(2/8/02/

20-21

CB	BSE / DG 2 2 2 1 10 C-11
d	BSF)/ BG-Parse syllabs/NEP 2021
В	ated 03.08.2021 & 101.10.2021, we conduct
te	Head, Department of Chemistry at 11 00 Am.
	to following recommendations and coxuded.
1.	91- Be resolved thuman values 5 projessional
_	ETT 90 TSI- Semestor and Human values 8)
	profosogonal Etters-II to II series for an should
	WITH BOLD Crodits.
	91- & rosalved to sometime spill openiod
	murse to its semister and project work to
	IN somester as per sules NEP 2020
3	91- Es most wood to keep 24 credik per
	semester with a total of 96 media for
	The entire chemistry PG program
	Hence, we recommed the authorities to consider
	the above resolutions favourably and approve
	The same so as to simplement from the
	academic year 2021-2022.
-	
304	(chairman)
poor	V. PADMAVATHI. Va Quel
	C Suresh Roddy C. Linds.
1204	G.V. Subba Paddy Coll 1
2001	M. Pandusangappa.
134-	M. Pandusangappa mpanagaring
	10 1/25

Programm e Cod e	Progra mm ena me	Yearof Introduction	Statusof implementati onof CBCS/ Elective CourseSyste m (ECS)	Yearof impleme ntation of CBCS/E CS	Yearofrevision (ifany)	Ifrevisionhas beencarriedout inthesyllabus duringthelast5 years, Percentageof contentaddedor replaced	Linktothe relevant documents
	Analytical Chemistry	2010	CBCS: Yes ECS:Yes	CBCS: 2010	CBCS: 2022	CBCS: 25% added (2019)	CBCS: ECS
206 EC	Environm ental			ECS:	ECS:	ECS:	(Enclos ed):
206 IC	Chemistry Inorganic						
206 OC	Chemistry Organic						
206 PC	Chemistry Physical Chemistry						

SRI VENKATESWARA UNIVERSITY:: TIRUPATI SVU COLLEGE OF SCIENCES DEPARTMENT OF CHEMISTRY

Syllabus for M.Sc. CHEMISTRY
Choice Based Credit System (CBCS)
Amended as per NEP-2020
(w.e.f. the Academic Year 2021-2022)

Vision

Impart quality education & training in the field of chemistry to enable successful careers for the post graduate students in the field of research, education & industry applications of chemical sciences.

Mission

The Department of Chemistry strives:

- To get an ideal balance between knowledge creation and knowledge dissemination in the chemical sciences with a focus to train and mentor students to become responsible scientists and scientifically literate professionals to attain National and International impact.
- To contribute to the improvement of scientific and technological literacy, and the development of critical-thinking and problem-solving skills of all students in order to compete for the world of work and responsible citizenship

PROGRAM EDUCATIONAL OBJECTIVES:

At the end of the program, the student wills be able to:

PEO1	To demonstrate broad knowledge of descriptive chemistry.
PEO2	To impart basic analytical and technical skills to work effectively in various fields of chemistry.
PEO3	To motivate critical thinking and analysis skills to solve complex problems viz., analysis of data, synthetic logistics, spectroscopy, structure and modeling, team based problem solving etc.
PEO4	To demonstrate an ability to conduct experiments in the above sub disciplines with mastery of appropriate techniques and proficiency using core chemical instrumentation and modeling method
PEO5	To develop laboratory competence in relating chemical structure to spectroscopic phenomena.
PEO6	To demonstrate the ability to synthesize, separate and characterize compounds using published reactions, protocols, standard laboratory equipment and modern instrumentation.

