodate xidation, Oppenauer oxidation, oxidation with manganese dioxide, oxidation with silver carbonate (b) Alkenes to epoxides-peroxide induced epoxidations. (c) Alkenes to diols-oxidation

15 Hrs Palladiu

15 Hrs

15 Hrs

with potassium permanaganate, osmium tetraoxide, Prevost reaction (d) Ketones to esters-Bayer-Villiger oxidation (e) Oxidative bond cleavage-cleavage of alkenes by transition metals. (f) Oxidation of alkyl or alkenyl fragments-selenium dioxide and chromium trioxide oxidations.

ii). *Reductions* : Reduction with lithium aluminium hydride, sodium borohydride, alkoxides, bismethoxy ethoxy aluminium hydride, Boran aluminium hydride and derivatives-catalytic,hydrogenationdissolving metal reductions, Non-Metallic reducing agents including enzymatic and microbial reductions.

Suggested Books

- 1. Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, John Wiley.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J. Sundberg, Plenum.
- 3. Structure and Mechanism in Organic Chemistry, C.K. Inglod, Cornell University Press.
- 4. Organic Chemistry, R.T Morrison and R.N. Boyd, Prentice Hall.
- 5. Name reactions and reagents in organic synthesis, B.P. Muway and M.G Ellord, John Wiley.
- 6. Principles of Organic Synthesis, R.O.C Norman and J.M Coxon, Blackie Academic & Professional.
- 7. Reaction Mechanism in Organic Chemistry, P.S. Kalsi, New Age International.
- 8. Principles of organometallic chemistry, P. Powell, ELBS.
- 9. Organo transition metal chemistry-Applications to organic synthesis, S.G. Davis, Pergmon.
- 10. Stereochemistry to Organic Compounds, D. Nasipuri, New Age International.
- 11. Stereochemistry, P.S. Kalsi, Wiley Eastern.

CHE-PC- 305 B	Inorganic Spectroscopy and Thermal Methods of Analysis	L-5,T-1,P-0	4Credits
Pre-requisite: U	nderstanding of Basic Inorganic Spect	roscopy and Therma	al Methods of Analysis
Course Objectiv	es:		
• Gain knowledg materials	e on thermal methods of analysis ar	nd principles and a	pplications to inorganic
• Familiarize with	h basics of Mossbauer and NQR spect	oscopy.	

• Study	y the ES	R instru	mentati	on, vari	ous appl	lications	and ph	otoelect	ron spec	etroscop	у.		
Cours	e Outco	omes :A	t the end	d of the	course,	the stud	ent will	be able					
CO1	To kn	low abo	ut TG aı	nd DTA	and app	olication	s of diff	ferent sc	anning	calorime	etry.		
CO2	To ga of NC	uin knov QR spect	vledge o troscopy	on Dopp '.	oler shift	t and ch	emical	shift, ba	sic prin	ciples a	nd appli	ications	
CO3	To instru	learn z mentati	ero fie on and a	eld spl pplicati	itting ons of E	and Ki ESR.	ramer's	degen	eracy,	relaxati	ion pro	ocesses,	
CO4	To kr X-ray	To know about photoelectric effect and Koopmans theorem and impart the applications of X-ray and UV photoelectron.											
		Ma	apping	of cours	se outco	mes wi	th the p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	2	3	-	2	1	1	-	1	2	1	
CO2	3	2	2	3	2	2	2	2	1	2	2	-	
CO3	3	2	2	3	2	2	-	2	1	2	-	1	
CO4	3	2	2	3	2	1	1	-	2	-	2	1	

• Learn the properties like g-factor, nuclear spin, hyperfine coupling constants

CHE-PC- 304: Inorganic Spectroscopy and Thermal Methods of Analysis

UNIT -I: THERMAL METHODS OF ANALYSIS

Thermo gravimetry –Principle, Factors affecting the results, instrumentation. Application with special reference to CuSO₄5H₂O, CaC₂O₄ 2H₂O. Different thermal analysis – principle, instrumentation, difference between TG and DTA, applications with special reference to the clays and minerals.Different scanning calorimetry -principle, and applications to inorganic materials like chlorates and perchlorates, ammonium nitrate.

UNIT -II: MOSSBAUER SPECTROSCOPY and NOR

Mossbauer spectroscopy: Basic principles, Recoil energy, Doppler shift, Chemical shift, Quadrapole effects, Magnetic effects. Instrumentation, spectral parameters and spectrum display.

Aapplication of the technique to the studies of (1) bonding and structures of Fe²⁺ and Fe³⁺ compounds, (2) Sn^{2+} and Sn^{4+} compounds.

NOR spectroscopy: Basic principles of NOR spectroscopy, quadrupole nuclei, quadrupole moments, electric field gradient, coupling constant and applications.

UNIT -III: ELECTRON SPIN RESONANCE SPECTROSCOPY

Basic Principles, Hyper fine splitting, Factors affecting the 'g' value. Isotropic and anisotropic hyperfine coupling constants, Hamiltonian and spin densities. Zero field splitting and Kramer's degeneracy, Relaxation process and line widths. Instrumentation and Applications. The EPR spectrum of bis(salicylidimine)-copper(II) complex, study of inorganic free radicals, biological applications of Electron Spin Resonance (Study of free radicals and Iron-sulfur proteins)

UNIT -IV: PHOTO ELECTRON SPECTROSCOPY

Photoelectric effect, Koopmans's theorem, ionization energy.

X-ray photoelectron spectroscopy (ESCA): Principle, Binding energies, Chemical shift, Applications

15 Hrs

15 Hrs

15 Hrs

of XPES to Qualitative analysis , to surface studies and structural analysis. Ultraviolet photoelectron spectroscopy- Principle, application of UPES in studying the molecular orbitals of O_2 and N_2 molecules. Block diagram of photoelectron spectrophotometer. Sources of radiation, detectors. Auger spectra – Principle, Applications of Auger spectra to surface studies and use of Auger spectra as a finger print tool.

- 1. F.A. Cotton and G. Wilkinson, Advanced In-organic chemistry VI Edition, 1999. John wiley & sons. Inc., New York.
- 2. J.E. Huheey, E.A. Keiter and R.L. Keiter: Inorganic Chemsitry, Principles of Structure and Reactivity (4th Ed.) (Addison-Wesley)
- 3. Gary Wulfsberg: Inorganic Chemistry (5th Ed. (Viva Books)
- 4. J.D. Lee: Concise Inorganic Chemistry (Blackwell)
- 5. W.L. Jolly: Modern Inorganic Chemsitry (McGraw-Hill)
- 6. R.L. Carlin: Magneto-chemsitry (Springer-Verlag)
- 7. R.L. Dutta and A. Syamal: Elements of Magnetochemsitry (Affiliate East-West).
- 8. K. Hussain Reddy Text book of Bioinorganic chemistry

CHE	PC 306	5	Spectr	al Tech	niques		L-	5,T-1,P	-0	4	Credits	
	Α											
Pre-re	Pre-requisite: Understanding of Spectral Techniques											
	Course Objectives:											
• H i	Familiar dentifyi	ize with ng the s	h the in tructure:	nstrume s of the	ntation molecul	of UV es.	and vi	isible sj	pectrosc	copy, ap	oplicatio	ns of
• (Understa	ind IR	spectro	metry a	ind app	lication	s to as	certain	the fur	dament	al grou	ps by
0	observin	g absorj	ption ba	nds.								
• \$	Study on	the app	olication	s of flar	ne atom	ic absor	ption sp	ectrosco	opy.			
• (Understa	and the v	working	princip	le and fr	agment	ation rul	les of di	fferent 1	nolecule	es in Ma	SS
s	pectroso	copy.	_			-						
Cours	e Outco	mes. A	t the end	l of the	course	the stud	ent will	able				
Cours	c Oute	mes. A		a of the	course,	ine stud		aoic				
C01	Tokno	w the h	asic prin	ciples o	fspectr	oscony						
cor	TO KIIO	w the ba	usic prin	cipies o	1 specie	oscopy.						
CO2	To fai	niliarize	e with	the an	alysis	of vari	ous fu	nctional	group	s by i	using d	lifferent
	spectro	scopic t	echniqu	es.	2				0 1	2	U	
CO3	To Und	lerstand	the app	lication	s of AA	S.						
	10 UII		une upp	neution								
CO4	To gair	h knowl	edge al	oout Ma	ss spect	ral fragi	nentatic	on of org	anic co	mpound	s and co	ommon
	functio	nal grou	ips.									
		Ma	apping	of cours	se outco	mes wit	h the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1
												2
CO1	3	1	1	3	-	2	3	2	1	-	1	1
002	2	2	2	2	2		2	2	2	1		2
002	3	2	2	3	2	2	3	2	2	1	-	2
CO3	3	2	-	2	2	-	2	2		2	1	-
CO4	3	2	2	3	1	2	1	-	2	1	-	2

CHE : PC : 306(A): (OPEN ELECTIVE) SPECTRAL TECHNIQUES

UNIT - I: ULTRAVIOLET AND VISIBLE SPECTROSCOPY

Various electronic transitions (185-800nm.), Beer-Lambert Law, effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, Fieser-Woodward rules for conjugated dienes and carbonyl compounds

UNIT – II : INFRARED SPECTROSCOPY

Instrumentation and sample handling, characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ethers, phenols, amines, ketones, aldehydes, esters, amides, acids and anhydrides. Effect of hydrogen bonding.

UNIT - III:ATOMIC ABSORPTION SPECTROSCOPY: FLAME AAS:

Principle, Instrumentation - Sources of radiation (HCL and EDL), Different types of burners, Interferences- Physical, Chemical, spectral and back ground correction, and methods of minimization GF AAS: Principle and technique -Comparison between Flame AAS and furnace AAS, Applications of AAS, Comparison between Atomic Absorption & Flame Photometry.

15 Hrs

15 Hrs

UNIT -IV: MASS SPECTROMETRY

15 Hrs

Principle, instrumentation, different methods of ionization, EI, CI, FD and FAB, Mass spectra-molecular ion, base peak, meta-stable peak, nitrogen rule and Mc Lafferty rearrangement. Mass spectral fragmentation of organic compounds and common functional groups. Normal and branched alkanes, alkenes, cycloalkanes, benzene and its derivatives, alcohols and phenols, ethers, aldehydes and ketones, carboxylic acids and their derivatives , amines and nitro compounds. Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.

- 11. Organic spectroscopy, W. Kemp 5th Ed, ELBS .2.
- 12. Spectroscopy of organic compounds, RM Silversteen and others 5th Ed, John Wiley 1991
- 13. Spectroscopy of organic compounds, PS Kalsi, Wiley, 1993
- 14. NMR in chemistry A Multi nuclear introduction, William Kemp, Mc Millan 1986
- 15. Spectroscopic methods in Organic Chemistry, DH Williams & I Flemmi TMH . 2005

CHE	PC 306 B	Chr	omatog	raphic	Technic	ques	L-	5,T-1,P	-0	40	Credits	
Pre-re	Pre-requisite: Understanding of graduate level Chromatographic Techniques											
Cours • Fan • Und • Stud • Und Cours	 Course Objectives: Familiarize with Classification of Chromatographic methods. Understand Demonstration experiment in TLC. Study on the applications of High-Performance Liquid Chromatography (HPLC). Understand the working principle of gas chromatography. Course Outcomes: At the end of the course, the student will able to 											
C01	Tokno	w tha at	ationary	and me	bile ph	eses in c	hromate	araphic	technic			
~~~~		w the st	ationaly				monnau	Internet	technic	lues.		
CO2	To fam	iliarize	applicat	ions of a	lifferent	t chroma	atograph	nic meth	ods.			
CO3	To Und	erstand	the prin	ciple of	chroma	tograph	ic techn	iques.				
CO4	To gain	knowle	edge on	the norr	nal phas	se and re	everse p	hase.				
		Ma	apping	of cours	e outco	mes wit	h the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2
CO1	3	-	2	3	-	2	3	2	2	-	1	1
CO2	3	2	2	3	2	2	3	2	-	1	-	2
CO3	3	2	-	2	2	-	2	-	2	-	1	-
<b>CO4</b>	3	2	2	3	1	2	-	2	-	1	-	2

#### **CHE PC 306 B : Chromatographic Techniques**

**Unit** –**I**: Introduction - Classification of Chromatographic methods – Column chromatography-Adsorption phenomenon: Nature of adsorbents-Solvent systems-Differential migration-Separation of mixture of o-/p-nitro anilines (A demonstration experiment).

**Unit** –**II:** Thin-Layer Chromatography (TLC)-Coating materials and preparation of TLC plates-Solvents for development-Detection of compounds in TLC-  $R_f$  values in TLC-Applications of TLC in chemistry-Preparative TLC – Demonstration experiment in TLC.

**Unit** –**III:** High-Performance Liquid Chromatography (HPLC) - Application of HPLC- HPLC instrument-Stationary phases in HPLC-Normal and reversed phase HPLC: A comparison- Normal phase HPLC: Principle-Retention times in Normal and reversed phase HPLC- Reversed phase HPLC: Principle.

**Unit** –**IV:** Gas-Liquid Chromatography- Instruments for Gas-Liquid Chromatography- Gas-Chromatographic Columns and the Stationary Phase- Application of Gas-Liquid Chromatography- Gas-Solid Chromatography.

#### **Reference Books:**

- 1. Analytical chemistry: G L David Krupadanam, D. Vijaya prsad, K. Varaprasad Rao, KLN Reddy, C. Sudhakar.
- 2. Analytical chemistry: Skoog West Holler.
- 3. Modern Analytical Chemistry : David Harvey DePauw University.
- 4. J.G. Dick. Analytical Chemistry, Mc Grraw Hill, New Delhi, (1973).

CHE-	AC- 401	AC- 401 Quality Control and General L-5,T-1,I Principles L-5,T-1,I									Credits		
					•								
Pre-re	Pre-requisite: Understanding of Quality Control and General Principles												
Cours	e Objec	tives:											
• Study	y on qua	lity assu	irance a	nd mana	agement								
• Obtai	in pract	ice on	the app	plication	ns of d	ifferent	organi	c reage	nts in	analysis	of inc	organic	
comp	ounds.						2				. –		
• Unde	erstand s	standard	reducti	ion pote	ential, n	hechanis	m of co	omplex	formati	on react	tions. E	nzyme	
chara	cteristic	s and ap	oplicatio	ons	• • •		1 .•			1.1			
• Study	y on Eq		m const	ants of	oxidatio	on and	reductio	on react	ions and	d the co	omplexo	metric	
titrati	on with	EDIA.	1	1 6.1		<u>,1 , 1</u>		1 11					
Cours	e Outco	mes :A	t the end	1 of the	course,	the stud	ent will	be able	1 5	1 •	1 4 4 1	1.4	
COI		gnose p	roblems	in the	quality	improv	ement p	process	and Exp	plain ead	ch total	quality	
CO2	Implen	ientation	1 phase		a fan th	- waa of					1		
$CO_2$	TO KNO	w about		Ical basi	s for the	e use of	organic	reagent	<u>s in inoi</u>	ganic ar	<u>1alysis.</u>		
003	to und kinetics	erstand s of enz	differen zyme	it types	of kine	tic meth	ods and	their e	valuatio	n and to	) determ	line the	
<b>CO4</b>	To und	erstand	the oxi	dation r	reactions	s with C	Ce (IV)	sulphate	e solutio	ons and	applicat	tions of	
	comple	xometri	c titratio	ons.									
		Ma	apping o	of cours	se outco	mes wit	th the p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
<b>CO1</b>	3	2	2	3	1	2	2	2		2	2	-	
CO2	3	2	2	3	1	2	1	2	2	2	-	2	
CO3	3	3	3	3	2	2	2	-	2	1	1	1	
CO4	3	3	3	3	1	-	1	-	2	1	-	1	

#### CHE AC 401: CORE THEORY: QUALITY CONTROL AND GENERAL PRINCIPLES

#### UNIT-I: QUALITY CONTROL IN ANALYTICAL CHEMISTRY 15 Hrs

**Definition of analytical terms**: Accuracy, precision, limit of detection, sensitivity, selectivity and specificity, ruggedness, principles of Ruggedness test, validating the Method as a Standard Method.

**Quality assurance and management systems**: Elements of quality assurance, Quality and quantity management system ISO 9000 and ISO 14000 series.

**Good laboratory practices (GLP):** Elements of Good Laboratory Practice, Laboratory accreditation, GLP status in India.

#### UNIT-II: ORGANIC REAGENTS IN INORGANIC ANALYSIS 15 Hrs

Theoretical basis for the use of organic reagents in inorganic analysis: Application of the following reagents in inorganic analysis: dimethylglyoxime, salicylaldehyde, cupferron, d-benzoin, 1,10 phenanthroline, 8-hydroxy quinoline, nitron, tannin, pyridine, 8-hydroxyquinoldine, dithizone, Acetylacetone, theonyl, trifluoroacetone, 8-hydroxy quinoline, tri-M-octylphosphine oxide.

15 Hrs

#### UNIT – III: KINETIC METHODS OF TRACE ANALYASIS

Rate laws, Analytical use of reaction rates, First and second order reactions, relative rate of reactions. Determination of reaction rates. Analytical utility of first and pseudo first order reactions. Types of kinetic methods, differential, integral, logarithmic, extrapolation method. Evaluation of kinetic methods – Scale of Operation, Catalyzed reactions, measurement method for catalyzed reaction. Micro determination of Inorganic species like Iodine and Hg in complex materials. Determination of organic species. Kinetics of enzyme, catalyzed reactions. Michael's constant factors affecting the rate of enzyme, Catalyzed reactions, Enzyme characteristics and applications of Kinetic methods of trace

analysis.

#### UNIT-IV:REDOX AND COMPLEXOMETRIC TITRATIONS: 15Hrs

**Redox Titrations:** Standard reduction potential, equilibrium constants of oxidation-reduction reactions, change of electrode potential during the titration of reductant with an oxidant. Formal potential primary standard substance. Standard solutions. Preparation and storage. Oxidations with cerium (IV) sulphate solutions. Theory and use of (i) acid-base, (ii) Oxidation-reduction (iii) Metal ion indicators.; **Complexometric titrations:** Introduction, complexones, stability constants of EDTA complexes, conditional stability constants, titration curves, types of EDTA titration's, titration of mixtures.

- 1. Vogel's Text book of Quantitative Chemical Analysis, Basselt, Denmy, Jaffery and Merdhan, ELBS, Orientlong- Manan, 5th Ed.1990.
- 2. Analytical Chemistry, Gary D. Christian, John Laliley and Senes, New York, 6th Ed., 2007.
- 3. Fundamentals of ANALYTICAL CHEMISTRY, Skoog, West, Holler; 7th Editin 2001
- 4. Fundamentals of Analytical Chemistry, D.A. Skoog & D.M. West, Holf-Saunderrs, 5th Ed., 1991.
- 5. Principles and Methods Chemical Analysis: H.F. Walton, Prentice Hall, New Delhi.
- 6. Chemical Analysis, H.A. Laitinan, Mc.Graw Hill Book Company.
- 7. Technical methods of analysis Griffin, Mc Graw Hill Book Co.
- 8. K.V.S.G Murali Krishna, An Introduction ISO 9000, ISO 1400 Series,
- 9. Environmental Management Quality Assurance and Good Laboratory Practices, Prof. Y. Anjaneyulu, In Now Publication, New York.
- 10. Quality Assurance in Analytical Chemistry G.Kateman and F.W Pijpers, John Wiley and Sons, New York

CHE-AC 402	: Instrumental Methods of Analysis	L-5,T-1,P-0	4Credits
Pre-requisite:	Understanding of Instrumental Methods	of Analysis	

**Course Objectives:** 

- Gain sound knowledge in spectroscopic methods of ICP-AES, ICP-MS, x-ray fluorescence, spectroscopic techniques and their applications.
- Chromatographic techniques like High-Performance Liquid Chromatography, Capillary Electrophoresis and Supercritical Fluid Chromatography (SFC).
- Familiarise with instrumentation, resolution and ionization sources of GCMS and LCMS.

Cours	Course Outcomes: At the end of the course, the student will be able to													
CO1	To u	nderstan	d the wo	orking p	rinciple	es, instru	ımentati	on and	applicat	ions of	ICP-AE	ES and		
	ICP-I	MS, ene	rgy disp	ersive 2	X-ray fl	uoresce	nce (ED	XRF),	Waveler	ngth dis	persive	X-ray		
	fluore	fluorescence (WDXRF).												
CO2	To understand the basic principles, procedure and components of the High-Performance													
	Liquid Chromatography (HPLC), Gel Permeation Chromatography (GPC): Capillary													
	Electrophoresis (CE), Supercritical Fluid Chromatography (SFC).													
CO3	To g	To get knowledge on instrumentation and applications of GCMS in drug analysis and												
	envir	environmental samples analysis.												
CO4	To in	nprove th	he know	ledge al	bout cou	ılometri	c techni	ques an	d their a	nalysis	of catio	ns (As		
	(III),	Fe (II))	and anio	ons (I ⁻ ai	nd S ²⁻ ) t	oy using	I ₂ libera	ations ar	nd Ce ⁴⁺	liberatio	on in sol	utions		
		M	apping	of cours	se outco	mes wi	th the p	rogram	outcon	nes				
		<b>–</b> – –				<b>F a i</b>	<b>b</b> a -							
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	2	3	-	2	2	-	2	1	-	1		
<b>CO2</b>	3	3	3	3	3	2	2	1	-	1	1	1		
<b>CO3</b>	3	3	3	3	3	2	1	2	1	1	1	3		
<b>CO4</b>	3	3	2	2	-	2	2	-	1	1	1	3		

#### **CHE-402: CORE THEORY: INSTRUMENTAL METHODS OF ANALYSIS**

#### **UNIT –I SPECTROSCOPIC METHODS**

#### 15 Hrs

#### **Emission Spectroscopy:**

(i) ICP-AES: Principles, instrumentation, AES detectors, applications in the analysis of trace and toxic metals in water, geological and industrial samples.

(ii) ICP-MS: Principles, instrumentation, quadrupole mass spectrometers, applications

#### **Fluorescence Spectroscopy:**

**i) Molecular Fluorescence Spectroscopy:** Principle, Theory of fluorescence, phosphorescence, relation between intensity of fluorescence and concentration, Correlation of fluorescence with molecular structure, Fluorescence quenching, Instrumentation and applications.

**ii**) **X-ray Fluorescence Spectroscopy**: Principle, energy dispersive X-ray fluorescence (EDXRF), Wavelength dispersive X-ray fluorescence (WDXRF), applications.

#### UNIT - II: CHROMATOGRAPHIC METHODS

**High Performance Liquid Chromatography (HPLC):** Principles, Stationary phases, Instrumentation, Solvent delivery system, sample introduction, gradient elution, columns and detectors.Partition Chromatography, adsorption chromatography, Gel permeation chromatography.

**Capillary Electrophoresis:** Principle, Electroosmotic flow, Instrumentation, Applications to separation of small ions, separation of Molecular Species, DNA sequencing

Supercritical-fluid chromatography: Supercritical-fluids, Instrumentation and Applications

#### UNIT –III: HYPHENATED TECHNIQUES

Mass Spectroscopy: Principle, basic instrumentation, resolution, Ionization sources- Electron impact and Chemical ionization, Mass Analyzers- Quadrupole Mass analyzer and Time- of- Flight Analyzer. Gas Chromatography- Mass spectrometry: Introduction, GC – MS interface, processing of GC – MS

### 15 Hrs

data – ion chromatogram. Quantitative measurement – sample preparation, Selected ion monitoring – Application of GC-MS for Trace constituents. Drugs analysis, Environmental analysis and others.

**Liquid chromatography- Mass spectrometry** – Introduction – Instrumentation – liquid chromatography – Mass spectrometer Interface – Instrumental details – Processing LC-MS data – ion chromatograms, Sample preparation – selected ion monitoring. Application of LC-MS for Drug analysis, Environmental samples and others.

#### UNIT- IV: ELECTRO ANALYTICAL METHODS 15 Hrs

**Anodic stripping voltametry**: principle, instrumentation, Hanging mercury drop electrode, application in the analysis of Pb and Cd in environmental samples, principle of cathode stripping voltametry.

**Coulometric analysis**: principles of coulometric analysis with constant current, coulometric analysis with controlled potential, applications of coulometric methods for the analysis of cations-As (III), Fe (II) and I- and S₂- by using I₂ liberations and Ce⁴⁺ liberation in solutions

**Ion Selective Electrodes**: types of ion selective electrodes, basic properties, potentials and construction, calibration of ion selective electrodes, ion selective electrodes with fixed membrane sites, silver, lead, cadmium, sulfide, fluoride, cyanide and glass electrodes, applications in the analysis of air and water pollutants, principles of liquid membrane, gas sensing and enzyme based electrode

- 1. Analytical Chemistry, Gary D. Christian, John Laliley and Senes, New York, 6th Ed., 2007.
- 2. Analytical Chemistry Principles and Techniques, I.G. Harge, Prentice Hall.
- 3. Principles of Instrumental analysis, D.A. Skoog and J.L. Loacy, W.B. Saunders.
- 4. Handbook of Instrumental Techniques for Analytical Chemistry, F. Serlie, Prentice Hall.
- 5. Vogels Text book of Quantitative Chemical Analysis, Basett, Denny Jebbary, 5th Ed. ELBs 1990.
- 6. Instrumental Methods of Chemical Analysis, Willard Merrit, Dean, Stella Jr 6th Edition.
- 7. Separation methods, M.N Sastri, Himalaya Publishing Company, Mumbai

CHE AC 403	Core practical I: Analytical Chemistry- Practical	L-5,T-1,P-0	4 Credits							
Pre-requisite: Understanding of Analytical Chemistry- Practical.										

**Course Objectives:** 

- To learn about the separation methods and flame photometric analysis of pesticide residues
- Determination of transition metal ions by polarography
- Principle, instrumentation, determination of metal ions By AAS.
- Interpretation of NMR chemical shifts and hydrogen bonding.

Course Outcomes: At the end of the course, the student will be able to

CO1 Understand the common laboratory techniques including separation techniques

CO2 Polarography, atomic absorption spectroscopy in both emission and absorption mode.

**CO3** Gain knowledge on implementation of gas chromatography and HPLC for separation of mixtures.

**CO4** Familiarize with interpretation of data to structures by NMR.

#### Mapping of course outcomes with the program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	-	2	2	1	-	2	3
CO2	3	3	3	3	2	2	1	2		2	-	3
CO3	3	3	-	3		3	-	2	2	3	2	3
<b>CO4</b>	3	-	3	1	3	2	2	-	1	2	-	3

#### CHE AC 404: CORE PRACTICALS: PRACTICAL – I-

#### Instrumental methods of analysis- II

- 1. Flame Photometry: Determination of Na and K, Ca and Li in Water and Soil.
- 2. TLC/Paper chromatographic separation.
- 3. Determination of Pesticide residues by gas chromatographic method
- 4. Polarography: a) Determination of E ¹/₂ of Zn and Cd; b) Determination of amounts of Zn and Cd
- 5. Atomic Absorption Spectroscopy: Determination of transition metal ions (Cd, Cr, Cu, Pb, Zn etc.,) by AAS.
- 6. Separation of Metal ion by Solvent Extraction /Ion exchange.

#### **II DEMONSTRATION EXPERIMENTS**

- 1. IR Interpretation of IR spectrum of alcohols, ketones, aldehydes and other standard materials
- 2. AAS: Demonstration of AAS Determination of Zn, Cd, Pb, Mn, Fe and Ni in effluents using AAS.
- 3. Spectrofluorimetry estimation of quinine and fluoroscene
- 4. Ion selective electrodes estimation of  $F^-$ ,  $S^{2-}$  and  $CN^-$  in effluents using ion selective electrode meter.
- 5. Polarography and Anode stripping voltametry
  - a). Polarography and Anode stripping voltametry behavior of Cd, Zn, Pb in a mixture.
  - b). Determination of Pb and Cd in samples using Anode stripping voltametr
- 6. Gas chromatography- Determination of pesticides
- 7. HPLC- Determination of pesticides
- 8. NMR
- (a). Demonstration of NMR spectrometer and study of hydrogen bonding in a given alcohol or phenol.
- (b). Interpretation of NMR chemical shifts of ethyl benzene, ethyl alcohol
- 9. TGA, DTA, DSC Demonstration of TG, DTA and DSC and study of decomposition of calcium oxalate, calcium carbonate, copper sulfate, oxalic acid.
- 10. pH metry
  - (a). Determination of alkalinity in a colored effluent using pH metric end point.
  - (b). Determination of purity of commercial HCl, H₂SO₄, H₃PO₄ and CH₃COOH using pH metric end point.

CHE A	C 404		Р	roject V	Work		L-	5,T-1,P	-0	40	Credits		
Pre-re	Pre-requisite: Project Work												
Cours	e Objec	tives:											
• ]	Identific	ation of	f problei	n									
•	Ability t gatherin	o carry g	out inde	ependen	t chemis	stry rese	arch wi	th comp	etency	in reseat	rch desig	gn, data	
• ]	Interpret	ation a	nd com	munica	tion of	research	h result	s throu	gh sciei	ntific p	ublicatio	ons and	
]	presenta	tions.											
• ]	Preparat	ion of d	issertati	on									
Cours	e Outco	mes: A	t the end	l of the	course,	the stud	ent will	be able	to				
CO1	Perforn	n experi	ments, c	collectio	on and ev	valuation	n of data	a.					
CO2	Interpre behavio	etation our.	of resul	ts while	e adheri	ng to so	cientific	princip	les of 1	responsi	ble and	ethical	
CO3	Analysi disserta	ing and tion.	compi	ling the	e data a	nd resu	lts in a	chrono	ological	order i	in the f	orm of	
CO4	Prepara	tion of	dissertat	ion.									
		Ma	apping	of cours	se outco	mes wit	h the p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	2	3	-	2	3	2	1	2	1	3	
CO2	3	3	3	3	3	2	3	3	-	-	2	3	
CO3	3	3	3	3	3	-	3	2	-	3	-	3	
<b>CO4</b>	3	3	3	3	3	2		2	1	-	2	3	

#### CHE AC 404: PRACTIAL II/ PROJECT WORK

CHE-AC-405	Applied and Environmental Aspects	L-3,T-1,P-2	4Credits
Pre-requisite: U	Understanding of Environmental Aspects		

Cours	Course Objectives:											
• Gai	n soun	d know	ledge o	on prep	aration	of san	npling,	decomp	osition,	separa	tion an	d pre-
con	concentration											
• Exp	perience	with fer	tilizer a	nalysis,	pesticio	le analy	sis mine	rals and	ores.			
• Kno	• Know about analysis of fuels, alloys and explosives											
• Exp	pertise w	vith wate	er qualit	y monit	oring	-						
Cours	<b>Course Outcomes:</b> At the end of the course, the student will be able to											
<b>CO1</b>	<b>CO1</b> Have an idea about preparation of sampling, decomposition, separation and preconcentration											
	of metal ions etc.											
CO2	<b>CO2</b> Gain experience on agrochemicals and fertilizers and their analysis.											
								•				
CO3	Have a	n idea o	n the an	alysis o	f fuels, a	alloys a	nd explo	sives				
<b>CO4</b>	Experie	ence wit	h enviro	onmenta	l polluti	ion mon	itoring t	echniqu	es.			
			•	C		•	41.41					
		IVI	apping	of cours	se outco	omes wi	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
<b>CO1</b>	3	2	2	3	-	2	1	-	1	1	-	1
CO2	3	3	3	3	3	2	-	1	1	1	1	1
CO3	3	3	3	3	3	2	1	2	2	1	1	3
<b>CO4</b>	3	3	2	2	1	2	-	2	-	1	1	3

#### CHE : AC 403(A): (GENERIC ELECTIVE) APPLIED AND ENVIRONMENTAL ASPECTS

#### **UNIT-I: SAMPLING AND SEPARATION METHODS**

**Preparing the sample for analysis**: Sampling, The effect of sampling uncertainties, Gross sample, determination of the size of the gross sample. Analytical sample. Preparation of laboratory sample from gross sample, Moisture in the sample, Karl-Fisher reagent for the determination of moisture content in samples.

**Decomposition and dissolving the sample**: Decomposition of sample by fluxes, wet digestion, dry ashing, combustion with oxygen, microwave decomposition.

**Separation and pre-concentration**: Extractive separation of metal ions as chelates (dithizone, oxine, APDC, NaDDTC), Solid-phase extraction

#### UNIT-II: ANALYSIS OF AGRO CHEMICALS and MINERALS

Soil analysis: Soil moisture, pH, total nitrogen, Phosphorus, silica, boron and metals (Cd, Cu, Fe, Mn, and zinc) in soil.

Fertilizer analysis: Analysis of Ammonical fertilizers, Phosphate fertilizers, Nitrate fertilizers

**Pesticide Analysis:** Analysis of organo chlorine pesticides by gas chromatography, Determination of DDT residue in vegetable and food grains. Analysis of organo phosphorous pesticides (Malathion, parathion) by spectrophotometric and chromatographic methods.

Analysis of Minerals and Ores: Limestone, Ilmenite, Chalcopylites and Beryl. Analysis of Cement, Ceramics and glass.

#### UNIT-III: ANALYSIS OF COMPLEX MATERIALS

**Analysis of Fuels:** Coal, proximate and ultimate analysis, heating valves and grading of coal. Liquid Fuels: Flash point, aniline point, octane number and carbon residue.

Analysis of Gaseous Fuels: Producer gas, Water gas, Calorific values

Analysis of alloys: German Silver, Brass, bronze, Solder, Steels containing elements such as Mo, Co,

#### 15 Hrs

15 Hrs

V, Cr, Si and Ni.