PROGRAM OUTCOMES: On completion of M.Sc. Chemistry programme, graduates will be able to –

PO1	Have a firm foundation in the fundamentals and application of current chemical and
	scientific theories in different areas of chemistry viz., Analytical, Environmental,
	Inorganic, Organic and Physical.
PO2	Understands the background of organic reaction mechanisms, complex chemical
	structures, and instrumental methods of chemical analysis, molecular rearrangements
	and separation techniques.
PO3	Familiarize with the importance of various elements present in the periodic table,
	coordination chemistry and structure of molecules, properties of compounds,
	structural determination of complexes using theories and instruments.
PO4	Understand about the physical aspects of atomic structure, dual behavior, reaction
	pathways with respect to time, various energy transformations, molecular assembly
	in nano-level, significance of electrochemistry, molecular segregation using their
	symmetry.
PO5	Create awareness and sense of responsibilities towards environment and apply

	knowledge to solve the issues related to Environmental pollution.
PO6	Continue to acquire relevant knowledge and skills appropriate to professional activities and demonstrate highest standards of ethical issues in the subject concerned. Ability to identify unethical behavior such as fabrication, falsification or misrepresentation of data and adoptive objective, unbiased and truthful actions in all aspects.
PO7	Be skilled in problem solving, critical thinking and analytical reasoning as applied to scientific problems.
PO8	Clearly communicate the results of scientific work in oral, written and electronic formats.
PO9	Explore new areas of research in both chemistry and allied fields of science and technology.
PO10	Design, analyze and carry out scientific experiments and interpret data to provide solutions to different industrial problems.
PO11	Independently carry out research to solve practical problems and present a substantial technical report.
PO12	Ability to think, acquire knowledge and skills through logical reasoning and to inculcate the habit of self-learning throughout life, through self- paced and self-directed learning aimed at personal development, and adapting to change academic demands of work place through knowledge/ skill development/ reskilling.

PROGRAM SPECIFIC OUTCOMES: At the end of the program, the student will be able to:

PSO1	Scientific Problem solving skills: Deep knowledge of the topic which can develop								
	the problem solving skills using chemical principles.								
PSO2	Analytical skills: Develop analytical skills such as synthesizing, separating,								
	characterizing chemical compounds and chemical reactions with the help of								
	sophisticated instruments								
PSO3	Research skills: Develop research skills through dissertation/project work in								
	different fields of chemistry such as organic, inorganic, analytical, physical and								
	environmental.								
PSO4	Learning skills on life processes: Acquire advanced level of knowledge in natural								
	products as well as biological systems from the chemistry point of view.								

SRIVENKATESWARAUNIVERSITY::TIRUPATI DEPARTMENTOF CHEMISTRY TWO YEAR M.Sc. COURSE IN CHEMISTRY (2021-2022)SCHEME

Semester -I

Sl. No.	Course Code	Components of Study	Title of the Course	Credit Hrs/ Week	No. of Credits	IA Marks	SEM End Exam Marks	Total
1	CHE- 101	Core-Theory	Inorganic Chemistry- I	6	4	20	80	100
2	CHE- 102	Core-Theory	Organic Chemistry I	6	4	20	80	100
3	CHE- 103	* Compulsory Foundation	a)Physical Chemistry- I b)Chemistry of Nano materials	6	4	20	80	100
4	CHE- 104	* Elective Foundation	a)General Chemistry- I b)Green Chemistry	6	4	20	80	100
5	CHE- 105	Practicals (Core & Comp.)	a)Inorganic Practical-I b) Physical Chemistry-I	3 3	2 2	-		50 50
6	CHE- 106	Practicals (Core & Elective)	a) OrganicChemistry- I b)General Chemistry-I	3 3	2 2	-		50 50
7	CHE- 107	Audit Course	Values and Professional Ethics – I	0	0	100	-	
		Total		36	24			600

*Among the Compulsory and Elective Foundation a student shall choose anyone. SEMESTER-II