**Aanalysis of Explosives**: Introduction, Classification, Deflagrating or low explosives, Characteristics of explosives, Nitrocellulose, PETN or PENTHRIT, Di-nitrobenzene (DNB), Trinitrobenzene (TNB), Trinitrotoluene (TNT),

#### UNIT – IV: ENVIRONMENTAL POLLUTION MONITORING: 15 Hrs

**Water Quality monitoring:** Methods of water sample collection, Determination of Dissolved oxygen (D.O), Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand(COD)

Analytical methods for the determination of the following ions in water:

Anions: F⁻, PO4³⁻, NO3⁻, NO2⁻ Cations: Cr⁶⁺, As⁵⁺, Pb²⁺, Hg²⁺, Cd²⁺

**Air Quality Monitoring:** Air sampling methods, Chemical analysis of the following Air pollutants. i) Gaseous pollutants: Carbon monoxide (CO). sulphur dioxide (SO₂), nitrogen dioxide (NO₂), Aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (PAH). (ii) Particulate matter

- 1. Analytical Chemistry, Gary D. Christian, John Laliley and Senes, New York, 6th Ed., 2007.
- 2. Fundamentals of ANALYTICAL CHEMISTRY, Skoog, West, Holler; 7th Editin 2001.
- 3. Analytical Chemistry Principles and Techniques, I.G. Harge, Prentice Hall.
- 4. Principles of Instrumental analysis, D.A. Skoog and J.L. Loacy, W.B. Saunders.
- 5. Fundamentals of Air Pollution by A.C. Strem and others, Academic Press, 1975.
- 6. Standard methods for the examination of water and waste water published by American public health association, 15th Ed.1981.
- 7. Methods of Soil Analysis, C.A. Black, Part I and II.
- 8. Handbook of Analytical Control of Iron and Steel Production, Harrison John Weily 1979
- 9. Standard methods of Chemical Analysis, Welcher.
- 10. Technical Methods of Analysis, Griffin, Mc Graw Hill.
- 11. Environmental Chemistry, Anil Kumar De, Wiley Eastern Ltd.

CHE-A	AC-406		Bi Bi	oinorga ophysic	nic, Bio al Cher	organic nistrv	, L-	5,T-1,P	-0	4Credits		
Pre-r	Pre-requisite: Understanding of Bioinorganic, Bioorganic, Biophysical Chemistry											
Cours	Course Objectives:											
٠	• Highlighten metal complexes as oxygen carriers and electron transfer in biology											
•	• Metal ion transport and storage in biological systems and importance of trace metals in biology											
•	• Learn physiological functions of carbohydrates, lipids, enzymes classification, stereospecificity											
•	• The basic concepts of biophysical chemistry in biochemical reactions, exergonic and endergonic reactions											
Course Outcomes: At the end of the course, the student will be able to												
CO1	Gain kr	lowledg	ge on me	etallo pro	oteins ir	electro	n transf	er proce	sses.			
CO2	Know t	he appl	ications	of trace	metal i	ons and	metal ic	ons as ch	nelating	agents i	n medic	ine.
CO3	Achieve adoptin	e and de g envire	evelop h onmenta	ighly ste lly.	ereosele	ctive sy	othesis	of organ	nic com	pounds	and drug	gs by
CO4	Unders	tand the	rmodyn	amics o	f biopol	ymer rea	ctions	and to c	orrelate	free ene	ergy and	
	biopoly	mer par	ameters	•								
		Ma	apping	of cours	e outco	mes wit	h the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	3	1	2	1	2	1	1	1	1
CO2	3	3	3	3	-	2	-	2	2	-	1	3
CO3	3	3	3	2	2	-	2	3	-	1	1	3
CO4	3	2	2	3	2	2	1	-	2	2	-	1

## CHE AC-406: (GENERIC ELECTIVE): BIOINORGANIC, BIOORGANIC, BIOPHYSICAL CHEMISTRY

#### UNIT-I: BIO-INORGANIC CHEMISTRY- I

#### 15 Hrs

Metal complexes as oxygen carriers –Heme proteins –Hemoglobin and myoglobin –Non heme proteins –hemerythrin and hemocyanin – model synthetic complexes of iron, cobalt and copper.Co-enzymes Vitamin B₁₂,carboxy peptidase and superoxidedismutase.

**Electron Transfer in Biology:** Structure and functions of metalloproteins in electron transfer processes –catalase –peroxidose –cytochromes and iron –sulphur proteins –synthetic models.

**UNIT – II: BIOINORGANIC CHEMISTRY- II:** Metal ion transport and storage in biological systems, Metal ions in Biology, Molecular mechanism of ion transport across membranes: ionophores, photosynthesis.

**Hydrolytic metalloenzymes:** Carbonic anyhdrase, carboxy peptidase, calcium in control processes, calcium and muscle contraction, calcium and secretion, calcium in blood clotting mechanisms. Therapeutic uses of enzymes.

**Importance of trace metals in biology:** Metal ions as chelating agents in medicine, trace metal ions and metal and non-metal deficiency. Biological nitrogen fixation,in-vivo and in-vitro nitrogen fixation.

#### **UNIT-III: BIOORGANIC CHEMISTRY**

**Carbohydrates:** Structure and biological functions of mucopolysaccharides, glycoproteins, and glycolipids- Role of sugars in biological recognition- Blood group substances

**Lipids:** Essential fatty acids-structure and function of triglycerols, Glycerophospholipids, cholesterol, bile acids prostaglandins- composition and functioning of lipoproteins

**Enzymes:** Nomenclature and classification, properties, factors affecting enzyme catalysis, enzyme inhibition- reversible and irreversible inhibition. Uses of enzymes in food drink industry and clinical laboratories.

#### UNIT-IV: BIOPHYSICAL CHEMISTRY:

Standard free energy change in biochemical reactions, exergonic and endergonic reactions, hydrolysis of ATP, thermodynamics of biopolymer solutions, chain configuration of bio polymers, and calculation of average dimensions. Membrane equilibrium, ion transport through cell membrane.dialosis and its function. Structure and functions of proteins, enzymes, DNA and RNA in living systems, forces involved in bio polymer interactions, electrostatic forces, hydrophobic forces, molecular expansion, and dispersion forces.

- M.N. Hughes, The Inorganic chemistry of Biological Processes, John wiley and Sons, New York 2nd Edition, 1981.
- 2. A Text book of Biochemistry, A.V.S.S. Rama Rao
- 3. Physical chemistry by Atkenes
- 4. Physical chemistry by Albertz.
- 5. Bio physical chemistry by Van Holde
- 6. Bio Physics by Narayanam
- 7. Organic Chemistry, Vol. 2, I. L. Finar, ELBS.
- 8. Chemistry of Natural Products, P.S. Kalsi, Kalyani Publishers.
- 9. Chemistry of Organic Natural Products, O. P. Agarwal, Vols., 1 & 2, Geol Pubs.
- 10. Natural products Chemistry K.B.G. Torssell, John Wiley, 1983.
- 11. Burger's Medicinal Chemistry, M.E. Wolff, John Wiley
- 12. Medicinal Chemistry, A. Kar, New Age International

CHE A	C 406A		Dr	ug Che	mistry		L-	3,T-1,P	-2	40	Credits	
Pre-requisite: Understanding of Drug Chemistry												
Co	arse Ob	jectives	:									
• '	To learn	about t	he natur	al produ	ucts as le	eads for	new dru	ıgs				
Determination of cardiovascular drugs												
• ′	To study	Autaco	oids									
•	Interpret	tation of	f Antipy	retics								
Cours	e Outco	mes: A	t the end	l of the	course,	the stud	ent will	be able	to			
CO1	Know a	about na	tural pro	oducts.								
CO2	Know 1	Interpret	tation of	cardiov	vascular	drugs.						
CO3	Know t	he Anal	lyzing al	oout pro	stagland	dins.						
CO4	Know inflamr	the Denatory c	efinition lrugs.	, Classi	ification	i, Nome	enclatur	e, Struc	cture a	nd Syn	thesis of	of anti-
		Ma	apping	of cours	se outco	mes wit	h the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
<b>CO1</b>	3	3	3	3	3	1	1	2	-	-	2	3
CO2	3	3	3	3	-	2	1	2	2	2	2	3
CO3	3	3	1	3	-	3	-	2		3	-	3
<b>CO4</b>	3	1	3	1	3	2	1	-	1	2	1	3

#### CHE : AC : 406 (A): (OPEN ELECTIVE) : DRUG CHEMISTRY

#### **UNIT – I: NATURAL PRODUCTS AS LEADS FOR NEW DRUGS**

Occurrence, Structure and therapeutic uses of Drugs acting on Central Nervous System

Morphine alkaloids (morphine, codeine, thebaine, heroin, pethidine)

Cannabinoids (9-cannabinol, Tetrahydrocannabinol)

Neuromuscular Blocking Agents (Curare, Decamethonium)

Vinca Alkaloids (Vincristin and Vinblastin), Taxol and Taxotere, podophyllotoxin, Etoposide, Teniposide.

#### UNIT – II: CARDIOVASCULAR DRUGS

Definition, Classification, Nomenclature, Structure and Synthesis. Cardiac glycosides (ex: Digoxin, Digitoxin); Antihypertensive drugs (ex: Methyl dopa, Clonidene hydrochloride); Antiarrhythmic agents (ex: Quinidine sulfate); Antisympathetic drugs (ex: Propranolol hydrochloride, Verapamil hydrochloride); Vasopressor drugs (ex: Prenylamine, Buphenine).

#### **UNIT – III: AUTACOIDS**

Definition, Occurrence, Isolation, Nomenclature, Classification, Synthesis, Biosynthesis and Stereochemical structures of Prostaglandins. Structural elucidation of PGE₁, PGE₂; Synthesis and biosynthesis of PGE₂, PGF_{2 $\alpha$}. Structure and Biosynthesis of Thromboxane A2 and Prostacyclin (synthesis not expected).

#### **UNIT – IV: ANTI-INFLAMMATORY DRUGS**

Definition, Classification, Nomenclature, Structure and Synthesis of Paracetamol, Aspirin (Antipyretic), Salol, Cinchophen, Antipyrene, Phenylbutazone, Indomethacin, Tolmetin, Ibuprofen, Diclofenac and Naproxen. **Books suggested:** 

1. Medicinal Chemistry by Ashitosh Kar

- 2 Medicinal Chemistry by D. Sriram, P. Yogeeswari
- 3 Medicinal Chemistry by David A. Williams, Thomas L. Lemke
- 4 Medicinal Chemistry by V. Alagarsamy
- 5 Biochemistry by U. Satyanarayana
- 6 Natural Products Chemistry and Applications by Sujata V. Bhat, B.A. Nagasampagi, S. Meenakshi
- 7 Medicinal Chemistry by V.K. Ahluwalia, Madhu Chopra
- 8 Medicinal Chemistry by Balkishen Razdar
- 9 Advanced Practical Medicinal Chemistry by Ashutosh Kar
- 10 Chemistry of Organic Natural Products by O. P. Agarwal, Vols., 1 & 2, Geol Pubs.
- 11 Chemistry of Natural Products by S. V. Bhat, B.A. Nagasampagi, M. Sivakumar
- 12 Natural Products Chemistry by K.B.G. Torssell, John Wiley, 1983.

#### **Course Objectives:**

- To learn about the classification of electroanalytical methods
- Determination of types of currents
- Principle, instrumentation, reversible and irreversible cyclic voltammograms..
- Interpretation of Ion selective electrodes

Course Outcomes: At the end of the course, the student will able to

**CO1** Know how to interpret potentiometry and conductometry

**CO2** Know the Interpretation of results while adhering to DC Polarography.

**CO3** Know the Analysing and compiling the data and results in polarography.

**CO4** Familiarize Types of ion sensitive electrodes.

	Mapping of course outcomes with the program outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	3	3	-	1	2	-	1	2	3
CO2	3	3	3	3	1	2	-	2	2	2	-	3
CO3	3	3	1	3	1	3	2	2	-	3	2	3
<b>CO4</b>	3	2	3	1	3	2	-	_	-	2	-	3

#### CHE : AC : 406(B): (OPEN ELECTIVE) : ELECTRO ANALYTICAL TECHNIQUES

**Unit I:** Types and Classification of Electro analytical Methods.

**i**) **Potentiometry-** Types of electrodes, Hydrogen gas, Calomel, Quin hydrone and glasselectrodes. Determination of pH. Potentiometric titrations.

**ii**) **Conductometry** – Definition of terms – conductivity, specific conductivity, cell constant. Mobility of ions, Conductometric titrations.

**Unit II:** D.C Polarography :. Dropping mercury electrode- Instrumentation-polarogram. Types of Currents : Residual, Migration, Limiting. Two and Three electrode assemblies. Ilkovic equation(derivation not necessary) and its consequences. Types of limiting Currents: Adsorption,Diffusion, Kinetic. Applications of polarography in qualitative and quantitative analysis. Analysis of mixtures. Application to inorganic and organic compounds. Determination of stability constants of complexes.

**Unit III:** (i) A.C. polarography (ii) Square-wave polarography (iii) Pulse polarography (iv) Differential pulse polarography(V) Cyclic Voltammetry: Principle, instrumentation, reversible and irreversible cyclic voltammograms.

**Unit IV: Ion selective electrodes:** Ion-sensitive electrodes –types of ion sensitive electrodes –metal based cation and anion sensitive electrodes, solid membrane electrodes. Liquid ion-exchange electrodes, gas sensing membrane electrodes.

- 1. H.W. Willard, LL. Merrit and J.A. Dean: Instrumental Methods of Analysis. Affiliated East-West).
- 2. G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denny. Vogel's Text Book of Quantitative Chemical Analysis (ELBS).
- 3. D.A. Skoog and D.M. West: Principles of Instrumental Analysis (Holt, Rinehart and Wilson).
- 4. J.G. Dick : Analytical Chemistry (Mc Graw Hill).

<b>CHE-EC-401</b>	Energy, Environment and Soil	L-5,T-1,P-0	4Credits

Cours	e Objec	tives:										
• Fami	• Familiarize with fossil fuels, solar energy, geothermal energy											
• Hydr	• Hydropower and photo-electrochemistry, hydrological cycle, water pollutants, eutrophication and											
green	house e	ffect.										
• Detec	ction of	compos	ition of	soil, bio	degrada	tion, go	als of g	reen che	mistry,	biocatal	ysis	
• Soil p	ollutior	n, solid v	waste m	anagem	ent and	disposal	ble metł	nods.				
Cours	e Outco	mes :A	t the end	d of the	course,	the stud	ent will	be able	to			
CO1	Know a	about nu	clear fis	ssion an	d fusion	, uses of	f solar e	nergy in	space l	neating a	and wate	er
	heating	, hydrop	bower an	nd water	heating	g, hydro	power a	nd prod	uction o	of ethance	ol from i	ndirect
	solar er	nergy.			-		-	-				
CO2	Learn physical and chemical properties of water and water complexation in natural and											
	waste v	vater an	d to und	erstand	about g	lobal wa	arming,	ozone d	epletion	, green i	house ef	fect
	and aci	d rains.			U		Ū,		•			
CO3	Acquir	e knowl	edge on	compos	sition of	inorgar	nic and o	organic o	contami	nants in	soil, soi	il
	corrosi	on and i	ndustria	application applied	ations of	f green o	chemist	ry.				
CO4	Get kno	owledge	on vari	ous met	hods of	solid wa	aste coll	ection a	nd its d	isposal.		
		M	nning	of cours	o outeo	mos wit	th the n	roarom	outcon	205		
		1010	apping			mes wit	in the p	i ogi ani	outcon			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1
										0	1	2
<b>CO1</b>	3	3	3	3	3	2	1	2	2	2	-	3
CO2	3	3	3	3	3	2	-	2	2	-	2	3
CO3	3	3	3	3	2	2	-	1	2	2	-	3
CO4	3	3	3	3	3	2	1	2	2	-	2	3

Pre-requisite: Understanding of Energy, Environment and Soil

#### CHE EC-401: CORE THEORY: ENERGY, ENVIRONMENT AND SOILS

#### **UNIT-I: Sources of Energy**

Fossil fuels- Nuclear fission and fusion- Solar energy-use of solar energy in space heating and water heating- production of electricity using solar energy- solar trough collectors- power tower- solar pond-solar energy for driving vehicles- power from indirect solar energy – Hydropower- wind power-Biomass energy- production of ethanol from biomass- production of methane from biomass-photosynthesis- photo electro chemistry- Geothermal energy.

#### **UNIT-II: Water Resources and Air**

Hydrological cycle- physical and chemical properties of water-complexation in natural and waste water,-Anomalous properties-water pollutants-Types-Sources- Heavy metals- metalloids- organic – Inorganic –Biological and Radio active-Types of reactions in various water bodies including marine environment- Eutrophication- Ground water- Potable water standards.Treatment for portable water. Air: Chemical reactions in the atmosphere – Aerosols types- Production and distribution – Aerosols and Radiation – structure and composition of atmosphere- temperature inversion – Global warning- Ozone depletion – Green house effect, "CFC"s- Acid rain.

#### **UNIT-III: Soil and Green Chemistry**

**Soil:** Composition of soil- lithosphere- inorganic and organic contaminants in the soil- Biodegradation-Nondegrdable waste and its effect on the environment- Bioremediation –of surface soils- Fate and transport of contaminants on soil system– Bioindicators- Soil parameters- soil destruction- Erosion- Soil conservation – Nitrogen pathways and NPK in soil.

#### Green Chemistry: Goals of Green chemistry- Significance and basic components of Green chemistry

#### 15 Hrs

15 Hrs

research - industrial applications of Green chemistry-products from natural materials- Green fuels and E-Green propellants- Zeolites- Biocatalysts.

#### **UNIT IV: Soil pollution:**

Introduction – soil pollution by industrial wastes. soil pollution by urban wastes, Radioactive pollutants and Agricultural waste- chemical and metallic pollutants-Biological agents – mining - Detrimental effects of soil pollutants – Effects of industrial pollutants- Effects of sewage and domestic wastes-Effects of heavy metals- Effects of radioactive pollutants- Effects of modern agro- technology – Diseases caused by soil pollution – solid waste management – sources and classification -public Health Aspects – methods of collection- Disposal methods – potential methods of disposal.

#### **Books Suggested:**

- 1. Daniel D. Chiras (1994), Environmental Science, 4th Ed.
- 2. Environmental Chemistry by W. Moore and J.Moore
- 3. Environmental chemistry by J.O.M. Bockariss
- 4. Environm, ental by BK SHArma
- 5. Environmental chemistry by SS Dara
- 6. Environmental chemistry by Mahajan
- 7. Environmental chemistry by a.K.De

	(Mandatory Core	e)								
<b>CHE-EC 402</b>	Water Pollution Monitoring and	L-5,T-1,P-0	4Credits							
	<b>Environment Laws</b>									
<b>Pre-requisite:</b> Understanding of Water pollution monitoring and environment laws.										

#### **Course Objectives:**

- Basic concepts of different water pollutants •
- Different principles of water treatment. •
- Biotechnology and its applications in environmental protection
- Environmental management and environmental laws

Course Outcomes: At the end of the course, the student will be able to

**CO1** Acquire knowledge on disease causing agents in water.

**CO2** Learn about the removal of suspended and dissolved solids present in waste water.

CO3 Understand different uses of micro-organisms in environmental protection.

**CO4** Know different world life acts such as forest conversion act, water control pollution act and air prevention and control act. a outcomes with the program outcomes

	mapping of course outcomes with the program outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	3	2	1	1	2	I	-	2	3	
CO2	3	3	3	2	2	-	-	2	2	2	-	3	
<b>CO3</b>	3	3	3	3	2	2	1	2	2	2	2	3	
CO4	3	3	3	3	-	2	-	2	3	-	2	3	

#### **CHE EC-402: CORE THEORY: WATER POLLUTION MONITORING AND ENVIRONMENT LAWS**

#### **UNIT-I: Water pollution**

Basic aspects of water-general principles of water (physical and chemical)-criteria of water quality.Types of water pollutants: sewage and domestic wastes-industrial wastes-agriculture discharges- toxic metals-oxygen demanding wastes-disease causing agents-oils- detergents and phosphates. Sampling: Basics of Sampling, sampling procedure, statistics, sampling and physical state, crushing and grinding, hazards waste of sampling, pre-concentration methods

#### **UNIT-II: Waste water treatment:**

Basic process of water treatment- primary treatment pretreatment - sedimentation - Flotationsecondary (Biological) Treatment - Active sludge process - Trickling filters - sludge Treatment and disposal - Advanced waste water Treatment - Removal of suspended solids - Removal of dissolved solids - Nitrogen removal - phosphorous removal - Advanced Biological systems - chemical oxidation.

#### UNIT III: Biotechnology and its application in Environmental protection

Introduction- Bio-informatics- Bio-Technology and pollution control,-Bioremediation- Biological de-odourisation- Biological purification of contaminated air-microorganisms and energy of mankind-use of microorganisms role in petroleum augmentation and recovery.

#### **UNIT IV: Environmental Management and Important Environmental Laws:** 15 Hrs

Management: Introduction-objectives-components-environmental Environmental impact assessment (EIA)-historical background-elements of EIA process-participants in EIA processescontents of EIS-design of EIA.

Important Environmental Laws: the world life act-the forest conservation act-the water and control pollution act-air prevention& control act-the environment act-environmental quality management standard-ISO 14000 series.

#### 15 Hrs

#### 15 Hrs
- 1. Environmental Chemistry by W. Moore and J.Moore
- 2. Environmental chemistry by J.O.M. Bokriss
- 3. Environmental by BK Sharma
- 4. Environmental chemistry by SS Dara
- 5. Environmental chemistry by Mahajan
- 6. Environmental chemistry by a.K.De
- 7. Lodge (1994) Methods of air sampling and analysis. Publications, Jaipur
- 8. Kudesia, V.P. (1985) Water Pollution, Pragati Prakashan
- 9. Elements of biotechnology by PK Gupta and Rastogi

CHE E	C 403			Practic	al I		L-	5,T-1,P	-0	4	Credits	;
Pre-re	quisite:	Enviro	onmenta	al Chen	nistry P	ractical	Ι					
Cours	e Objec	tives:										
• (	Conductometric methods of analysis.											
•	Colorimetric methods of analysis											
•	• Interpretation of data from IR, HPLC, GC, AAS											
•	Determination of purity and alkanility by pH metry											
Cours	urse Outcomes: At the end of the course, the student will be able											
CO1	To kno	w the ba	asic prin	ciples o	f condu	ctometry	y and an	alysis o	f acids a	and halio	les.	
CO2	Coloro	metric e	stimatio	n of iro	n and m	anganes	e.					
CO3	To ha	ve an tograph	idea a v and H	bout w PLC.	orking	princip	les of	IR, A	AS, S _l	pectroflu	orimetr	y, Gas
CO4	Tofami	liarize v	with inte	rpretatio	on of da	ta						
		Ma	apping	of cours	e outco	mes wit	h the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	3	2	2	2	-	2	1	2
CO2	3	3	3	3	2	3	2	-	2	2	2	3
CO3	3	3	3	3	3	2	-	2	2	2	-	3
<b>CO4</b>	3	3	2	2	3	2	2	2	-	2	1	3

# CHE EC-404: PRACTICAL-I- INSREUMENTAL METHODSOF ANALYSIS-II

- 1) Conductometry:
- a) Mixture of Acids
- b) Mixture of Halides
- 2) Colorimetry:
- a) Estimation of Iron
- b) Manganese
- c) Phosphate
- d) Titration of copper Vs EDTA

# **DEMONSTRATION EXPERIMENTS**

- 1 IR Interpretation of IR spectrum of alcohols, ketones, aldehydes and other standard materials
- 2 AAS: Demonstration of AAS Determination of Zn, Cd, Pb, Mn, Fe and Ni in effluents using AAS.
- 3 Spectrofluorimetry estimation of quinine and fluoroscene
- 4 Ion selective electrodes estimation of  $F^-$ ,  $S^{2-}$  and  $CN^-$  in effluents using ion selective electrode meter.
- 5 Polarography and Anode stripping voltametry
  (A)Polarography and Anode stripping voltametry behavior of Cd, Zn, Pb in a mixture.
  (B)Determination of Pb and Cd in samples using Anode stripping voltametr
- 6 Gas chromatography- Determination of pesticides
- 7 HPLC- Determination of pesticides
- 8 pH metry

(A)Determination of alkalinity in a colored effluent using pH metric end point.

(B)Determination of purity of commercial HCl,  $H_2SO_4$ ,  $H_3PO_4$  and  $CH_3COOH$  using pH metric end point.

CHE	EC 404		Practio	cal II:P	roject V	Vork	L-	5,T-1,P	2-0	4	Credits	}
Pre-re	Pre-requisite: Project Work											
Cours	Course Objectives:											
• Iden	dentification of problem by literature survey											
• Car	rry out the problem independently											
• Inte	erpretation	on of da	ta									
• Cor	nmunica	ation of	research	n results	through	n presen	tations a	and prep	aration	of disse	rtation	
Cours	e Outco	e Outcomes: At the end of the course, the student will be able										
CO1	To ider	ntify res	earch pr	oblem,	propose	the hyp	othesis	and to c	ollect lit	terature.		
CO2	To per	form res	earch de	esigns &	z experi	ments						
CO3	To tabu	ılate res	earch re	sults								
<b>CO4</b>	To con	clude re	esearch o	outcome	s in the	form of	disserta	tion.				
		M	apping	of cours	se outco	omes wi	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	-	3	2	2	1	2	3
CO2	3	3	3	3	2	3	-	1	2	2	-	3
<b>CO3</b>	3	3	3	3	3	2	3	-	2	-	3	3
<b>CO4</b>	3	3	3	3	2	3	3	2	3	-	2	3

# CHE EC- 405: PRACTIAL II/ PROJECT WORK

CHE-EC-405A	Air Pollution, Control Methods-	L-3,T-1,P-2	4 Credits
	Noise and Thermal Pollution		

**Pre-requisite:** Understanding of Air Pollution, Control Methods-Noise and Thermal Pollution **Course Objectives:** 

- Study on properties of air pollutants, air pollution sampling measurements and analysis.
- Familiarize with different control methods and adsorption of solids and liquids, gas analysis.
- Know about pollution caused by vehicle emissions and different industries.

• Get an idea on noise and thermal pollutions and their effect on human health.

Course Outcomes: At the end of the course, the student will be able to

- **CO1** Acquire knowledge on air pollutants, air pollution sampling measurements and analysis caused due to sulphur dioxide, carbon monoxide, nitrogen dioxide, oxidants, ozone, hydro carbons and particulate matter.
- **CO2** Learn about different control methods and adsorption of solids and liquids, gas analysis eluents viz., nitrogen oxides, carbon monoxide and hydrocarbons.
- **CO3** Understand pollution caused by vehicle emission, different industries, cement plants, steel mills and petroleum refineries.
- **CO4** Know about noise and thermal power project pollutions and their effect on human health.

	Mapping of course outcomes with the program outcomes												
	PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12												
<b>CO1</b>	3	3	3	3	2	-	1	2	-	1	-	3	
CO2	3	3	3	2	2	-	2	2	2	1	2	3	
<b>CO3</b>	3	3	3	3	2	2	2	2	2	1	-	3	
CO4	$\mathbf{M}$ 3 3 3 3 2 1 2 3 2 3												

# CHE : EC-405 A: (GENERIC ELECTIVE): AIR POLLUTION, CONTROL METHODS-NOISE AND THERMAL POLLUTION

### **UNIT-I:** Air Pollution

Classification and properties of air pollutants-emission sources-major emissions from global sourcesimportance of anthropogenic sources-behavior and fate of air pollutants photochemical smog and its effects on health-vegetation-material damage in India.

Air pollution sampling and measurement-ambient air sampling-collection of gaseous air pollutantscollection of particulate pollutants-stack sampling-analysis of air pollutants-sulphur dioxide-carbon monoxide-nitrogen dioxide-oxidants-ozone-hydro carbons and particulate matter

# **UNIT- II: Control methods**

Sources-correction methods-particulate emission control-gravitational settling chambers-cyclone separators-fabric filters-electrostatic precipitator-wet scrubbers-control of gaseous emissions by adsorption of solids and liquids-control methods of sulphur dioxide emission, flue gasesanalysis-control method, nitrogen oxides, carbon monoxide and hydrocarbon-mobile sources.

# **UNIT-III: Vehicular Air Pollution:**

Genesis of vehicular emissions standard- natural pollution-gasification of vehicles-point sources of air pollution – mechanism of air pollution from automobiles -automobile pollution- Indian scenario population and pollution loads of vehicles-automobile air pollution control-exhaust gas controlling treatment devices-thermal reactor-catalytic converter from automobiles-fuel tank carbonator. Air pollution from Portland cement plants-steel mills and petroleum refineries.

# **UNIT-IV: Noise and Thermal Polution**

Noise pollution: sources-measurement of noise and indices-effect of meteorological parameters on noise propagation-noise exposure levels and standards –measurement of noise-impact of noise on

#### 15 Hrs

### 15 Hrs

# 15 Hrs

#### 15 Hrs

#### human health

**Thermal pollution**: Introduction-definition-sources-harmful effects-toxic compounds in tracesprevention and control of thermal pollution –thermal power projects in India.

- 1. Environmental Chemistry by W. Moore and J.Moore
- 2. Environmental chemistry by J.O.M. Bockeriss
- 4. Environmental chemistry by Sharmar and Kaur, Krishna Publishers
- 6. Environmental chemistry by a.K.De
- 8. Henry C perkins (1974) Air Pollution, McGraw-Hill
- 9. Kudesia, V.P. (1985) Water Pollution, Pragati Prakashan.
- 10. Environmental Engineering by CS Rao
- 11. Environmental by BK Sharma
- 12. Environmental chemistry by SS Dara

	C-405 B Bioinorganic, Bioorganic, L-5,T-1,P-0 4 Credits Biophysical Chemistry												
Pre-re	quisite:	Unders	standing	of Bioi	norganie	c, Bioorg	ganic, B	iophysi	cal Cher	mistry			
Course	Course Objectives:												
• Hig	hlighten	metal c	complex	es as ox	ygen ca	rriers an	d electr	on trans	fer in bi	iology.			
• Me	tal ion t	ransport	t and sto	rage in	biologic	al system	ns and	importa	nce of ti	race met	als in bi	iology.	
• Lea	rn physi	ological	l functio	ns of ca	rbohydı	ates, lip	ids, enz	ymes cl	assifica	tion, ste	reospeci	ificity.	
• The	basic co	oncepts	of biop	hysical o	chemist	ry in bio	chemic	al reacti	ons, exe	ergonic	and end	ergonic	
reac	tions.	1	1	5		5			,	U		0	
Cours		mos. A	t the end	l of the	course	the stude	nt will	he ahle	to				
Cours	e Ouico	mes. A			course,		int will		10				
CO1	Gain kr	nowledg	ge on me	etallo pro	oteins in	electro	n transf	er proce	sses.				
CO2	Know t	he appli	ications	of trace	metal io	ons and	netal ic	ons as ch	elating	agents i	n medic	ine.	
CO3	Achiev	e and de	evelop h	ighly ste	ereosele	ctive sy	thesis of	of organ	ic comp	oounds a	and drug	s by	
	adoptin	g enviro	onmenta	lly.									
<b>CO4</b>	Unders	tand the	rmodyn	amics o	f biopol	ymer rea	ctions	and to c	orrelate	free ene	ergy and	l	
	biopoly	mer par	ameters	•									
		Ma	apping o	of cours	e outco	mes wit	h the p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
<b>CO1</b>	3	3	3	2	3	3	3	2	-	2	-	3	
CO2	3	3	3	3	3	2	3	-	-	-	3	3	
<b>CO3</b>	3	3	3	3	3	3	-	2	-	2	-	3	
<b>CO4</b>	3	3	3	3	3	3	2	2	-	3	3	3	

### CHE EC-405(B): (GENERIC ELECTIVE): BIOINORGANIC, BIOORGANIC, BIOPHYSICAL CHEMISTRY

#### UNIT-I: BIO-INORGANIC CHEMISTRY- I

#### 15 Hrs

Metal complexes as oxygen carriers –Heme proteins –Hemoglobin and myoglobin –Non heme proteins –hemerythrin and hemocyanin – model synthetic complexes of iron, cobalt and copper.Co-enzymes Vitamin B₁₂,carboxy peptidase and superoxidedismutase.

**Electron Transfer in Biology:** Structure and functions of metalloproteins in electron transfer processes –catalase –peroxidose –cytochromes and iron –sulphur proteins –synthetic models.

**UNIT – II: BIOINORGANIC CHEMISTRY- II:** Metal ion transport and storage in biological systems, Metal ions in Biology, Molecular mechanism of ion transport across membranes: ionophores, photosynthesis.

**Hydrolytic metalloenzymes:** Carbonic anyhdrase, carboxy peptidase, calcium in control processes, calcium and muscle contraction, calcium and secretion, calcium in blood clotting mechanisms. Therapeutic uses of enzymes.

**Importance of trace metals in biology:** Metal ions as chelating agents in medicine, trace metal ions and metal and non-metal deficiency. Biological nitrogen fixation, in-vivo and in-vitro nitrogen fixation.

### **UNIT-III: BIOORGANIC CHEMISTRY**

**Carbohydrates:** Structure and biological functions of mucopolysaccharides, glycoproteins, and glycolipids- Role of sugars in biological recognition-Blood group substances

**Lipids:** Essential fatty acids-structure and function of triglycerols, Glycerophospholipids, cholesterol, bile acids prostaglandins- composition and functioning of lipoproteins

**Enzymes:** Nomenclature and classification, properties, factors affecting enzyme catalysis, enzyme inhibition- reversible and irreversible inhibition. Uses of enzymes in food drink industry and clinical laboratories.

### UNIT-IV: BIOPHYSICAL CHEMISTRY:

Standard free energy change in biochemical reactions, exergonic and endergonic reactions, hydrolysis of ATP, thermodynamics of biopolymer solutions, chain configuration of bio polymers, and calculation of average dimensions. Membrane equilibrium, ion transport through cell membrane. dialosis and its function. Structure and functions of proteins, enzymes, DNA and RNA in living systems, forces involved in bio polymer interactions, electrostatic forces, hydrophobic forces, molecular expansion, and dispersion forces.

- 1. M.N. Hughes, The Inorganic chemistry of Biological Processes, John wiley and Sons, New York 2nd Edition, 1981.
- 2. A Text book of Biochemistry, A.V.S.S. Rama Rao
- 3. Physical chemistry by Atkenes
- 4. Physical chemistry by Albertz.
- 5. Bio physical chemistry by Van Holde
- 6. Bio Physics by Narayanam
- 7. Organic Chemistry, Vol. 2, I. L. Finar, ELBS.
- 8. Chemistry of Natural Products, P.S. Kalsi, Kalyani Publishers.
- 9. Chemistry of Organic Natural Products, O. P. Agarwal, Vols., 1 & 2, Geol Pubs.
- 10. Natural products Chemistry K.B.G. Torssell, John Wiley, 1983.
- 11. Burger's Medicinal Chemistry, M.E. Wolff, John Wiley
- 12. Medicinal Chemistry, A. Kar, New Age International

CHE EC 406A	Drug Chemistry	L-3,T-1,P-2	4Credits
Pre-requisite: U	Understanding of Drug Chemistry		

#### **Course Objectives:**

- To learn about the natural products as leads for new drugs
- Determination of cardiovascular drugs
- To study Autacoids
- Interpretation of Antipyretics

**Course Outcomes:** At the end of the course, the student will be able to

**CO1** Know about natural products.

**CO2** Know Interpretation of cardiovascular drugs.

**CO3** Know the Analyzing about prostaglandins.

CO4 Know the Definition, Classification, Nomenclature, Structure and Synthesis of antiinflammatory drugs.

# Mapping of course outcomes with the program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	-	1	2	-	1	2	3
CO2	2	3	3	3	1	2	-	2	2	2	1	3
CO3	3	3	2	3	-	3	2	2		3	-	3
<b>CO4</b>	3	1	3	1	3	2	2	-	2	2	2	3

# CHE : EC : 406 (A): (OPEN ELECTIVE) : DRUG CHEMISTRY

# **UNIT - I: NATURAL PRODUCTS AS LEADS FOR NEW DRUGS**

Occurrence, Structure and therapeutic uses of Drugs acting on Central Nervous System

Morphine alkaloids (morphine, codeine, thebaine, heroin, pethidine)

Cannabinoids (9-cannabinol, Tetrahydrocannabinol)

Neuromuscular Blocking Agents (Curare, Decamethonium)

Vinca Alkaloids (Vincristin and Vinblastin), Taxol and Taxotere, podophyllotoxin, Etoposide, Teniposide.

# UNIT – II: CARDIOVASCULAR DRUGS

Definition, Classification, Nomenclature, Structure and Synthesis.

Cardiac glycosides (ex: Digoxin, Digitoxin);

Antihypertensive drugs (ex: Methyl dopa, Clonidene hydrochloride);

Antiarrhythmic agents (ex: Quinidine sulfate);

Antisympathetic drugs (ex: Propranolol hydrochloride, Verapamil hydrochloride);

Vasopressor drugs (ex: Prenylamine, Buphenine).

### **UNIT – III: AUTACOIDS**

Definition, Occurrence, Isolation, Nomenclature, Classification, Synthesis, Biosynthesis and Stereochemical structures of Prostaglandins. Structural elucidation of PGE₁, PGE₂; Synthesis and biosynthesis of PGE₂, PGF_{2 $\alpha$}.

Structure and Biosynthesis of Thromboxane A2 and Prostacyclin (synthesis not expected).

### **UNIT - IV: ANTI-INFLAMMATORY DRUGS**

Definition, Classification, Nomenclature, Structure and Synthesis of Paracetamol, Aspirin (Antipyretic), Salol, Cinchophen, Antipyrene, Phenylbutazone, Indomethacin, Tolmetin, Ibuprofen, Diclofenac and

Naproxen.

- 1. Medicinal Chemistry by Ashitosh Kar
- 2. Medicinal Chemistry by D. Sriram, P. Yogeeswari
- 3. Medicinal Chemistry by David A. Williams, Thomas L. Lemke
- 4. Medicinal Chemistry by V. Alagarsamy
- 5. Biochemistry by U. Satyanarayana
- 6. Natural Products Chemistry and Applications by Sujata V. Bhat, B.A. Nagasampagi, S. Meenakshi
- 7. Medicinal Chemistry by V.K. Ahluwalia, Madhu Chopra
- 8. Medicinal Chemistry by Balkishen Razdar
- 9. Advanced Practical Medicinal Chemistry by Ashutosh Kar
- 10. Chemistry of Organic Natural Products by O. P. Agarwal, Vols., 1 & 2, Geol Pubs.
- 11. Chemistry of Natural Products by S. V. Bhat, B.A. Nagasampagi, M. Sivakumar
- 12. Natural Products Chemistry by K.B.G. Torssell, John Wiley, 1983.

CHE EC 406 B	Electroanalytical Techniques	s L-5,T-1,P-0 4 Credits						
Pre-requisite: U	nderstanding of Electroanalytical Techn	niques						

	Cours	e Objec	ctives:									
٠	To lear	rn about	t the cla	ssificat	ion of e	lectroana	alytical	methods				
٠	Determination of types of currents											
٠	Principle, instrumentation, reversible and irreversible cyclic voltammograms											
٠	Interpretation of Ion selective electrodes											
Cours	se Outo	comes:	At the e	end of th	ne cours	se, the stu	ıdent w	ill able to	)			
CO1	Abilit	y to inte	erpret p	otention	netry a	nd condu	ctometr	у				
CO2	Interp	retation	of resu	lts whi	le adher	ring to D	C Polar	ography.				
CO3	Analy	sing an	d comp	iling the	e data a	nd result	s in pol	arograph	y.			
CO4	Famil	iarize T	ypes of	ion ser	sitive e	lectrodes	8.					
		N	<b>Iappin</b>	g of cou	irse ou	tcomes v	vith the	program	n outco	omes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	3	3	3	-	2	2	1	-	2	3
<b>CO2</b>	3	3	2	3	1	2	-	2	2	2	1	3
CO3	3     3     1     3     2     3     1     2     3     2     3											
CO4	3	-	3	1	3	2	1	-	1	2	-	3

### CHE: EC: 406(B): (OPEN ELECTIVE): ELECTRO ANALYTICAL TECHNIQUES

Unit I: Types and Classification of Electro analytical Methods.

**i**) **Potentiometry-** Types of electrodes, Hydrogen gas, Calomel, Quin hydrone and glasselectrodes. Determination of pH. Potentiometric titrations.

**ii**) **Conductometry** – Definition of terms – conductivity, specific conductivity, cell constant. Mobility of ions, Conductometric titrations.

**Unit II:** D.C Polarography: Dropping mercury electrode- Instrumentation-polarogram. Types of Currents : Residual, Migration, Limiting. Two and Three electrode assemblies. Ilkovic equation (derivation not necessary) and its consequences. Types of limiting Currents: Adsorption, Diffusion, Kinetic. Applications of polarography in qualitative and quantitative analysis. Analysis of mixtures. Application to inorganic and organic compounds. Determination of stability constants of complexes.

**Unit III:** (i) A.C. polarography (ii) Square-wave polarography (iii) Pulse polarography (iv) Differential pulse polarography(V) Cyclic Voltammetry: Principle, instrumentation, reversible and irreversible cyclic voltammograms.

**Unit IV: Ion selective electrodes:** Ion-sensitive electrodes –types of ion sensitive electrodes –metal based cation and anion sensitive electrodes, solid membrane electrodes. Liquid ion-exchange electrodes, gas sensing membrane electrodes.

- 1. H.W. Willard, LL. Merrit and J.A. Dean: Instrumental Methods of Analysis. Affiliated East-West).
- 2. G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denny. Vogel's Text Book of Quantitative Chemical Analysis (ELBS).
- 3. D.A. Skoog and D.M. West: Principles of Instrumental Analysis (Holt, Rinehart and Wilson).
- 4. J.G. Dick : Analytical Chemistry (Mc Graw Hill).

CHE-I	C- 401 Co-ordination Compounds					unds,	L-	5,T-1,P	-0	4	Credits	
			rganon	netallic	Chemis	try &						
		C	nemist	ry oi No Flomo	on-tran: nts	sition						
Pre-re	anisite	Unders	tanding	of Co-c	nts ordinatic	on Comr	ounds	Organo	metallic	Chemi	stry &	
chemis	strv of n	on-trans	sition ele	ements	nunuu	n comp	ounus,	organo	metume	Chenn	μy α	
Cours	e Objec	tives:										
• Study	the org	ganomet	allic che	emistry	of differ	ent com	plexes a	and coor	dinated	ligands		
• Unde	derstand the mechanistic aspects of several well-known industrial catalytic processes like											
olefin	hydrogenation, olefin oxygenation, Olefin hydroformylation and Fischer -Tropsch											
synth	esis wit	esis with an aim to gain a good knowledge on synthetic applications of Organo-Lithium,										
Magr	iesium a	ind Alu	ninium	compou	inds.	1			C		1	1 /
• Acqu	ire kno	wledge	of met	al cluste	er comp	pounds,	various	types	of react	tions of	metal	cluster
• Study	von syn	thesis r	ropertie	a isolod a and at	al relation	onsnip a	na elect	ron cou	nting sc	ineme IC	or HNC	ຸ 3.
·Study	/ OII Syll	ulesis, _F	noperue	s and st	luctures		ansitio		ints			
Cours	e Outco	mes :A	t the end	d of the	course,	the stude	ent will	be able				
CO1	To Ga	in an ex	tensive	knowle	dge abo	ut dinitro	ogen co	mplexes	s of Ru(	II), Os(I	I),Co(I)	),
	Mo(0)	and dio	xygen c	omplexe	es of I	r(I) and	Rh(I) a	nd on cy	clohept	atriene a	and trop	ylium
	compl	exes of	oxidativ	ve, reduc	ctive eli	mination	reactio	ons				
CO2	To un	derstand	l mecha	nism, st	ereochei	mical as	pects ar	nd regen	eration	of cataly	yst in ol	efin
	hydro	genation	ı (Wilki	nson's c	atalyst)	, olefin c	xygena	ation (W	acker p	rocess o	r Smidt	
<u>CO3</u>	Teactio	on), Ole	fin hydr	oformy	ation an	laras ha	<u>ving m</u>	psch pro	cess.	0.05 mul	tiplabo	nds and
COS	analys	e the sr	ectrosco	s of met	ar comp lences f	for the pr	ving in esence	of meta	ar singr I-metal	e or mur bond	uple bo	nus anu
CO4		derstand	the svr	thesis a	nd struc	tures of	boranes	s carbot	anes b	orazines	silicat	es
	carbid	es, pero	xo com	pounds	and inte	r haloge	ns, pseu	ido halic	les.	010211105	,	
	Mapping of course outcomes with the program outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
<b>CO1</b>	3	3	3	3	2	-	1	2		2	-	1
CO2	3	2	2	2	-	2	2	-	2	-	1	1
CO3	3	3	3	3	2	2	-	2		1	-	1
<b>CO4</b>	3	3	3	3	2	1	-	1	2	1	1	2

#### CHE IC 401: CORE THEORY: Co-ordination Compounds, Organometallic Chemistry and Chemistry of Non-transition Elements

### UNIT -I: ORGANOMETALLIC CHEMISTRY OF TRANSITION ELEMENTS:

1.Dinitrogen complexes of Ru(II), Os (II),Co(I) and Mo(0)

2. Dioxygen complexes of Ir (I) and Rh (I)

3. Cycloheptatriene and Tropylium complexes –Oxidative addition and Reductive Elimination.

Insertion and Elimination reaction –Nucleophilic and Electrophilic attack of coordinated ligands.

# UNIT -II: APPLICATIONS OF ORGANOMETALLIC COMPOUNDS 15 Hrs

Catalytic applications –Fischer –Tropsch synthesis, Olefin hydrogenation (Wilkinson catalyst).Olefin oxygenation (Wacker process or Smidt reaction) Olefin hydroformylation (Ziegler-NattaCatalysis). Synthetic applications of Organo–Lithium, –Magnesium and Aluminium compounds.Biological applications of organometallic compounds in medicine, agriculture and horticulture.