	TEK-II							
Sl. No.	Course Code	Components of Study	Title of the Course	Credit Hrs/ Week	No. of Credits	IA Marks	SEM End Exam Marks	Total
1	CHE- 201	Core-Theory	Inorganic Chemistry- II	6	4	20	80	100
2	CHE- 202	Core-Theory	Organic Chemistry -II	6	4	20	80	100
3	CHE- 203	* Compulsory Foundation	(a)Physical Chemistry- II (b) Advanced Thermodynamics and Biophysical chemistry	6	4	20	80	100
4	CHE- 204	* Elective Foundation	a)General Chemistry- II b)Chemistry of contemporary society	6	4	20	80	100
5	CHE- 205	Practicals (Core & Comp.)	a)Inorganic Practical-II b) Physical Chemistry-II	3 3	2 2		-	50 50
6	CHE- 206	Practicals (Core & Elective)	a)OrganicChemistry- II b)General Chemistry-II	3 3	2 2		-	50 50
7	CHE- 207	Audit Course	Human Values and Professional Ethics – I	0	0	100	-	
		Total		36	24			600

^{*}Among the Compulsory and Elective Foundation a student shall choose anyone.

M Sc., (ANALYTICAL CHEMISTRY)

SEMESTER-III

Sl.	Course Code	Components of	THE ALL C	Credit	No. of	IA Marks	SEM	Total
No		Study	Title of the Course	Hrs/	Credits		End	
				Week			Exam	

							Marks	
1	CHE-AC-	Core-Theory	Inorganic Spectroscopy & Thermal Methods of	6	4	20	80	100
	301		Analysis					
2	CHE-AC - 302	Core-Theory	Organic Spectroscopy	6	4	20	80	100
3	CHE-AC-	*Generic Elective	(a) Organic Chemistry III					
	303		(b) Physical Chemistry III					
				6	4	20	80	100
4	CHE-AC-	Core& Gen.	Classical Methods of	6	4	-	-	100
	304	Practical	Analysis					
5	CHE –AC-	Skill Oriented	Chemotherapy and drug	3	2	10	40	50
	305 A	Course (theory)	analysis					
	CHE –AC-	Skill Oriented	Instrumental methods of	3	2	-	-	50
	305 B	Course	analysis					
		(Practicals)						
6	CHE- 306	Open Elective	(a) Spectral Techniques	6	4	20	80	100
		(For other	(b) Chromatographic					
		departments)	Techniques					
		Total		36	24			600

*Among the Generic Elective a student shall choose any one. SEMESTER-IV

	ESTER-IV	Commonants -	1	Cua dia	No of	TA Mante	CEM	Total
Sl. No	Course Code	Components of Study	Title of the Course	Credit Hrs/ Week	No. of Credits	IA Marks	SEM End Exam Marks	Total
1	CHEAC	Com Theorem	Orgalitar agentual and	(4	20		100
1	CHE-AC- 401	Core-Theory	Quality control and General principles	6	4	20	80	100
2	CHE-AC- 402	Core-Theory	Instrumental Methods of Analysis	6	4	20	80	100
3	CHE-AC- 403	Generic Elective* (Related to subject)	(a) Aapplied and Environmental aspects (b)Bioinorganic, Bioorganic & Biophysical Chemistry	6	4	20	80	100
4	CHE-AC- 404	Core& Gen. Practical	Instrumental Methods of Analysis	6	4	-	-	100
5	CHE-AC- 405	Core-Practicals/ Project work	Project work	6	4	-	-	100
6	CHE-406	Open Elective (For other departments)	(a)Drug Chemistry or (b) Electroanalytical Techniques	6	4	20	80	100
		Total		36	24			600

^{*}Among the Generic Elective a student shall choose any one.

M.Sc. (ENVIRONMENTAL CHEMISTRY)

SEMESTER-III

Sl. No	Course Code	Components of Study	Title of the Course	Credit Hrs/ Week	No. of Credits	IA Marks	SEM End Exam Marks	Total
1	CHE-EC- 301	Core-Theory	Inorganic Spectroscopy & Thermal Methods of Analysis	6	4	20	80	100