### UNIT -III: METAL-TO METAL BONDS AND METAL ATOM CLUSTERS 15 Hrs

Introduction, metal carbonyl clusters –low –nuclearity (M and M) clusters, isoelectronic and isolobal relationships, High nuclearity, carbonyl clusters (HNCC'S), Hetero stomes in metal atom clusters, electron counting scheme for HNCC'S, HNCC'S of the Fe, Ru and Os group HNCC'S of the Cu, Rh and Ir group, HNCC'S of the Ni, Pd, and Pt group. Compounds with M-M multiple bonds, Major structural types, quadruple bonds, relation of clusters to multiple bonds and one dimensional solids.

#### UNIT –IV: CHEMISTRY OF NON-TRANSITION ELEMENTS

15 Hrs

General characteristics of the non-transition elements, special features of individual elements: Synthesis, properties and structure of their Halides and oxides, polymorphism of carbon, Phosphorus and Sulphur. Synthesis, properties and structure of boranes, carboranes, borazines, silicates, carbides, Sulphurnitrogen compounds, peroxo compounds of boron, carbon and sulphur, oxyacids of nitrogen, phosphorus, sulphur and halogens, inter halogens pseudo halides.

- 1. F.A. Cotton and G. Wilkinson, Advanced In-organic chemistry VI Edition, 1999. John wiley & sons. Inc., New York.
- 2. James E. Huheey, Inorganic chemistry- Principles of structure and reactivity, IV Edition 1993. Harper Collins College Publishers, New York.
- 3. J.D. Lee, Concise Inorganic chemistry, V Edition 1996, ELBS, Chapman and Hall, London.
- 4. Concise Inorganic chemistry by J.D. Lee V Edition ELBS, Chapman and Hall, London.
- 5. Organometallic Chemistry by R.C. Mehrotra and Singh.

CHE-IC 402	<b>Instrumental Methods of Analysis</b>	L-5,T-1,P-0	4Credits
Pre-requisite:	Understanding of Organic Spectroscopy	and Applications	

Cou	Course Objectives:											
• (	• Gain sound knowledge in spectroscopic methods of ICP-AES, ICP-MS, x-ray fluorescence,											
5	spectroscopic techniques and their applications											
• (	Chrom	atograp	hic tec	hniques	s like H	igh-Per	forman	ce Liqu	uid Chro	matogra	phy, Ca	apillary
]	Electro	phores	is and S	upercri	tical Flui	d Chroi	matogra	iphy (Sl	FC).			
• ]	Familia	arise wi	th instr	umentat	tion, reso	lution a	and ioni	zation s	sources o	f GCMS	and LC	MS.
Cours	e Outo	comes:	At the e	end of the	ne course	e, the stu	ident w	ill be at	ble to			
CO1	To u	ndersta	nd the v	vorking	principl	es, insti	rumenta	tion an	d applica	tions of I	ICP-AE	S and
	ICP-	MS, en	ergy di	spersive	e X-ray	fluores	cence (	EDXRI	F), Wave	length di	spersive	e X-ray
	fluor	rescence	e (WDX	KRF).								
CO2	To u	Indersta	nd the	basic p	rinciples,	procee	lure and	l compo	onents of	the Hig	h-Perfo	rmance
	Liqu	id Chr	omatog	raphy (	(HPLC),	Gel P	ermeati	on Chr	omatogra	aphy (Gl	PC): Ca	apillary
	Elec	trophor	esis (Cl	E), Supe	ercritical	Fluid C	Chromat	ograph	y (SFC).			
CO3	To g	get kno	wledge	on inst	rumentat	tion and	d applic	cations	of GCM	S in dru	g analy	sis and
	envi	ronmen	tal sam	ples ana	ılysis.							
<b>CO4</b>	To in	mprove	the know	owledge	about co	oulomet	tric tech	iniques	and their	analysis	of catio	ons (As
	(III)	, Fe (II	()) and	anions	(I- and	S2-)by	using	I2 libe	rations a	und Ce4-	+ libera	tion in
	solu	tions.										
		N	<b>Aappin</b>	g of coı	irse outo	comes v	vith the	e progra	am outco	omes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
<b>CO1</b>	3	2	2	3	2	2	2	-	2	1	-	1
CO2	<b>)2</b> 3 3 3 3 3 2 1 2 - 1 1 1											
CO3	<b>O3</b> 3 3 3 3 3 2 2 1 1 3											
CO4	3	3	2	2	2	2	2	-	-	1	1	3

# CHE-IC 402: CORE THEORY: INSTRUMENTAL METHODS OF ANALYSIS

### **UNIT –I SPECTROSCOPIC METHODS**

#### 15 Hrs

15 Hrs

### **Emission Spectroscopy:**

(i) ICP-AES: Principles, instrumentation, AES detectors, applications in the analysis of trace and toxic metals in water, geological and industrial samples.

(ii) ICP-MS: Principles, instrumentation, quadrupole mass spectrometers, applications

### Fluorescence Spectroscopy:

**i) Molecular Fluorescence Spectroscopy:** Principle, Theory of fluorescence, phosphorescence, relation between intensity of fluorescence and concentration, Correlation of fluorescence with molecular structure, Fluorescence quenching, Instrumentation and applications.

**ii**) **X-ray Fluorescence Spectroscopy**: Principle, energy dispersive X-ray fluorescence (EDXRF), Wavelength dispersive X-ray fluorescence (WDXRF), applications.

# **UNIT – II: CHROMATOGRAPHIC METHODS**

**High Performance Liquid Chromatography (HPLC):** Principles, Stationary phases, Instrumentation, Solvent delivery system, sample introduction, gradient elution, columns and detectors.Partition Chromatography, adsorption chromatography, Gel permeation chromatography.

**Capillary Electrophoresis:** Principle, Electroosmotic flow, Instrumentation, Applications to separation of small ions, separation of Molecular Species, DNA sequencing

Supercritical-fluid chromatography: Supercritical-fluids, Instrumentation and Applications

### UNIT -III: HYPHENATED TECHNIQUES

**Mass Spectroscopy:** Principle, basic instrumentation, resolution, Ionization sources- Electron impact and Chemical ionization, Mass Analyzers- Quadrupole Mass analyzer and Time- of- Flight Analyzer.

#### 15 Hrs

**Gas Chromatography- Mass spectrometry:** Introduction, GC – MS interface, processing of GC – MS data – ion chromatogram. Quantitative measurement – sample preparation, Selected ion monitoring – Application of GC-MS for Trace constituents. Drugs analysis, Environmental analysis and others.

**Liquid chromatography- Mass spectrometry** – Introduction – Instrumentation – liquid chromatography – Mass spectrometer Interface – Instrumental details – Processing LC-MS data – ion chromatograms, Sample preparation – selected ion monitoring. Application of LC-MS for Drug analysis, Environmental samples and others.

#### UNIT- IV: ELECTRO ANALYTICAL METHODS

Anodic stripping voltammetry: principle, instrumentation, Hanging mercury drop electrode, application in the analysis of Pb and Cd in environmental samples, principle of cathode stripping voltammetry.

15 Hrs

**Coulometric analysis**: principles of coulometric analysis with constant current, coulometric analysis with controlled potential, applications of coulometric methods for the analysis of cations-As (III), Fe (II) and I- and S₂- by using I₂ liberations and Ce⁴⁺ liberation in solutions

**Ion Selective Electrodes**: types of ion selective electrodes, basic properties, potentials and construction, calibration of ion selective electrodes, ion selective electrodes with fixed membrane sites, silver, lead, cadmium, sulfide, fluoride, cyanide and glass electrodes, applications in the analysis of air and water pollutants, principles of liquid membrane, gas sensing and enzyme based electrode

- 1. Analytical Chemistry, Gary D. Christian, John Laliley and Senes, New York, 6th Ed., 2007.
- 2. Analytical Chemistry Principles and Techniques, I.G. Harge, Prentice Hall.
- 3. Principles of Instrumental analysis, D.A. Skoog and J.L. Loacy, W.B. Saunders.
- 4. Handbook of Instrumental Techniques for Analytical Chemistry, F. Serlie, Prentice Hall.
- 5. Vogels Text book of Quantitative Chemical Analysis, Basett, Denny Jebbary, 5th Ed. ELBs 1990.
- 6. Instrumental Methods of Chemical Analysis, Willard Merrit, Dean, Stella Jr 6th Edition.
- 7. Separation methods, M.N Sastri, Himalaya Publishing Company, Mumbai.

CHE IC 403	Core practical I: Inorganic Chemistry - Practical	L-5,T-1,P-0	4 Credits					
Pre-requisite: Understanding of Inorganic Chemistry - Practical.								

**Course Objectives:** 

- To learn about the separation methods and flame photometric analysis of pesticide residues.
- Determination of transition metal ions by polarography.
- Principle, instrumentation, determination of metal ions By AAS.
- Interpretation of NMR chemical shifts and hydrogen bonding.

Course Outcomes: At the end of the course, the student will be able

**CO1** To understand the common laboratory techniques including separation techniques.

**CO2** Polarography, atomic absorption spectroscopy in both emission and absorption mode.

**CO3** To gain knowledge on implementation of gas chromatography and HPLC for separation of mixtures.

**CO4** To Familiarize with interpretation of data to structures by NMR.

Mapping of course outcomes with the program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	-	-	2	-	-	2	3
CO2	3	3	3	3	-	2	-	2	-	2	-	3
<b>CO3</b>	3	3	-	3	-	3	-	2	-	3	-	3
<b>CO4</b>	3	-	3	-	3	2	-	-	-	2	-	3

# CHE IC 403: CORE PRACTICALS: PRACTICAL - I-

# Instrumental methods of analysis- II

- 1) Flame Photometry: Determination of Na and K, Ca and Li in Water and Soil.
- 2) TLC/Paper chromatographic separation.
- 3) Determination of Pesticide residues by gas chromatographic method
- 4) Polarography:a) Determination of E 1/2 of Zn and Cd; b) Determination of amounts of Zn and Cd
- 5) Atomic Absorption Spectroscopy: Determination of transition metal ions (Cd, Cr, Cu, Pb, Zn etc.) by AAS.
- 6) Separation of Metal ion by Solvent Extraction /Ion exchange.

# **II DEMONSTRATION EXPERIMENTS**

- 1. IR Interpretation of IR spectrum of alcohols, ketones, aldehydes and other standard materials
- 2. AAS: Demonstration of AAS Determination of Zn, Cd, Pb, Mn, Fe and Ni in effluents using AAS.
- 3. Spectrofluorimetry estimation of quinine and fluoroscene
- 4. Ion selective electrodes estimation of F⁻, S²⁻ and CN⁻ in effluents using ion selective electrode meter.
- 5. Polarography and Anode stripping voltametry
- 6. Polarography and Anode stripping voltametry behavior of Cd, Zn, Pb in a mixture.
- 7. Determination of Pb and Cd in samples using Anode stripping voltametr
- 8. Gas chromatography- Determination of pesticides
- 9. HPLC- Determination of pesticides
- 10. NMR
- 11. (a)Demonstration of NMR spectrometer and study of hydrogen bonding in a given alcohol or phenol.(b)Interpretation of NMR chemical shifts of ethyl benzene, ethyl alcohol.
- 12. TGA, DTA, DSC Demonstration of TG, DTA and DSC and study of decomposition of calcium oxalate, calcium carbonate, copper sulfate, oxalic acid.
- 13. pH metry
- a. (a)Determination of alkalinity in a colored effluent using pH metric end point.
- b. (b)Determination of purity of commercial HCl,  $H_2SO_4$ ,  $H_3PO_4$  and  $CH_3COOH$  using pH metric end

CHE IC 404	Project Work	L-5,T-1,P-0	4 Credits								
Pre-requisite: Inorganic Chemistry Project Work											
<ul> <li>Course Objecti</li> <li>Identificat</li> <li>Ability to gathering</li> <li>Interpretat</li> </ul>	ives: ion of problem carry out independent chemistry research tion and communication of research 1	ch with competency results through scie	in research design, data entific publications and								

presentations.

Γ

l I ●	Preparati	ion of di	ssertatio	on								
1												
Course Outcomes: At the end of the course, the student will be able												
CO1	CO1 Ability to perform experiments, collection and evaluation of data											
CO2	Interp behav	Interpretation of results while adhering to scientific principles of responsible and ethical behaviour										
CO3	Analysing and compiling the data and results in a chronological order in the form of dissertation.											
CO4	Prepa	ration of	f dissert	ation.								
	•	Ma	apping	of cours	se outco	mes wit	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	3	-	2	-	2	-	1	1	1
CO2	3	3	3	3	-	2	-	2	-	-	1	3
CO3	3	3	3	2	2	-	-	3	-	1	1	3
CO4	3	2	2	3	2	2	-	-	-	2	-	1

1

CHE IC 404: PRACTIAL II/ PROJECT WORK

CHE-I	C-405A	Ins	strumen	tal Met	hods of	Analys	is I	3,T-1,	P-2	4	Credits	
Pre-re	quisite:	Unders	standing	of Instr	umental	method	ls of ana	alysis				
Cours	e Objec	tives:										
• Gai	• Gain sound knowledge in spectroscopic methods of ICP-AES, ICP-MS, x-ray fluorescence,											
spee	spectroscopic techniques and their applications											
• Chr	omatogi	raphic	techniqu	ues lik	e High	-Perform	nance	Liquid	Chron	natograp	ohy, Ca	pillary
Eleo	ctrophor	esis, an	d Super	critical I	-luid Ch	romatog	graphy (	SFC).	6.00			
• Fan	illiarise	with ins	strument	tation, r	esolutio	on and 10	n1zatioi	n source	es of GC	MS and	I LCMS	
• Bas	o Outoo	iples of	t the one	inalytica		the stud	a their a	<u>ippiicaii</u>	ons.			
Cours	e Ouico	mes: A	t the end	t of the	course,			be able	10			
CO1	To unde	erstand t	he work	ing princ	ciples, in	strument	tation an	d applic	ations of	f ICP-Al	ES and I	CP-MS,
CO2	energy dispersive X-fluorescence (EDXRF), Wavelength dispersive X-ray fluorescence (WDXRF).											
02	Chroma	tography	v (HPLC	) Gel Pe	ermeation	n Chrom	atograph	v (GPC)	). Capill	ary Elect	trophores	sis (CE)
	Supercr	itical Flu	id Chroi	natograp	hy (SFC	:).	utogrupi		, cupin		liophoio	, (CL),
CO3	To get l	knowledg	ge on ins	trumenta	tion and	applicat	ions of <b>C</b>	GCMS in	n drug ar	nalysis ar	nd enviro	onmental
<u> </u>	samples	analysis	3.					1.1.1				
CO4	(II) and	rove the	knowled	lge abou	t coulom	etric tec	hniques $d C_{2}^{4+1}$	and then	r analysi	is of cati	ons (As	(III), Fe
	(II)) and	$\frac{1}{1} \frac{1}{1} \frac{1}$	$\frac{(1 \text{ and } S)}{(1 \text{ and } S)}$	of cours		mos wit	$\frac{10 \text{ Ce}^{-1}}{10 \text{ ch}}$	rogram		IOIIS.		
		IVI	apping			mes wit	n the p	rogram	outcon	lies	1	1
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	-	2	-	-	-	1		1
CO2	3	3	3	3	3	2	-	-	-	1	1	1
CO3	3	3	3	3	3	2	-	2	-	1	1	3
CO4	3	3	2	2	-	2	-	-	-	1	1	3

### CHE-IC 405A: CORE THEORY: INSTRUMENTAL METHODS OF ANALYSIS

#### **UNIT –I SPECTROSCOPIC METHODS**

#### 15 Hrs

#### **Emission Spectroscopy:**

(i) ICP-AES: Principles, instrumentation, AES detectors, applications in the analysis of trace and toxic metals in water, geological and industrial samples.

(ii) ICP-MS: Principles, instrumentation, quadrupole mass spectrometers, applications

### Fluorescence Spectroscopy:

**i) Molecular Fluorescence Spectroscopy:** Principle, Theory of fluorescence, phosphorescence, relation between intensity of fluorescence and concentration, Correlation of fluorescence with molecular structure, Fluorescence quenching, Instrumentation and applications.

**ii)** X-ray Fluorescence Spectroscopy: Principle, energy dispersive X-ray fluorescence (EDXRF), Wavelength dispersive X-ray fluorescence (WDXRF), applications.

### **UNIT – II: CHROMATOGRAPHIC METHODS**

**High Performance Liquid Chromatography (HPLC):** Principles, Stationary phases, Instrumentation, Solvent delivery system, sample introduction, gradient elution, columns and detectors.Partition Chromatography, adsorption chromatography, Gel permeation chromatography.

**Capillary Electrophoresis:** Principle, Electroosmotic flow, Instrumentation, Applications to separation of small ions, separation of Molecular Species, DNA sequencing

Supercritical-fluid chromatography: Supercritical-fluids, Instrumentation and Applications

#### 15 Hrs

#### **UNIT –III: HYPHENATED TECHNIQUES**

**Mass Spectroscopy:** Principle, basic instrumentation, resolution, Ionization sources- Electron impact and Chemical ionization, Mass Analyzers- Quadrupole Mass analyzer and Time- of- Flight Analyzer.

**Gas Chromatography- Mass spectrometry:** Introduction, GC – MS interface, processing of GC – MS data – ion chromatogram. Quantitative measurement – sample preparation, Selected ion monitoring – Application of GC-MS for Trace constituents. Drugs analysis, Environmental analysis and others.

**Liquid chromatography- Mass spectrometry** – Introduction – Instrumentation – liquid chromatography – Mass spectrometer Interface – Instrumental details – Processing LC-MS data – ion chromatograms, Sample preparation – selected ion monitoring. Application of LC-MS for Drug analysis, Environmental samples and others.

#### UNIT- IV: ELECTRO ANALYTICAL METHODS 15 Hrs

Anodic stripping voltammetry: principle, instrumentation, Hanging mercury drop electrode, application in the analysis of Pb and Cd in environmental samples, principle of cathode stripping voltammetry.

**Coulometric analysis**: principles of coulometric analysis with constant current, coulometric analysis with controlled potential, applications of coulometric methods for the analysis of cations-As (III), Fe (II) and I- and S₂- by using I₂ liberations and Ce⁴⁺ liberation in solutions

**Ion Selective Electrodes**: types of ion selective electrodes, basic properties, potentials and construction, calibration of ion selective electrodes, ion selective electrodes with fixed membrane sites, silver, lead, cadmium, sulfide, fluoride, cyanide and glass electrodes, applications in the analysis of air and water pollutants, principles of liquid membrane, gas sensing and enzyme based electrode

- 1) Analytical Chemistry, Gary D. Christian, John Laliley and Senes, New York, 6th Ed., 2007.
- 2) Analytical Chemistry Principles and Techniques, I.G. Harge, Prentice Hall.
- 3) Principles of Instrumental analysis, D.A. Skoog and J.L. Loacy, W.B. Saunders.
- 4) Handbook of Instrumental Techniques for Analytical Chemistry, F. Serlie, Prentice Hall.
- 5) Vogels Text book of Quantitative Chemical Analysis, Basett, Denny Jebbary, 5th Ed. ELBs 1990.
- 6) Instrumental Methods of Chemical Analysis, Willard Merrit, Dean, Stella Jr 6th Edition.
- 7) Separation methods, M.N Sastri, Himalaya Publishing Company, Mumbai.

CHE-I	C-405B		Bioinorganic, Bioorganic,L-5,T-1,P-04 CreditsBiophysical Chemistry									
Pre-r	equisite:	Unders	standing	of Bioi	norganic	c, Bioorg	anic, B	iophysi	cal Che	mistry		
Cours	Course Objectives:											
• Hig	ghlighten	metal c	complex	es as ox	ygen ca	rriers an	d electr	on trans	fer in b	iology.		
• M	etal ion t	ranspor	t and sto	rage in	biologic	al syster	ns and	importa	nce of ti	ace met	als in bi	ology.
• Lea	arn physi	ologica	l functio	ons of ca	rbohydı	rates, lip	ds, enz	ymes cl	assificat	tion, ster	reospeci	ficity.
• The	e basic c	oncepts	of biop	hysical of	chemist	ry in bio	chemic	al reacti	ons, exe	ergonic	and end	ergonic
rea	ctions.	1	1	2					ŗ	U		U
Cours	se Outco	mes: A	t the end	l of the	course	the stude	nt will	be able	to			
Cour.												
CO1	Gain kr	nowledg	ge on me	etallo pro	oteins in	electron	n transf	er proce	sses.			
CO2	Know t	he appl	ications	of trace	metal io	ons and i	netal ic	ons as ch	elating	agents i	n medic	ine.
CO3	Achiev	e and de	evelop h	ighly ste	ereosele	ctive syr	thesis	of organ	ic comp	ounds a	nd drug	s by
	adoptin	g enviro	onmenta	lly.								
<b>CO4</b>	Unders	tand the	ermodyn	amics o	f biopol	ymer rea	ctions	and to c	orrelate	free ene	ergy and	
	biopoly	mer par	rameters									
		Ma	apping	of cours	e outco	mes wit	h the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	3		2	-	2		1	1	1
CO2	3	3	3	3	_	2	-	2	_	-	1	3
CO3	3	3	3	2	2	_	-	3	_	1	1	3
<b>CO4</b>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
- I						1						

# CHE AC-405(B): (GENERIC ELECTIVE): BIOINORGANIC, BIOORGANIC, BIOPHYSICAL CHEMISTRY

#### UNIT-I: BIO-INORGANIC CHEMISTRY- I

#### 15 Hrs

Metal complexes as oxygen carriers –Heme proteins –Hemoglobin and myoglobin –Non heme proteins –hemerythrin and hemocyanin – model synthetic complexes of iron, cobalt and copper.Co-enzymes Vitamin B₁₂, carboxy peptidase and superoxidedismutase.

**Electron Transfer in Biology:** Structure and functions of metalloproteins in electron transfer processes –catalase –peroxidose –cytochromes and iron –sulphur proteins –synthetic models.

**UNIT – II: BIOINORGANIC CHEMISTRY- II:** Metal ion transport and storage in biological systems, Metal ions in Biology, Molecular mechanism of ion transport across membranes: ionophores, photosynthesis.

**Hydrolytic metalloenzymes:** Carbonic anyhdrase, carboxy peptidase, calcium in control processes, calcium and muscle contraction, calcium and secretion, calcium in blood clotting mechanisms. Therapeutic uses of enzymes.

**Importance of trace metals in biology:** Metal ions as chelating agents in medicine, trace metal ions and metal and non-metal deficiency. Biological nitrogen fixation, in-vivo and in-vitro nitrogen fixation.

**Carbohydrates:** Structure and biological functions of mucopolysaccharides, glycoproteins, and glycolipids- Role of sugars in biological recognition-Blood group substances

**Lipids:** Essential fatty acids-structure and function of triglycerols, Glycerophospholipids, cholesterol, bile acids prostaglandins- composition and functioning of lipoproteins

**Enzymes:** Nomenclature and classification, properties, factors affecting enzyme catalysis, enzyme inhibition- reversible and irreversible inhibition. Uses of enzymes in food drink industry and clinical laboratories.

# **UNIT-IV: BIOPHYSICAL CHEMISTRY:**

Standard free energy change in biochemical reactions, exergonic and endergonic reactions, hydrolysis of ATP, thermodynamics of biopolymer solutions, chain configuration of bio polymers, and calculation of average dimensions. Membrane equilibrium, ion transport through cell membrane. dialosis and its function. Structure and functions of proteins, enzymes, DNA and RNA in living systems, forces involved in bio polymer interactions, electrostatic forces, hydrophobic forces, molecular expansion, and dispersion forces.