2	CHE-EC - 302	Core-Theory	Organic Spectroscopy	6	4	20	80	100
3	CHE-EC- 303	*Generic Elective	(a) Organic Chemistry III (b) Physical Chemistry III					
				6	4	20	80	100
4	CHE-EC- 304	Core& Gen. Practicals	Water & Soil Analysis	6	4	-	-	100
5	CHE –EC- 305 A	Skill Oriented Course (theory)	Chemotherapy and drug analysis	3	2	10	40	50
	CHE –EC- 305 B	Skill Oriented Course (Practicals)	Instrumental methods of analysis	3	2	-	-	50
6	CHE- 306	Open Elective (For other departments)	(a) Spectral Techniques (b) Chromatographic Techniques	6	4	20	80	100
		Total		36	24			600

^{*}Among the Generic Elective a student shall choose any one.

Sl. No	Course Code	Components of Study	Title of the Course	Credit Hrs/ Week	No. of Credits	IA Marks	SEM End Exam Marks	Total
1	CHE-EC-401	Core-Theory	Energy Environment and Soils	6	4	20	80	100
2	CHE-EC-402	Core-Theory	Water Pollution monitoring and Environment Laws	6	4	20	80	100
3	CHE-EC-403	Generic Elective* (Related to subject)	(a) Air Pollution, Control Methods-Noise and Thermal pollution (b) Bioinorganic, Bioorganic & Biophysical Chemistry	6	4	20	80	100
4	CHE-EC-404	Core& Gen. Practical	Instrumental Methods of analysis – II	6	4	-	-	100
5	CHE-EC-405	Core- Practicals/ Project work	Project work	6	4	-	-	100
6	CHE-406	Open Elective (For other departments)	(a)Drug Chemistry or (b) Electroanalytical Techniques	6	4	20	80	100
		Total		36	24			600

^{*}Among the Generic Elective a student shall choose any one.

M.Sc. (INORGANIC CHEMISTRY)

SEM	ESTER-III							
Sl.	Course	Components of		Credit	No. of	IA Marks	SEM	Total
No	Code	Study	Title of the Course	Hrs/	Credits		End	
				Week			Exam	
							Marks	
1	CHE-IC-301	Core-Theory	Inorganic Spectroscopy & Thermal Methods of Analysis	6	4	20	80	100
2	CHE-IC - 302	Core-Theory	Organic Spectroscopy	6	4	20	80	100
3	CHE-IC-303	*Generic Elective	(a) Organic Chemistry III					

			(b) Physical Chemistry III	6	4	20	80	100
4	CHE-IC-304	Core& Gen. Practical	Preparation of Inorganic complexes and characterization	6	4	1	-	100
5	CHE –IC- 305 A	Skill Oriented Course (theory)	Chemotherapy and drug analysis	3	2	10	40	50
	CHE –IC- 305 B	Skill Oriented Course (Practicals)	Instrumental methods of analysis	3	2	-	-	50
6	CHE- 306	Open Elective (For other Departments)	(a) Spectral Techniques (b) Chromatographic Techniques	6	4	20	80	100
		Total		36	24		•	600

^{*}Among the Generic Elective a student shall choose any one.

	C C-1-	C		C 124	NI C	T A N / 1	CENT	T-4-1
Sl. No	Course Code	Components of Study	Title of the Course	Credit Hrs/ Week	No. of Credits	IA Marks	SEM End Exam Marks	Total
1			Co-ordination compounds, Organometallic chemistry of non-transition elements	6	4	20	80	100
2	CHE-IC-402	Core-Theory	Instrumental Methods of Analysis	6	4	20	80	100
3	CHE-IC-403	Generic Elective* (Related to subject)	(a) Instrumental Methods of analysis (b) Bioinorganic, Bioorganic & Biophysical Chemistry	6	4	20	80	100
4	CHE-IC-404	Core& Gen. Practical	Instrumental methods of Analysis -II	6	4	-	-	100
5	CHE-IC-405	Core-Practicals/ Project work	Project work	6	4	-	-	100
6	CHE-406	Open Elective (For other departments)	(a)Drug Chemistry or (b) Electroanalytical Techniques	6	4	20	80	100
		Total		36	28			600

^{*}Among the Generic Elective a student shall choose any one.