- 1. M.N. Hughes, The Inorganic chemistry of Biological Processes, John wiley and Sons, New York 2nd Edition, 1981.
- 2. A Text book of Biochemistry, A.V.S.S. Rama Rao
- 3. Physical chemistry by Atkenes
- 4. Physical chemistry by Albertz.
- 5. Bio physical chemistry by Van Holde
- 6. Bio Physics by Narayanam
- 7. Organic Chemistry, Vol. 2, I. L. Finar, ELBS.
- 8. Chemistry of Natural Products, P.S. Kalsi, Kalyani Publishers.
- 9. Chemistry of Organic Natural Products, O. P. Agarwal, Vols., 1 & 2, Geol Pubs.
- 10. Natural products Chemistry K.B.G. Torssell, John Wiley, 1983.
- 11. Burger's Medicinal Chemistry, M.E. Wolff, John Wiley
- 12. Medicinal Chemistry, A. Kar, New Age International

CHE IO	C 406A		Dr	ug Che	mistry		L-	3,T-1,P	-2	40	Credits	
Pre-re	quisite:	Unders	tanding	of Drug	g Chemi	stry	1					
Course Objectives:												
• ′	• To learn about the natural products as leads for new drugs											
• ]	Determi	nation c	of cardio	vascula	r drugs							
• ′	To study	Autaco	oids									
• ]	Interpre	tation of	Antipy	retics								
Cours	<b>Course Outcomes:</b> At the end of the course, the student will be able to											
CO1	CO1 Know about natural products.											
CO2	Know 1	Interpret	ation of	cardiov	vascular	drugs.						
<b>CO3</b>	Know t	he Anal	yzing al	oout pro	stagland	lins.						
<b>CO4</b>	Know	the De	finition	, Classi	ification	, Nom	enclatur	e, Stru	cture a	nd Syn	thesis of	of anti-
	inflamr	natory d	rugs.									
		Ma	apping o	of cours	se outco	mes wit	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
<b>CO1</b>	3	3	3	3	3	-	-	2	-	-	2	3
<b>CO2</b>	3	3	3	3	-	2	-	2	-	2	-	3
<b>CO3</b>	3	3		3	-	3	-	2	-	3	-	3
<b>CO4</b>	3	-	3	-	3	2	-	-	-	2	-	3

### CHE : AC : 406 (A): (OPEN ELECTIVE) : DRUG CHEMISTRY

#### **UNIT - I: NATURAL PRODUCTS AS LEADS FOR NEW DRUGS**

Occurrence, Structure and therapeutic uses of Drugs acting on Central Nervous System

Morphine alkaloids (morphine, codeine, thebaine, heroin, pethidine)

Cannabinoids (9-cannabinol, Tetrahydrocannabinol)

Neuromuscular Blocking Agents (Curare, Decamethonium)

Vinca Alkaloids (Vincristin and Vinblastin), Taxol and Taxotere, podophyllotoxin, Etoposide, Teniposide.

### UNIT – II: CARDIOVASCULAR DRUGS

Definition, Classification, Nomenclature, Structure and Synthesis.

Cardiac glycosides (ex: Digoxin, Digitoxin);

Antihypertensive drugs (ex: Methyl dopa, Clonidene hydrochloride);

Antiarrhythmic agents (ex: Quinidine sulfate);

Antisympathetic drugs (ex: Propranolol hydrochloride, Verapamil hydrochloride);

Vasopressor drugs (ex: Prenylamine, Buphenine).

### **UNIT – III: AUTACOIDS**

Definition, Occurrence, Isolation, Nomenclature, Classification, Synthesis, Biosynthesis and Stereochemical structures of Prostaglandins. Structural elucidation of PGE₁, PGE₂; Synthesis and biosynthesis of PGE₂, PGF_{2 $\alpha$}.

Structure and Biosynthesis of Thromboxane A2 and Prostacyclin (synthesis not expected).

### **UNIT - IV: ANTI-INFLAMMATORY DRUGS**

Definition, Classification, Nomenclature, Structure and Synthesis of Paracetamol, Aspirin (Antipyretic), Salol, Cinchophen, Antipyrene, Phenylbutazone, Indomethacin, Tolmetin, Ibuprofen, Diclofenac and Naproxen.

- 13. Medicinal Chemistry by Ashitosh Kar
- 14. Medicinal Chemistry by D. Sriram, P. Yogeeswari
- 15. Medicinal Chemistry by David A. Williams, Thomas L. Lemke
- 16. Medicinal Chemistry by V. Alagarsamy
- 17. Biochemistry by U. Satyanarayana
- Natural Products Chemistry and Applications by Sujata V. Bhat, B.A. Nagasampagi, S. Meenakshi
- 19. Medicinal Chemistry by V.K. Ahluwalia, Madhu Chopra
- 20. Medicinal Chemistry by Balkishen Razdar
- 21. Advanced Practical Medicinal Chemistry by Ashutosh Kar
- 22. Chemistry of Organic Natural Products by O. P. Agarwal, Vols., 1 & 2, Geol Pubs.
- 23. Chemistry of Natural Products by S. V. Bhat, B.A. Nagasampagi, M. Sivakumar
- 24. Natural Products Chemistry by K.B.G. Torssell, John Wiley, 1983.

CHE IC 406 B	<b>Electroanalytical Techniques</b>	L-5,T-1,P-0	4 Credits
Pre-requisite: U	Inderstanding of Electroanalytical Tech	niques	

#### **Course Objectives:**

- To learn about the classification of electroanalytical methods
- Determination of types of currents
- Principle, instrumentation, reversible and irreversible cyclic voltammograms..
- Interpretation of Ion selective electrodes

**Course Outcomes:** At the end of the course, the student will able to

**CO1** Ability to interpret potentiometry and conductometry

- **CO2** Interpretation of results while adhering to DC Polarography.
- **CO3** Analysing and compiling the data and results in polarography.
- **CO4** Familiarize Types of ion sensitive electrodes.

Mapping of co	urse outcomes wit	th the program	outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	-	-	2	-	-	2	3
CO2	3	3	3	3	-	2	-	2	-	2	-	3
<b>CO3</b>	3	3	-	3	-	3	-	2	-	3	-	3
<b>CO4</b>	3	-	3	-	3	2	-	-	_	2	-	3

### CHE : IC : 406(B): (OPEN ELECTIVE) : ELECTRO ANALYTICAL TECHNIQUES

Unit I: Types and Classification of Electro analytical Methods.

i) **Potentiometry-** Types of electrodes, Hydrogen gas, Calomel, Quin hydrone and glasselectrodes. Determination of pH. Potentiometric titrations.

**ii**) **Conductometry** – Definition of terms – conductivity, specific conductivity, cell constant. Mobility of ions, Conductometric titrations.

**Unit II:** D.C Polarography :. Dropping mercury electrode- Instrumentation-polarogram. Types of Currents : Residual, Migration, Limiting. Two and Three electrode assemblies. Ilkovic equation(derivation not necessary) and its consequences. Types of limiting Currents: Adsorption,Diffusion, Kinetic. Applications of polarography in qualitative and quantitative analysis. Analysis of mixtures. Application to inorganic and organic compounds. Determination of stability constants of complexes.

**Unit III:** (i) A.C. polarography (ii) Square-wave polarography (iii) Pulse polarography (iv) Differential pulse polarography(V) Cyclic Voltammetry: Principle, instrumentation, reversible and irreversible cyclic voltammograms.

**Unit IV: Ion selective electrodes:** Ion-sensitive electrodes –types of ion sensitive electrodes –metal based cation and anion sensitive electrodes, solid membrane electrodes. Liquid ion-exchange electrodes, gas sensing membrane electrodes.

- 1. H.W. Willard, LL. Merrit and J.A. Dean: Instrumental Methods of Analysis. Affiliated East-West).
- 2. G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denny. Vogel's Text Book of Quantitative Chemical Analysis (ELBS).
- 3. D.A. Skoog and D.M. West: Principles of Instrumental Analysis (Holt, Rinehart and Wilson).
- 4. J.G. Dick : Analytical Chemistry (Mc Graw Hill).

СНЕ-ОС- 401	Organic synthesis I	L-5,T-1,P-0	4Credits
Pre-requisite: U	Inderstanding of Organic synthesis		

Cours • Acquorgan • Study rearra • Undetrans • Study and I	<ul> <li>Acquire knowledge in the applications of Boron, Phosphorus, Sulfur and Silicon reagents in organic synthesis and their special behavior.</li> <li>Study photochemical reactions of olefins, carbonyl compounds, aromatic compounds, rearrangements and stereochemistry of the products.</li> <li>Understand the concept of pericyclic reactions, determination of allowed and forbidden transitions and prediction of stereochemistry of the products.</li> <li>Study different polymer reactions, Stereospecific polymers, Thermoplastics, Fibers, Elastomers and Ion exchange resins.</li> </ul>											
Cours	e Outco	omes :A	t the end	d of the	course,	the stud	ent will	be able	to			
CO1	CO1 Familiarize with the unique reactivity of Boron, Phosphorus, Sulfur and Silicon reagents											
CO2	<b>CO2</b> Learn about photolytic reactions of carbonyl compounds, conjugated carbonyl derivatives, olefins, conjugated dienes CO ₃ :To gain knowledge in the determination of allowed or forbidden of chemical reactions <i>viz</i> , cycloaddition and											
CO3	Learn tand con	the meth ndensati	nods of j on	preparat	ion, pro	perties,	and ind	ustrial a	pplicati	ons of v	arious a	addition
CO4	Familia	arize wit	th the ur	ique rea	activity	of Boro	n, Phosp	phorus, S	Sulfur a	nd Silico	on reage	ents
	Mapping of course outcomes with the program outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
<b>CO1</b>	3	3	3	3	-	3	-	2	-	2	-	1
CO2	3	3	3	3	3	2	-	1	-	2	-	3
CO3	3	3	3	3	3	2	-	1	-	-	1	3
<b>CO4</b>	3	3	3	2	-	2	-	-	2	2	1	2

### CHE OC-401: CORE THEORY: ORGANIC SYNTHESIS-I

#### UNIT-I: Chemistry of Organo Boran, Phophorus, Sulfur and Silicon reagents 15Hrs

Electronic structure and bonding in Boron, Phosphorus, Sulphur and Silicon compounds-Their reactivity and applications in Organic Synthesis.

Boron Reagents-Hydroboration-Organoboranes in the formation of C-C bonds, alcohols, amines, halogen and carbonyl compounds-Free radical reactions of organoboranes.

Phosphorus Reagents- Formation of carbon-carbon double bonds-Functional group transformations deoxygenation reactions-reactivity as electrophiles- conversitoon of alcohols to alkyl halides, Witting reaction and nucleophiles - Corey-Winters reaction, Michaelis-Arbusov reaction-Perkow reaction and Mitsnobu reaction.

Sulphur Reagents- Sulphur ylides, stabilized and non-stabilized – Preparation and reactivity Pummerer reaction - sulphonyl carbanions-Julia reaction

Silicon reagents-Peterson's olefination, influence of trialkyl silyl reagents in electrophilic reactions, aryl silanes, alkenyl silanes, alkynyl silanes, allyl silanes.

#### **UNIT-II: PHOTOCHEMISTRY**

15Hr

Photochemical energy, photochemical excitations, Franck-Condon principle, electronic transitions, Jablonski diagram, singlet and triplet states, energy transfer in photochemical reactions photosensitization reactions and quantum yield.

Photochemistry of carbonyl compounds - Norrish Type-I and Norrish Type-II reactions, Photo Reduction and Paterno-Buchi reaction. Photochemistry of  $\alpha$ ,  $\beta$ -unsaturated ketones, enones, dienones and p-benzoquinones.

Photochemistry of unsaturated systems (olefins), cis-trans isomerization and dimerization reactions,

### UNIT III: PERICYCLIC REACTIONS

Molecular orbital symmetry, Frontier orbitals of ethylene, 1,3 butadiene, 1,3,5-hexatriene and allyl and pentadienyl system. Classification of pericyclic reactions. Woodward-Hoffmann correlation diagrams. FMO and PMO (Mobius Huckel) approach. Electrocyclic reactions-Conrotatory and disrotatory. 4n, 4n+2 and allyl systems. Cycloadditions-antarafacial and suprafacial additions, 4n and 4n+2 systems, 2+2 addition of ketene, 1,3 dipolar cycloadditions and cheleotropic reactions.

Sigmatropic rearrangements - Suprafacial and antarafacial shifts of H, Sigmatropic shifts involving carbon moieties, 3,3 and 5,5 Sigmatropic rearrangements. Claisen, Cope and Oxy-Cope rearrangements. Ene reaction

### **UNIT IV: SYNTHETHETIC POLYMERS**

Polymer Reactions-Addition and condensation polymerization processes- Bulk, Solution, Suspension and Emulsion polymerization.

Stereospecific Polymers-Preparation and significance- classification of polymers based on physical properties-Thermoplastics-Thermosetting plastics-Fibers and elastomers- General applications.

Preparation of Polymers-Preparation of Polymers based on different types of monomers Industrial applications-olefin polymers-Diene polymers-nylons-Glyptal resins-Urea-formaldehyde, phenol-formaldehyde and melamine resins- Epoxy resins - Ion exchange resins.

#### **Book References:**

- 1. Modern Synthetic Reactions, H.O. House, W.A Benjamin.
- 2. Some Modern Methods of Organic Synthesis, W. Carruthers, Cambridge University Press.
- 3. Advanced Organic Chemistry, F.A. Carey and R.J Sundberg, Plenum.
- 4. Principles of Organic Synthesis, R.O.C. Norman and J.M Coxon, Blackie
- 5. Advanced Organic Chemistry Part A & B, F.A Carey and R. J Sunderg, Plenum Press.
- 6. Structure and Mechanism in Organic Chemistry C.K. Inglod, Cornell University Press.
- 7. Reaction Mechanism in Organic Chemistry, P.S. Kalsi, New Age International.
- 8. Modern Synthetic Reactions, H.O. House, W.A. Benjamin.
- 9. Chemistry of Organic Natural Products, O.P. Agrawal, Vols., 1 & 2, Goel Pubs.
- 10. Natural Products Chemistry K.B.G. Torssell, John Wiley, 1983.
- 11. Principles of biochemistry, A.L. Lehninger worth publishers
- 12. A Text book of Biochemistry, A.V.S.S. Rama Rao

<b>CHE-OC 402</b>	Organic Synthesis II	L-5,T-1,P-0	4Credits		
<b>Pre-requisite:</b>	Understanding of Organic Synthesis				

#### 15 Hrs

# 15 Hrs

### **UNIT-IV: BIOMOLECULES**

#### **Course Objectives:**

- Use disconnection approach and retrosynthetic analysis and control of stereochemistry to design efficient multi-step syntheses involving different types of disconnection approaches
- Applications to synthesis complex naturally occurring compounds
- Familiarize with synthesis and pharmacological properties of antimalarials and antibiotics
- Understand structure and synthesis of proteins and nucleic acids

Course Outcomes: At the end of the course, the student will be able to

CO1	Famil	iarize w	vith fun	ctionali	zation ar	nd inter	convers	ion of t	functiona	l groups	and the	e concept
	of organic synthesis by retrosynthetic approach.											
CO2	Gain knowledge in the formulation of synthetic routes for naturally occurring drugs.											
CO3	Understand quinoline, acridine and guanidine group of alkaloids as antimalarials and to											
	familiarize with the role of functioning of broad spectrum antibiotics.											
<b>CO4</b>	Acquire knowledge about the classification, properties, structure & conformation and biological functions of pentides/proteins											
		N	Iappin	g of cou	irse outo	comes v	vith the	e progra	am outco	omes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	-	1	-	-	1	-	3
CO2	3	3	3	3	2	1	-	-	-	1	-	2
<b>CO3</b>	3	3	3	3	2	_	-	2	_	1	1	3
<b>CO4</b>	3	3	r	3	2	2	_	2	_	_	2	3

# CHE OC-402: CORE THEORY: ORGANIC SYNTHESIS-II

# **UNIT-I: DESIGNING OF ORGANIC SYNTHESIS**

**Disconnection Approach**-Classification of organic reactions. Functionalisation and interconversion of functional groups, formation of carbon-carbon single and double bonds, general strategy, disconnection and synthon approach, retrosynthetic analysis, key intermediates and starting materials in designing a synthesis, linear and convergent synthesis, reconnections. The importance of the order of events in organic synthesis, one group C-X and two group C-X disconnections, chemoselectivity, reversal of polarity, cyclisation reactions, amine synthesis.

Protecting Groups-Principles of protection of alcohol, amine, carbonyl and carboxyl groups.

**One Group C-C Disconnections**-Alcohols and carbonyl compounds, regioselectivity. Alkene synthesis, use of acetylenic compounds in organic synthesis.

**Two Group C-C Disconnections**-Diels-Alder reaction, 1,3-difunctionalised compounds, unsaturated carbonyl compounds, control in carbonyl condensations, 1,5-difunctionalised compounds, Michael addition and Robinson annulation.

# UNIT II: MULTI STEP SYNTHESIS

Multi step synthesis of some complex naturally occurring compounds involving through retrosynthetic analysis and control of stereochemistry, Longifolene, Taxol, Juvabione, Fediricamycine A.

# UNIT III: ANTIMALARIALS AND ANTIBOTICS

Antimalarials: Synthesis and activity of Quinoline group – Quinine, Plasmoquine and Chloroquine – Acridine group – Quinacrine – Guanidine group – Paludrine.

Antibiotics: Synthesis and activity of Penicillin, Chloramphenicol and Streptomycin – Broad spectrum antibiotics – Tetracyclines, Novobiocin.

Chemotherapy: Structure – activity relationships.

### 15 hrs

15 Hrs

15 hrs

Peptides and Proteins-Methods of peptide synthesis, sequence determination, structure of oxytocin, proteins-classification, structure, conformation and properties. Nucleic acids- Nucleosides, Nucleotides, DNA and RNA, structure and conformations, replication, translation of genetic material, genetic code, gene expression, gene mutation, protein synthesis.

#### **Book References:**

- 1) Modern Synthetic Reactions, H.O. House, W.A Benjamin.
- 2) Some Modern Methods of Organic Synthesis, W. Carruthers, Cambridge University Press.
- 3) Advanced Organic Chemistry, F.A. Carey and R.J Sundberg, Plenum.
- 4) Principles of Organic Synthesis, R.O.C. Norman and J.M Coxon, Blackie
- 5) Advanced Organic Chemistry Part A & B, F.A Carey and R. J Sunderg, Plenum Press.
- 6) Structure and Mechanism in Organic Chemistry C.K. Inglod, Cornell University Press.
- 7) Reaction Mechanism in Organic Chemistry, P.S. Kalsi, New Age International.
- 8) Modern Synthetic Reactions, H.O. House, W.A. Benjamin.
- 9) Chemistry of Organic Natural Products, O.P. Agrawal, Vols., 1 & 2, Goel Pubs.
- 10) Natural Products Chemistry K.B.G. Torssell, John Wiley, 1983.
- 11) Principles of biochemistry, A.L. Lehninger worth publishers
- 12) A Text book of Biochemistry, A.V.S.S. Rama Rao

CHE (	DC 403	Spe	Co ectral Id	ore prae lentifica Compo	ctical I: ation of	Organi	c L-	5,T-1,P	-0	4	Credits	5
Pre-re	Pre-requisite: Understanding of Spectral identification of organic compounds											
<ul> <li>Course Objectives:</li> <li>Spectral identification of organic compounds by UV by calculating λ max values</li> <li>Identification of absorption bands by IR and ascertain to the functional groups</li> <li>Unambiguous assignment of structures by interpreting NMR values</li> <li>Predict the characteristic cleavage processes by Mass.</li> </ul>												
Cours		mes: A	t the end	1 of the	course,	the stude	ent will	be able	to			
	Calcula	$\frac{1}{1}$ te $\lambda$ ma	x values									
CO2	Ascerta	un func	tional gr	oups.								
CO3	Interpr	et the sp	ectral da	ata to th	e structi	ure and s	tereoch	emistry	of the r	nolecule	es.	
<b>CO4</b>	Analys	se the fr	agmenta	tion pat	ern of the	he moleo	cules.					
		M	apping	of cours	se outco	omes wit	h the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	-	-	2	-	-	2	3
CO2	3	3	3	3	-	2	-	2	-	2	_	3
CO3	3	3	-	3	-	3	-	2	-	3	_	3
CO4	3	-	3	_	3	2	-	-	-	2	_	3

# CHE OC 403: PRACTICAL-I

Spectral identification of organic compounds by UV, IR, NMR (¹H & ¹³C) & Mass spectroscopy.

# **DEMONSTRATION EXPERIMENTS**

- 1 IR Interpretation of IR spectrum of alcohols, ketones, aldehydes and other standard materials
- 2 AAS: Demonstration of AAS Determination of Zn, Cd, Pb, Mn, Fe and Ni in effluents using AAS.
- 3 Spectrofluorimetry estimation of quinine and fluoroscene
- 4 Ion selective electrodes estimation of  $F^-$ ,  $S^{2-}$  and  $CN^-$  in effluents using ion selective electrode meter.
- 5 Polarography and Anode stripping voltametry
- (a) Polarography and Anode stripping voltametry behavior of Cd, Zn, Pb in a mixture.
- (b) Determination of Pb and Cd in samples using Anode stripping voltametr
- 6 Gas chromatography- Determination of pesticides
- 7 HPLC- Determination of pesticides
- 8 NMR

a). Demonstration of NMR spectrometer and study of hydrogen bonding in a given alcohol or phenol.b). Interpretation of NMR chemical shifts of ethyl benzene, ethyl alcohol

- 9 TGA, DTA, DSC Demonstration of TG, DTA and DSC and study of decomposition of calcium oxalate, calcium carbonate, copper sulfate, oxalic acid.
- 10 pH metry
- a) Determination of alkalinity in a colored effluent using pH metric end point.
- b) Determination of purity of commercial HCl, H₂SO₄, H₃PO₄ and CH₃COOH using pH metric end point

CHE O	C 404		Practica	al II: Pr	oject W	ork	L-	5,T-1,P	-0	4	Credits		
Pre-re	Pre-requisite: Organic Chemistry Project Work												
Course	e Objec	tives:											
Identification of problem by literature survey													
• 1	• Ability to carry out independently with competency in research design and synthesis												
• ]	Interpre	tation of	f spectra	l data to	the stru	actures of	of the m	olecules	5				
• Communication of research results through presentations and preparation of dissertation											on		
Course	e Outco	mes: A	t the end	d of the	course,	the stud	ent will	be able	to				
CO1	Identi	fy the p	roblem,	to colle	ct the lif	terature	and und	erstandi	ng para	meters t	o design	n the	
000	proble	em.	• •	1	• 4	1	1 '	1 1 '	1 4	1 .	1		
CO2	Perfo	rm expe	riments	to synth	lesize th	e molec	ules wit	n desire	d stereo	chemist	ry adop	ting	
CO3	Colle	ct and in	iterpreta	tion of t	the data	to the st	ructures	5.					
<u>CO4</u>	Drogo	ntation	1	to in the	formo	fdiscort	otion						
0.04	Flese		n the ua			1 uissen	ation.						
		Ma	apping	of cours	se outco	mes wit	h the p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	2	3	-	2	2	2	-	2	2	3	
CO2	3	3	3	3	3	2	2	2	-	2	2	3	
CO2	2	2	2	2	2	2	2	2		2		2	
03	3	3	3	3	3	3	3	2	-	2	-	3	
CO4	3	3	3	3	3	2	3	2	-	-	2	3	

CHE OC 404: PRACTIAL II/ PROJECT WORK

<ul> <li>Course Objectives:</li> <li>Familiarize with Hantzsch- Widmann nomenclature of Fused heterocycles. Synthesis and reactivity of five membered heterocycles with two hetero atoms</li> <li>Understand synthesis and reactivity of benzofused five membered and six membered heterocycles</li> <li>Gain knowledge on structural elucidation, synthesis and biosynthesis of steroids and hormones</li> <li>Familiarize with on structural elucidation, synthesis and biosynthesis of flavonoids and isoflavonoids</li> </ul>										
<b>Course Outcomes:</b> At the end of the course, the student will be able to										
<b>CO1</b> Familiarize with the synthetic routes of five membered heterocycles with two heteroatoms and to justify the site of										
Acquire knowledge on the synthetic methodologies of benzofused and six membered heterocycles and the effect of										
<b>CO3</b> Familiarize with the structural elucidation and synthesis of naturally occurring steroids and hormones										
<b>CO4</b> Know about isolation, structural determination and synthesis of flavonoids and isoflavonoids.										
Mapping of course outcomes with the program outcomes										
PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12										
CO1     3     3     3     2     2     -     2     -     3										
CO2     3     3     3     2     2     -     2     1     3										
CO3     3     3     3     2     -     -     2     -     1     3										
CO4     3     3     3     2     -     -     2     -     1     3										

#### CHE : OC-405(A) : (GENERIC ELECTIVE): HETEROCYCLES AND NATURAL PRODUCTS

#### UNIT-I: NOMENCLATURE AND FIVE MEMBERED HETEROCYCLES 15 HRS

Systematic nomenclature (Hantzsch-Widman nomenclature) for fused and bridged heterocycles, Five membered heterocycles with two heteroatoms: Synthesis and reactions of pyrazole, imidazole, isoxazole, oxazole, isothiazole and thiazole

# UNIT-II: BENZOFUSED FIVE MEMBERED AND SIX MEMBERED HETEROCYCLES 15 HRS

Benzofused five membered heterocycles: Synthesis and reactions of Benzopyrazoles, Benzimidazoles and Benzoxazoles

Six Membered heterocycles with two or more heteroatoms: Synthesis and reactions of diazines (pyridazine, pyrimidine & pyrazine) and triazines (1,2,3-, 1,2,4- 1,3,5- triazines)

#### **UNIT-III: STEROIDS AND HORMONES**

Occurrence, nomenclature, basic skeleton, Diel's hydrocarbon and stereochemistry. Isolation, structure determination and synthesis of Cholesterol (total synthesis not expected), Bile acids, Androsterone, Testosterone, Estrone, Progesterone. Biosynthesis of steroids.

#### **UNIT-IV: FLAVONOIDS AND ISOFLAVONOIDS**

Occurrence, nomenclature and general methods of structure determination. Isolation and synthesis of Apigenin, Luteolin, Kaempferol, Quercetin, Butein, Daidzein, Biosynthesis of flavonoids and

#### 15 HRS

15 Hrs

isoflavonoids: Acetate Pathway and Shikimic acid Pathway. Biological importance of flavonoids and isoflavonoids.

#### **Reference Books:**

- 1. Heterocyclic chemistry Vol. 1-3, R.R. Gupta, M.Kumar and V. Gupta, Springer Verlag.
- 2. The Chemistry of Heterocycles, T. Eicher and S. Hauptmann, Thieme.
- 3. Heterocyclic Chemistry, J.A. Joule, K. Mills and G.F. Smith, Chapman and Hall.
- 4. Heterocyclic Chemistry, T.L. Gilchrist, Longman Scientific Technical.
- 5. Contemporary Heterocyclic Chemistry, G.R. Newkome and W.W. Paudler, Wiley-Inter Science.
- 6. An Introduction to the Heterocyclic Compounds, R.M. Acheson, Jonn Wiley.
- 7. Comprehensive Heterocyclic Chemistry, A.R. Katritzky and C.W. Rees, eds. Pergamon Press.
- 8. Organic Chemistry, Vol. 2, I. L. Finar, ELBS.
- 9. Introduction to Flavonoids TA Geissman.

(Compulsory Foundation)												
CHE-(	OC-405E	3	Bi	oinorga	nic, Bio	organi	c, L-	5,T-1,P	-0	4	Credits	
			Bi	ophysic	al Cher	nistry						
Pre-requisite: Understanding of Bioinorganic, Bioorganic, Biophysical Chemistry												
Cours	Course Objectives:											
• Hig	<ul> <li>Highlighten metal complexes as oxygen carriers and electron transfer in biology.</li> </ul>											
• Metal ion transport and storage in biological systems and importance of trace metals in biology.												
• Lea	• Learn physiological functions of carbohydrates, lipids, enzymes classification, stereospecificity.											ficity.
• The	• The basic concepts of biophysical chemistry in biochemical reactions, exergonic and endergonic											ergonic
rea	ctions.											
Cours	se Outco	mes: A	t the end	d of the	course,	the stud	ent will	be able	to			
001	<u>a : 1</u>			. 11								
COI	Gain ki	nowledg	ge on me	etallo pro	oteins ir	n electro	n transf	er proce	sses.			
CO2	Know t	he appl	ications	of trace	metal i	ons and	metal ic	ons as cl	nelating	agents i	n medic	ine.
CO3	Achiev	e and de	evelop h	ighly st	ereosele	ctive sy	nthesis	of organ	ic comp	oounds a	and drug	s by
	adoptin	g envir	onmenta	ılly.								
CO4	Unders	tand the	ermodyn	amics o	f biopol	ymer re	actions	and to c	orrelate	free ene	ergy and	
	biopoly	mer par	rameters									
		Ma	apping	of cours	e outco	mes wit	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
<b>CO1</b>	3	3	3	2	3	3	3	2	-	2	-	3
CO2	3	3	3	3	3	2	3	-	-	-	3	3
CO3	3	3	3	3	3	3	-	2	-	2	-	3
<b>CO4</b>	3	3	3	3	3	3	2	2	-	3	3	3
L I			•	1		1				1	1	

# CHE AC-405(B): (GENERIC ELECTIVE): BIOINORGANIC, BIOORGANIC, BIOPHYSICAL CHEMISTRY

#### UNIT-I: BIO-INORGANIC CHEMISTRY- I

15 Hrs

Metal complexes as oxygen carriers –Heme proteins –Hemoglobin and myoglobin –Non heme proteins –hemerythrin and hemocyanin – model synthetic complexes of iron, cobalt and copper.Co-enzymes Vitamin B₁₂, carboxy peptidase and superoxidedismutase.

**Electron Transfer in Biology:** Structure and functions of metalloproteins in electron transfer processes –catalase –peroxidose –cytochromes and iron –sulphur proteins –synthetic models.

**UNIT – II: BIOINORGANIC CHEMISTRY- II:** Metal ion transport and storage in biological systems, Metal ions in Biology, Molecular mechanism of ion transport across membranes: ionophores, photosynthesis.

**Hydrolytic metalloenzymes:** Carbonic anyhdrase, carboxy peptidase, calcium in control processes, calcium and muscle contraction, calcium and secretion, calcium in blood clotting mechanisms. Therapeutic uses of enzymes.

**Importance of trace metals in biology:** Metal ions as chelating agents in medicine, trace metal ions and metal and non-metal deficiency. Biological nitrogen fixation, in-vivo and in-vitro nitrogen fixation.

**Carbohydrates:** Structure and biological functions of mucopolysaccharides, glycoproteins, and glycolipids- Role of sugars in biological recognition-Blood group substances

**Lipids:** Essential fatty acids-structure and function of triglycerols, Glycerophospholipids, cholesterol, bile acids prostaglandins- composition and functioning of lipoproteins

**Enzymes:** Nomenclature and classification, properties, factors affecting enzyme catalysis, enzyme inhibition- reversible and irreversible inhibition. Uses of enzymes in food drink industry and clinical laboratories.

# **UNIT-IV: BIOPHYSICAL CHEMISTRY:**

Standard free energy change in biochemical reactions, exergonic and endergonic reactions, hydrolysis of ATP, thermodynamics of biopolymer solutions, chain configuration of bio polymers, and calculation of average dimensions. Membrane equilibrium, ion transport through cell membrane. dialosis and its function. Structure and functions of proteins, enzymes, DNA and RNA in living systems, forces involved in bio polymer interactions, electrostatic forces, hydrophobic forces, molecular expansion, and dispersion forces.

- 1. M.N. Hughes, The Inorganic chemistry of Biological Processes, John wiley and Sons, New York 2nd Edition, 1981.
- 2. A Text book of Biochemistry, A.V.S.S. Rama Rao
- 3. Physical chemistry by Atkenes
- 4. Physical chemistry by Albertz.
- 5. Bio physical chemistry by Van Holde
- 6. Bio Physics by Narayanam
- 7. Organic Chemistry, Vol. 2, I. L. Finar, ELBS.
- 8. Chemistry of Natural Products, P.S. Kalsi, Kalyani Publishers.
- 9. Chemistry of Organic Natural Products, O. P. Agarwal, Vols., 1 & 2, Geol Pubs.
- 10. Natural products Chemistry K.B.G. Torssell, John Wiley, 1983.
- 11. Burger's Medicinal Chemistry, M.E. Wolff, John Wiley
- 12. Medicinal Chemistry, A. Kar, New Age International

CHE O	C 406A		Dr	ug Che	mistry		L-	3,T-1,P	-2	4	Credits	
Pre-re	Pre-requisite: Understanding of Drug Chemistry											
Course Objectives:												
• To learn about the natural products as leads for new drugs												
• ]	Determination of cardiovascular drugs											
• ′	To study Autacoids											
• ]	• Interpretation of Antipyretics											
Cours	e Outco	mes: A	t the end	l of the	course,	the stud	ent will	be able	to			
C01	Know a	about na	tural pro	oducts.								
CO2	Know 1	Interpret	tation of	cardiov	vascular	drugs.						
CO3	Know t	he Anal	lyzing al	oout pro	stagland	dins.						
<b>CO4</b>	Know	the De	finition	, Classi	ification	, Nom	enclatur	e, Struc	cture a	nd Syn	thesis of	of anti-
	inflamr	natory c	lrugs.									
		Ma	apping	of cours	se outco	mes wit	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
<b>CO1</b>	3	3	3	3	3	-	-	2	_	-	2	3
CO2	3	3	3	3	_	2	-	2	-	2	-	3
CO3	3	3		3	-	3	-	2	-	3	-	3
<b>CO4</b>	3	-	3	-	3	2	-	-	-	2	-	3

#### CHE : OC : 406 (A): (OPEN ELECTIVE) : DRUG CHEMISTRY

#### **UNIT - I: NATURAL PRODUCTS AS LEADS FOR NEW DRUGS**

Occurrence, Structure and therapeutic uses of Drugs acting on Central Nervous System

Morphine alkaloids (morphine, codeine, thebaine, heroin, pethidine)

Cannabinoids (9-cannabinol, Tetrahydrocannabinol)

Neuromuscular Blocking Agents (Curare, Decamethonium)

Vinca Alkaloids (Vincristin and Vinblastin), Taxol and Taxotere, podophyllotoxin, Etoposide, Teniposide.

### UNIT – II: CARDIOVASCULAR DRUGS

Definition, Classification, Nomenclature, Structure and Synthesis.

Cardiac glycosides (ex: Digoxin, Digitoxin);

Antihypertensive drugs (ex: Methyl dopa, Clonidene hydrochloride);

Antiarrhythmic agents (ex: Quinidine sulfate);

Antisympathetic drugs (ex: Propranolol hydrochloride, Verapamil hydrochloride);

Vasopressor drugs (ex: Prenylamine, Buphenine).

### **UNIT – III: AUTACOIDS**

Definition, Occurrence, Isolation, Nomenclature, Classification, Synthesis, Biosynthesis and Stereochemical structures of Prostaglandins. Structural elucidation of  $PGE_1$ ,  $PGE_2$ ; Synthesis and biosynthesis of  $PGE_2$ ,  $PGF_{2\alpha}$ .

Structure and Biosynthesis of Thromboxane A2 and Prostacyclin (synthesis not expected).

### **UNIT - IV: ANTI-INFLAMMATORY DRUGS**

Definition, Classification, Nomenclature, Structure and Synthesis of Paracetamol, Aspirin (Antipyretic), Salol, Cinchophen, Antipyrene, Phenylbutazone, Indomethacin, Tolmetin, Ibuprofen, Diclofenac and Naproxen.

- 25. Medicinal Chemistry by Ashitosh Kar
- 26. Medicinal Chemistry by D. Sriram, P. Yogeeswari
- 27. Medicinal Chemistry by David A. Williams, Thomas L. Lemke
- 28. Medicinal Chemistry by V. Alagarsamy
- 29. Biochemistry by U. Satyanarayana
- Natural Products Chemistry and Applications by Sujata V. Bhat, B.A. Nagasampagi, S. Meenakshi
- 31. Medicinal Chemistry by V.K. Ahluwalia, Madhu Chopra
- 32. Medicinal Chemistry by Balkishen Razdar
- 33. Advanced Practical Medicinal Chemistry by Ashutosh Kar
- 34. Chemistry of Organic Natural Products by O. P. Agarwal, Vols., 1 & 2, Geol Pubs.
- 35. Chemistry of Natural Products by S. V. Bhat, B.A. Nagasampagi, M. Sivakumar
- 36. Natural Products Chemistry by K.B.G. Torssell, John Wiley, 1983.
- To learn about the classification of electroanalytical methods
- Determination of types of currents
- Principle, instrumentation, reversible and irreversible cyclic voltammograms..
- Interpretation of Ion selective electrodes

**Course Outcomes:** At the end of the course, the student will able to

**CO1** Ability to interpret potentiometry and conductometry

**CO2** Interpretation of results while adhering to DC Polarography.

**CO3** Analysing and compiling the data and results in polarography.

**CO4** Familiarize Types of ion sensitive electrodes.

Mapping of course	outcomes with	the program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	-	-	2	-	-	2	3
CO2	3	3	3	3	-	2	-	2	-	2	-	3
<b>CO3</b>	3	3	-	3	-	3	-	2	-	3	-	3
<b>CO4</b>	3	-	3	-	3	2	-	-	-	2	-	3

## CHE : OC : 406(B): (OPEN ELECTIVE) : ELECTRO ANALYTICAL TECHNIQUES

Unit I: Types and Classification of Electro analytical Methods.

**i**) **Potentiometry-** Types of electrodes, Hydrogen gas, Calomel, Quin hydrone and glasselectrodes. Determination of pH. Potentiometric titrations.

**ii**) **Conductometry** – Definition of terms – conductivity, specific conductivity, cell constant. Mobility of ions, Conductometric titrations.

**Unit II:** D.C Polarography: Dropping mercury electrode- Instrumentation-polarogram. Types of Currents : Residual, Migration, Limiting. Two and Three electrode assemblies. Ilkovic equation (derivation not necessary) and its consequences. Types of limiting Currents: Adsorption, Diffusion, Kinetic. Applications of polarography in qualitative and quantitative analysis. Analysis of mixtures. Application to inorganic and organic compounds. Determination of stability constants of complexes.

**Unit III:** (i) A.C. polarography (ii) Square-wave polarography (iii) Pulse polarography (iv) Differential pulse polarography(V) Cyclic Voltammetry: Principle, instrumentation, reversible and irreversible cyclic voltammograms.

**Unit IV: Ion selective electrodes:** Ion-sensitive electrodes –types of ion sensitive electrodes –metal based cation and anion sensitive electrodes, solid membrane electrodes. Liquid ion-exchange electrodes, gas sensing membrane electrodes.

- 1. H.W. Willard, LL. Merrit and J.A. Dean: Instrumental Methods of Analysis. Affiliated East-West).
- 2. G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denny. Vogel's Text Book of Quantitative Chemical Analysis (ELBS).
- 3. D.A. Skoog and D.M. West: Principles of Instrumental Analysis (Holt, Rinehart and Wilson).
- 4. J.G. Dick : Analytical Chemistry (Mc Graw Hill).

CHE-PC- 401	Electrochemistry	L-5,T-1,P-0	4Credits

Pre-re	Pre-requisite: Understanding of Electrochemistry											
Cours	Course Objectives:											
• Study	<ul> <li>Study industrial electrochemistry, corrosion and methods of prevention</li> </ul>											
• Learn	Learn about electrochemical batteries and cells and their performance											
• Study	• Study on electro kinetics and electro capillary phenomena and electrokinetic effect											
• Fami	Familiarize polarography techniques and chemical passivity											
Cours	<b>Course Outcomes :</b> At the end of the course, the student will be able to											
CO1	1 Know the techniques of deposition of metals, throwing power simultaneous discharge of cations and											
	methods of corrosion protection											
CO2	Learn a	bout elec	etrochem	ical Batt	eries, fue	el cells a	nd nicke	l-cadmiu	m batter	ies.		
CO3	Underst	and elec	trical do	uble laye	r system	s, sedim	entation	potential	, null po	ints of m	etals and	l zeta
	potentia	ll.										
<b>CO4</b>	Calcula	te electro	ochemica	ıl parame	eters; fan	niliarize	mixed lig	gand syst	tems and	l reversit	ole syster	ns.
		Ma	apping	of cours	se outco	mes wit	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
<b>CO1</b>	3	3	3	3	3	2	-	2	-	-	1	2
CO2	3	3	3	3	2	-	-	2	-	2	-	3
<b>CO3</b>	3	3	3	3	3	-	-	2	-	-	-	2
<b>CO4</b>	3	3	3	3	-	2	-	-	-	-	-	3

#### CHE PC-401: CORE THEORY: ELECTROCHEMISTRY

#### **UNIT-I: Industrial Electrochemistry**

Deposition of metals, Factors influencing physical nature of electrodeposited metals - current density, concentration of electrolyte, temperature, colloidal matter, electrolyte and basis metal. Throwing power, simultaneous discharge of cations. Separation of metals by electrolysis. Electrochemical passivity. Passivity and current density. Chemical passivity. Theories of passivity. Mechanical passivity. The corrosion of metals. Hydrogen evolution type of corrosion, corrosion in presence of depolarizer. Differential oxygenation corrosion. Methods of corrosion protection.

#### **UNIT-II: Electrochemical Devices:**

Batteries- their performance – characteristics – considerations in the selection and applications, Chemistry of primary batteries - Zinc - Carbon, Mercuric oxide, silver oxide and lithium cells - Solid electrolyte cells.

Chemistry of secondary batteries - Lead acid, Nickel cadmium batteries, Water activated batteries, Fuel cells – Their thermodynamics- performance

#### **UNIT-III: Electrokinetic's and Electro capillary phenomena:** 15 Hrs

Electrical double layer, Helmholtz – Perrin, Gouy – Chapman and Stern theories of electrical double layer. Lipmann equation.

Electrokinetic effect: Electro osmosis, Electrophoresis, streaming potential, sedimentation potential and their relation to zeta potential. Determination of zeta potential from electrophoresis measurements. Tiselius apparatus. Electro capillary curves, Null points of metals and their experimental determination.

#### 15 Hrs

# 15 Hr

Reversible, Diffusion-controlled systems, Determination of Formulae and Stability, Constants of Complexed Metal Ions, Determination of Stability Constants and Coordination Numbers of metal complexes, Calculation of Individual Complex, Stability Constants, Mixed Ligand Systems- the Method of Schaap and Mcmasters

#### (B) Polarography of organic compounds

Structural Effects, Nature of Electroactive group, Steric Effects, substituent Effects.

- 1. S. Glasstone. An introduction to Electrochemistry. Affiliated East-West Press Pvt. Ltd.
- 2. P.T.K. Kissinger, W.R. Heinemann. Laboratory Techniques in Electro analytical Chemistry, Marsal Debber, Inc.
- 3. Willard, Merit. Instrumental methods of analysis, Welowarth Publiching Co.,
- 4. L. Antropov. Theoretical Electrochemistry. Mir Publications.
- 5. Silbey, Alberty, Bawendi. Physical chemistry. Jhon-Wiley & sons. 4th edition-2006.
- 6. V.S. Bagotsky. Fundamental of Electrochemistry. Jhon Wiley & Sons. 2nd editions-2006.
- 7. Introduction to polarography and allied Technique by Dr.K. Zutshi

<b>CHE-PC 402</b>	Thermodynamics, Polymers and	L-5,T-1,P-0	4Credits
	Solid-state Chemistry		
Pre-requisite:	Understanding of Thermodynamics, Pol	ymers and Solid-sta	ate Chemistry

- To learn thermodynamic Properties of fluids, phase equilibria and flash calculations. •
- Thermodynamic properties of liquids, activity and activity coefficients.
- Polymer structures, morphology and properties.
- To get knowledge on concept of solid state chemistry and super conductance.

Course Outcomes: At the end of the course, the student will be able to

CO1	Deriv	e Gibbs	Duhen	n equati	on and to	o calcula	ate fuga	city and	d chemic	al potent	ial.	
CO2	Calculate excess free energy and entropy, to draw Hildebrand curves and to correlate excess											
	functions and activity coefficients											
<b>CO3</b>	Learn morphology, Tm and Tg points and to calculate transition temperatures and to identify											
	cross linking in polymers.											
CO4	Identify magnetic properties of solids, magnetic materials, superconductors and BCS theory											
		Ν	<b>Aappin</b>	g of cou	irse outo	comes v	vith the	e progra	am outco	omes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	-	-	-	-	1	-	3
CO2	3	3	3	2	2	-	-	-	-	-	1	3
<b>CO3</b>	3	3	2	2	2	-	-	-	-	2	-	2
<b>CO4</b>	3	3	3	2	2	-	-	-	-	2	-	1

#### CHE PC-402: CORE THEORY: THERMODYNAMICS, POLYMERS AND SOLID STATE CHEMISTRY

#### **UNIT-I:** Thermodynamic properties of fluids:

Thermodynamic relationship residual properties - systems of variable composition- ideal and non-ideal behaviour - fugacity-fugacity coefficient in solutions- Phase equilibrium of low to moderate pressuresdew point-bubble point and flash calculations.

#### 15 Hrs **UNIT – II: Thermodynamic properties of 'Liquid Mixtures**

Activity and activity coefficients-excess free energy-excess enthalpy-excess volume-excess entropyrelation between excess functions and activity coefficients –Application of Gibbs-Deuhem equationregular solutions -van Laar theory and Scachard-Hildebrand theory.

### **UNIT-III:** Polymers- structure and properties

Morphology and order in crystalline polymers, configuration of Polymer chains, crystal structures and polymers, Stain induced morphology, morphology of chrystalline polymers, crystallisation and meltingpolymer structure and physical properties, crystalline melting point, T_m-melting point of homogeneous series, effect of chain flexibility and other steric factors- entropy and heat of fusion, the glass transition temperature, Tg, relationship between Tm and Tg effects of molecular weight, diluents, chemical structure, chain topology, branching and cross linking.

### **UNIT-IV: Solid State Chemistry**

Magnetic properties of solids- Classification of magnetic materials, Magnetic Susceptibility, Langevin diamagnetism, Weiss theory of para magnetism. Electronic properties of metals, insulators and semiconductors: Electronic Structure of solids, Band theory, band Structure of metals, insulators and semiconductors. Electrons, holes and Excitons. The temperature dependence of conductivity of extrinsic semiconductors. Photo conductivity and photovoltaic effect -P-n-Junctions. Super conductivity: Occurence of superconductivity. Destruction of Superconductivity by magnetic fields-Meisner effect. Types of superconductors. Theories of super conductivity BCS theory.

#### 15 Hrs

### 15 Hrs

15 Hrs

- 1. J.M. Pransnitz. Molecular Thermodynamics of Fluid Phase Equilibrium. Prentice. Hall
- 2. Kuriocose and Rajram. Thermodynamics
- 3. Smith and Van Ners. Chemical Thermodynamics.
- 4. R.C. Srivastava, Subi. K. Saha. Thermodynamics-A care course. Prentice-Hall of India Pvt, Ltd,. 3rd edition-2007.
- 5. Silbey, Alberty, Bawendi. Physical chemistry. Jhon-Wiley & sons. 4th edition-2006.
- 6. F. W. Billmeyer, Jr.: Text Book of Polymer Science. Wiley Interscience.
- 7. V. R. Gowariker, N. V. Viswanathan, Jayadev Sreedhar.: polymer Science. New Age international Publishers.
- 8. Solid State chemistry by M.G. Arora.
- 9. Solid State Chemistry by Wiley.

CHE I	PC 403	-	C	ore pra	ctical I:		L-	5,T-1,P	-0	4	Credits	5
		In	organic	Chemi	stry - P	ractical						
Pre-re	quisite	Unders	standing	of Inor	ganic C	hemistry	v - Pract	ical.				
Cours	Course Objectives:											
•	Learn potentiometric titrations of mixture of acids											
•	Determination of electrode potential by polarography											
•	• Gain knowledge on interpretation of data from IR, AAS, HPLC and GC											
•	• Determination of alkanility and purity by pH metry											
	2 communication of unumity and party of primedy											
Cours	Course Outcomes: At the end of the course, the student will be able											
CO1	To perf	form titr	ation of	mixture	e of hali	des and	to draw	potenti	ometry o	curves		
CO2	To lea	rn amph	erometr	ic titrati	ons and	l mixture	es by po	larograp	ohy			
CO3	To Cor	relation	of data	obtaine	d from I	R, AAS	, HPLC	and GC				
CO4	To Det	erminat	ion of al	kanility	and put	rity by p	H metry	Y				
		Ma	apping	of cours	se outco	omes wi	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	2	3	-	-	2	-	2	-	3
CO2	3	3	3	2	3	2	-	-	-	2	3	3
<b>CO3</b>	3	2	3	3	2	3	-	2	-		2	3
CO4	3	3	3	2	3	3	-	2	-	2	-	3

### CHE PC 403: CORE PRACTICALS: PRACTICAL - I-

- 1. Potentiometry: a) Titration of mixture of acids
  - b) Titration of mixture of halides
  - c) Titration of ferrous ammonium sulphate with potassium dichromate
  - d) Redox titrations
  - e) Solubility of Sparingly soluble salt.
  - f) Formula and instability constant of a complex
  - g) Dissociation constant of acetic acid
- 2. Polarography: a) Determination of E1/2 of Zn and Cd
  - b) Determination of Zn and Cd in mixture
  - c) Amperometric titration.

#### **II DEMONSTRATION EXPERIMENTS**

- 1. IR Interpretation of IR spectrum of alcohols, ketones, aldehydes and other standard materials
- 2. AAS: Demonstration of AAS Determination of Zn, Cd, Pb, Mn, Fe and Ni in effluents using AAS.
- 3. Spectrofluorimetry estimation of quinine and fluoroscene
- 4. Ion selective electrodes estimation of  $F^-$ ,  $S^{2-}$  and  $CN^-$  in effluents using ion selective electrode meter.
- 5. Polarography and Anode stripping voltametry
- 6. Polarography and Anode stripping voltametry behavior of Cd, Zn, Pb in a mixture.
- 7. Determination of Pb and Cd in samples using Anode stripping voltametr
- 8. Gas chromatography- Determination of pesticides
- 9. HPLC- Determination of pesticides
- 10. NMR

11. (a)Demonstration of NMR spectrometer and study of hydrogen bonding in a given alcohol or phenol.

- 12. (b)Interpretation of NMR chemical shifts of ethyl benzene, ethyl alcohol.
- 13. TGA, DTA, DSC Demonstration of TG, DTA and DSC and study of decomposition of calcium oxalate, calcium carbonate, copper sulfate, oxalic acid.
- 14. pH metry
  - a. Determination of alkalinity in a colored effluent using pH metric end point.
  - b. Determination of purity of commercial HCl, H₂SO₄, H₃PO₄ and CH₃COOH using pH metric end point

CHE P	C 404		Р	roject V	Work		L-	5,T-1,P	-0	4	Credits		
Pre-re	quisite:	Physic	al Chem	istry Pr	oject W	ork							
Cours	e Objec	tives:											
• ]	Identific	dentification of problem by literature survey											
•	Carry out the problem independently												
•	nterpretation of data												
• (	Commu	Communication of research results through presentations and preparation of dissertation											
Cours	e Outco	• Outcomes: At the end of the course, the student will be able											
001			1 1	1	1 / 11		1 1.						
COI	To identify research problems and to collect research literature												
CO2	To prop	ose hypo	othesis of	f a reseai	ch probl	em							
CO3	To perfe	orm resea	arch exp	eriments									
CO4	To anal	yse the d	ata and c	conclude	the resea	arch outc	omes						
		Ma	apping	of cours	se outco	mes wit	th the p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
C01	3	3	3	3	2	2	3	2	-	-	-	3	
CO2	3 3 3 3 3 2 3 2 - 2 3												
CO3	3	3     3     3     2     2     3     2     3     -     2     -     3											
CO4	3	3	3	3	3	3	2	2	-	2	-	3	

CHE PC 404: PRACTIAL II/ PROJECT WORK

CHE-PC-405A	Chemical Kinetics	L-3,T-1,P-2	4Credits
Pre-requisite: U	Jnderstanding of Chemical kinetics		

- Differentiate homogeneous and heterogeneous catalysis enzyme catalysis and applications
- Learn photo chemistry, chemical excitations and rate of photochemical reactions
- To familiarize electrochemical relaxation methods, photochemical and isotope effects
- Radical photochemical reactions, theory and applications

Course Outcomes: At the end of the course, the student will be able to

CO1	Draw skrabal	nH diagram	and to senarate	unimolecular	and himolecular	r reactions
COL	Diaw Skiabai	pri ulagram	and to separate	unnoiceulai	and onnoiceula	reactions

**CO2** Study laws of photochemistry, to derive stern-volmer equation

CO3 Identify chromo potentiometry points and to investigate kinetic currents and isotopic effects

**CO4** Learn photochemical thresholds, chemiluminescence

Mapping of course outcomes	with the program outcomes
----------------------------	---------------------------

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	-	-	-	-	1	2	1
<b>CO2</b>	3	3	3	3		2	-	-	-	1	-	2
CO3	3	3	3	3	2	2	-	-	-	-	-	2
<b>CO4</b>	3	3	3	3	2	-	-	-	-	-	2	2

### CHE PC-405A : (GENERIC ELECTIVE): CHEMICAL KINETICS

### UNIT – I: Catalysis

**Homogeneous catalysis:** Steady state and equilibrium treatments of acid-base catalysis. Skrabal  $P^{H}$  diagrams, Protolytic and Prototropic mechanism. Acidity functions, Zucker, Hammett, Bunnett and Yates hypothesis in the elucidation of the mechanism. Enzyme catalysis – influence of concentration,  $P^{H}$  and temperature. **Heterogeneous Catalysis:** Mechanism of interface reactions, application of transition state theories to unimolecular and bimolecular surface reactions

### UNIT – II: Photochemistry:

Interaction of electromagnetic radiation with matter, laws of photochemistry, Quantum yield, types of excitations, Fate of excited molecule, transfer of excitation energy, kinetics of unimolecular and bimolecular photophysical process, Stern-Volmer equation, Kinetics of photochemical reaction rate constants and life times of reactive energy states, determination of rate constants of reactions, effect of light intensity on the rate of photochemical reactions.

# UNIT-III: Electrochemical relaxation methods, Photochemical methods, Isoptopic effect 15 Hrs

**Electrochemical relaxation methods:**Introduction, advantages of Electrochemical transient (or) relaxation techniques, application of these methods, various types of perturbation of a system, pulse polarography, chronopotentiametry, investigation of kinetic currents by chronopotentiometry.

**Photochemical methods**: Introduction, phenomena of ISC, fluorescence and phosphorescence, experimental arrangement of fluorescence measurements. Example of quenching reactions.

**Isotopic Effects**: Equilibrium isotope effects, equilibria in solution, primary kinetic isotopic effects semiclassical treatments, Quantum-mechanical Tunneling, Reactions of the Type  $H+H_2$ , Transfer of  $H^+$ , H and H⁻ reactions of Huonium, Isotope effect with Havier atoms.

### Unit-IV: Photo Chemical and Radiation Chemical Reactions 15 Hrs

Photochemical reactions photochemical primary process, reactions of electronically excited states of species, photo chemical thresholds, laws of photochemical equivalence, rotating-sector technique, multi

### 15 Hrs

15 Hrs

photon excitation, photosensitization, radiation chemical primary process, chemiluminiscence.

- 1. K.K. Rohatgi Mukerjee. Fundamentals of Photochemistry.
- 2. C. Kalidas. Principles of fast reactions techniques and Applications.
- 3. V. Yegnaramam, C.A. Basha And G. Prabhakar Rao : Applications of Electrochemistry.
- 4. Keith J.Laidler: Chemical Kinetics.
- 5. J. Dalton: A New System of Chemical Philosophy.
- 6. Chemical Kinetics:Keith J.Laider.

(Compulsory Foundation)													
CHE-I	PC-405B		Bioinor	rganic, Bioorganic, L-5,T-1,P-0				-0	4 Credits				
			Bioph	ysical (	Chemist	ry							
Pre-requisite: Understanding of Bioinorganic, Bioorganic, Biophysical Chemistry													
Cours	Course Objectives:												
<ul> <li>Highlighten metal complexes as oxygen carriers and electron transfer in biology.</li> </ul>													
• Metal ion transport and storage in biological systems and importance of trace metals in biology.													
• Learn physiological functions of carbohydrates, lipids, enzymes classification, stereospecificity.													
• The	• The basic concepts of biophysical chemistry in biochemical reactions, exergonic and endergonic												
rea	reactions.												
<b>Course Outcomes:</b> At the end of the course, the student will be able to													
9994	~				· · · · · · · · · · · · · · · · · · ·								
CO1	CO1 Gain knowledge on metallo proteins in electron transfer processes.												
CO2	Know t	he appl	ications	of trace	metal i	ons and	metal ic	ons as cl	nelating	agents i	n medic	ine.	
CO3	Achiev	e and de	evelop h	ighly ste	ereosele	ctive sy	nthesis (	of organ	ic comp	bounds a	and drug	s by	
	adoptin	g enviro	onmenta	lly.									
CO4	Unders	tand the	ermodyn	amics o	f biopol	ymer re	actions	and to c	orrelate	free ene	ergy and	l	
	biopoly	mer par	rameters										
Mapping of course outcomes with the program outcomes													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	2	3	-	2	-	2	-	1	1	1	
<b>CO2</b>	3	3	3	3	-	2	-	2	-	-	1	3	
CO3	3	3	3	2	2		-	3	-	1	1	3	
<b>CO4</b>	3	2	2	3	2	2	-		-	2	-	1	

### CHE PC-405(B): (GENERIC ELECTIVE): BIOINORGANIC, BIOORGANIC, BIOPHYSICAL CHEMISTRY

#### UNIT-I: BIO-INORGANIC CHEMISTRY- I

#### 15 Hrs

Metal complexes as oxygen carriers –Heme proteins –Hemoglobin and myoglobin –Non heme proteins –hemerythrin and hemocyanin – model synthetic complexes of iron, cobalt and copper.Co-enzymes Vitamin B₁₂, carboxy peptidase and superoxidedismutase.

**Electron Transfer in Biology:** Structure and functions of metalloproteins in electron transfer processes –catalase –peroxidose –cytochromes and iron –sulphur proteins –synthetic models.

**UNIT – II: BIOINORGANIC CHEMISTRY- II:** Metal ion transport and storage in biological systems, Metal ions in Biology, Molecular mechanism of ion transport across membranes: ionophores, photosynthesis.

**Hydrolytic metalloenzymes:** Carbonic anyhdrase, carboxy peptidase, calcium in control processes, calcium and muscle contraction, calcium and secretion, calcium in blood clotting mechanisms. Therapeutic uses of enzymes.

**Importance of trace metals in biology:** Metal ions as chelating agents in medicine, trace metal ions and metal and non-metal deficiency. Biological nitrogen fixation, in-vivo and in-vitro nitrogen fixation.

**Carbohydrates:** Structure and biological functions of mucopolysaccharides, glycoproteins, and glycolipids- Role of sugars in biological recognition-Blood group substances

**Lipids:** Essential fatty acids-structure and function of triglycerols, Glycerophospholipids, cholesterol, bile acids prostaglandins- composition and functioning of lipoproteins

**Enzymes:** Nomenclature and classification, properties, factors affecting enzyme catalysis, enzyme inhibition- reversible and irreversible inhibition. Uses of enzymes in food drink industry and clinical laboratories.

### **UNIT-IV: BIOPHYSICAL CHEMISTRY:**

Standard free energy change in biochemical reactions, exergonic and endergonic reactions, hydrolysis of ATP, thermodynamics of biopolymer solutions, chain configuration of bio polymers, and calculation of average dimensions. Membrane equilibrium, ion transport through cell membrane. dialosis and its function. Structure and functions of proteins, enzymes, DNA and RNA in living systems, forces involved in bio polymer interactions, electrostatic forces, hydrophobic forces, molecular expansion, and dispersion forces.

- 1. M.N. Hughes, The Inorganic chemistry of Biological Processes, John wiley and Sons, New York 2nd Edition, 1981.
- 2. A Text book of Biochemistry, A.V.S.S. Rama Rao
- 3. Physical chemistry by Atkenes
- 4. Physical chemistry by Albertz.
- 5. Bio physical chemistry by Van Holde
- 6. Bio Physics by Narayanam
- 7. Organic Chemistry, Vol. 2, I. L. Finar, ELBS.
- 8. Chemistry of Natural Products, P.S. Kalsi, Kalyani Publishers.
- 9. Chemistry of Organic Natural Products, O. P. Agarwal, Vols., 1 & 2, Geol Pubs.
- 10. Natural products Chemistry K.B.G. Torssell, John Wiley, 1983.
- 11. Burger's Medicinal Chemistry, M.E. Wolff, John Wiley
- 12. Medicinal Chemistry, A. Kar, New Age International

CHE P	C 406A		Dr	ug Che	mistry		L-	3,T-1,P	-2	40	Credits		
Pre-requisite: Understanding of Drug Chemistry													
Course Objectives:													
• To learn about the natural products as leads for new drugs													
Determination of cardiovascular drugs													
To study Autacoids													
Interpretation of Antipyretics													
Course Outcomes: At the end of the course, the student will be able to													
CO1 Know about natural products.													
CO2	Know Interpretation of cardiovascular drugs.												
CO3	Know t	he Anal	yzing al	oout pro	stagland	lins.							
CO4	Know	the De	finition	, Classi	ification	, Nome	enclatur	e, Strue	cture a	nd Syn	thesis of	of anti-	
	inflamr	natory d	lrugs.										
Mapping of course outcomes with the program outcomes													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
<b>CO1</b>	3	3	3	3	3	_	-	2	-	_	2	3	
CO2	3	3	3	3	-	2	-	2	-	2	-	3	
CO3	3	3		3	-	3	-	2	-	3	-	3	
<b>CO4</b>	3	-	3	-	3	2	-	-	-	2	-	3	

#### CHE : PC : 406 (A): (OPEN ELECTIVE) : DRUG CHEMISTRY

#### **UNIT - I: NATURAL PRODUCTS AS LEADS FOR NEW DRUGS**

Occurrence, Structure and therapeutic uses of Drugs acting on Central Nervous System

Morphine alkaloids (morphine, codeine, thebaine, heroin, pethidine)

Cannabinoids (9-cannabinol, Tetrahydrocannabinol)

Neuromuscular Blocking Agents (Curare, Decamethonium)

Vinca Alkaloids (Vincristin and Vinblastin), Taxol and Taxotere, podophyllotoxin, Etoposide, Teniposide.

### UNIT – II: CARDIOVASCULAR DRUGS

Definition, Classification, Nomenclature, Structure and Synthesis.

Cardiac glycosides (ex: Digoxin, Digitoxin);

Antihypertensive drugs (ex: Methyl dopa, Clonidene hydrochloride);

Antiarrhythmic agents (ex: Quinidine sulfate);

Antisympathetic drugs (ex: Propranolol hydrochloride, Verapamil hydrochloride);

Vasopressor drugs (ex: Prenylamine, Buphenine).

### **UNIT – III: AUTACOIDS**

Definition, Occurrence, Isolation, Nomenclature, Classification, Synthesis, Biosynthesis and Stereochemical structures of Prostaglandins. Structural elucidation of PGE₁, PGE₂; Synthesis and biosynthesis of PGE₂, PGF_{2 $\alpha$}.

Structure and Biosynthesis of Thromboxane A2 and Prostacyclin (synthesis not expected).

### **UNIT - IV: ANTI-INFLAMMATORY DRUGS**

Definition, Classification, Nomenclature, Structure and Synthesis of Paracetamol, Aspirin (Antipyretic), Salol, Cinchophen, Antipyrene, Phenylbutazone, Indomethacin, Tolmetin, Ibuprofen, Diclofenac and Naproxen.

- 1. Medicinal Chemistry by Ashitosh Kar
- 2. Medicinal Chemistry by D. Sriram, P. Yogeeswari
- 3. Medicinal Chemistry by David A. Williams, Thomas L. Lemke
- 4. Medicinal Chemistry by V. Alagarsamy
- 5. Biochemistry by U. Satyanarayana
- 6. Natural Products Chemistry and Applications by Sujata V. Bhat, B.A. Nagasampagi, S. Meenakshi
- 7. Medicinal Chemistry by V.K. Ahluwalia, Madhu Chopra
- 8. Medicinal Chemistry by Balkishen Razdar
- 9. Advanced Practical Medicinal Chemistry by Ashutosh Kar
- 10. Chemistry of Organic Natural Products by O. P. Agarwal, Vols., 1 & 2, Geol Pubs.
- 11. Chemistry of Natural Products by S. V. Bhat, B.A. Nagasampagi, M. Sivakumar
- 12. Natural Products Chemistry by K.B.G. Torssell, John Wiley, 1983.

- To learn about the classification of electroanalytical methods
- Determination of types of currents
- Principle, instrumentation, reversible and irreversible cyclic voltammograms..
- Interpretation of Ion selective electrodes

Course Outcomes: At the end of the course, the student will able to

**CO1** Ability to interpret potentiometry and conductometry

**CO2** Interpretation of results while adhering to DC Polarography.

**CO3** Analysing and compiling the data and results in polarography.

**CO4** Familiarize Types of ion sensitive electrodes.

Mapping of course outcomes	with the program outcomes
----------------------------	---------------------------

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
<b>CO1</b>	3	3	3	3	3	-	-	2	-	-	2	3
CO2	3	3	3	3	-	2	-	2	-	2	-	3
CO3	3	3	-	3	-	3	-	2	-	3	-	3
<b>CO4</b>	3	-	3	-	3	2	-	-	-	2	-	3

### CHE : PC : 406 (B): (OPEN ELECTIVE) : ELECTRO ANALYTICAL TECHNIQUES

Unit I: Types and Classification of Electro analytical Methods.

**i) Potentiometry-** Types of electrodes, Hydrogen gas, Calomel, Quin hydrone and glasselectrodes. Determination of pH. Potentiometric titrations.

**ii)** Conductometry – Definition of terms – conductivity, specific conductivity, cell constant. Mobility of ions, Conductometric titrations.

**Unit II:** D.C Polarography :. Dropping mercury electrode- Instrumentation-polarogram. Types ofCurrents : Residual, Migration, Limiting. Two and Three electrode assemblies. Ilkovic equation(derivation not necessary) and its consequences. Types of limiting Currents: Adsorption, Diffusion, Kinetic. Applications of polarography in qualitative and quantitative analysis. Analysis of mixtures. Application to inorganic and organic compounds. Determination of stability constants of complexes.

**Unit III:** (i) A.C. polarography (ii) Square-wave polarography (iii) Pulse polarography (iv) Differential pulse polarography(V) Cyclic Voltammetry: Principle, instrumentation, reversible and irreversible cyclic voltammograms.

Unit IV: Ion selective electrodes: Ion-sensitive electrodes –types of ion sensitive electrodes –metal based cation and anion sensitive electrodes, solid membrane electrodes. Liquid ion-exchange electrodes, gas sensing membrane electrodes.

- 1. H.W. Willard, LL. Merrit and J.A. Dean: Instrumental Methods of Analysis. Affiliated East-West).
- 2. G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denny. Vogel's Text Book of Quantitative Chemical Analysis (ELBS).
- 3. D.A. Skoog and D.M. West: Principles of Instrumental Analysis (Holt, Rinehart and Wilson).
- 4. J.G. Dick : Analytical Chemistry (Mc Graw Hill).