M.Sc. (ORGANIC CHEMISTRY)

SEMESTER-III

Sl. No	Course Code	Components of Study	Title of the Course	Credit Hrs/ Week	No. of Credits	IA Marks	SEM End Exam Marks	Total
1	CHE-OC- 301	Core-Theory	Organic Chemistry-III	6	4	20	80	100
2	CHE-OC - 302	Core-Theory	Organic Spectroscopy	6	4	20	80	100
3	CHE-OC- 303	*Generic Elective	(a) Inorganic Spectroscopy & Thermal Methods of analysis (b) Physical Chemistry III	6	4	20	80	100
4	CHE-OC-	Core& Gen.	Organic Estimations	6	4	-	-	100

	304	Practical						
5	CHE –OC-	Skill Oriented	Chemotherapy and drug	3	2	10	40	50
	305 A	Course	analysis					
		(theory)						
	CHE -OC-	Skill Oriented	Multistep preparations	3	2	-	-	50
	305 B	Course						
		(Practicals)						
6	CHE- 306	Open Elective	(a) Spectral Techniques	6	4	20	80	100
		(For other	(b) Chromatographic					
		departments)	Techniques					
		Total		36	24			600

^{*}Among the Generic Elective a student shall choose any one.

Sl. No	Course Code	Components of Study	Title of the Course	Credit Hrs/ Week	No. of Credits	IA Marks	SEM End Exam Marks	Total
1	CHE-OC- 401	Core-Theory	Organic Synthesis - I	6	4	20	80	100
2	CHE-OC- 402	Core-Theory	Organic Synthesis - II	6	4	20	80	100
3	CHE-OC- 403	Generic Elective* (Related to subject)	(a) Heterocycles and natural Products (b) Bioinorganic, Bioorganic & Biophysical Chemistry	6	4	20	80	100
4	CHE-OC- 404	Core& Gen. Practical	Spectral Identification	6	4	-	-	100
5	CHE-OC- 405	Core- Practicals/ Project work	Project work	6	4	-	-	100
6	CHE-406	Open Elective (For other departments)	(a)Drug Chemistry or (b) Electroanalytical Techniques	6	4	20	80	100
		Total		36	24			600

^{*}Among the Generic Elective a student shall choose any one.

M.Sc. (PHYSICAL CHEMISTRY)

SEMESTER-III

Sl.	Course Code	Components of		Credit	No. of	IA Marks	SEM	Total
No		Study	Title of the Course	Hrs/ Week	Credits		End Exam	
							Marks	
1	CHE-PC-301	Core-Theory	Physical Chemistry-III	6	4	20	80	100
2	CHE-PC - 302	Core-Theory	Organic Spectroscopy	6	4	20	80	100
3	CHE-PC-303	*Generic Elective	(a) Organic Chemistry III (b) Inorganic Spectroscopy & Thermal Methods of analysis	6	4	20	80	100
4	CHE-PC-304	Core& Gen. Practical	Chemical kinetics	6	4	-	-	100

5	CHE –PC-	Skill Oriented	Chemotherapy and drug	3	2	10	40	50
	305 A	Course (theory)	analysis					
	CHE –PC-	Skill Oriented	Conductometry	3	2	-	-	50
	305 B	Course	Colorimetry					
		(Practicals)						
6	CHE- 306	Open Elective	(a) Spectral Techniques	6	4	20	80	100
		(For other	(b) Chromatographic					
		departments)	Techniques					
		Total		36	24			600

^{*}Among the Generic Elective a student shall choose any one.

Sl. No	Course Code	Components of Study	Title of the Course	Credit Hrs/ Week	No. of Credits	IA Marks	SEM End Exam Marks	Total
1	CHE-PC-401	Core-Theory	Electro Chemistry	6	4	20	80	100
2	CHE-PC-402	Core-Theory	Thermodynamic, Polymers and Solid state chemistry	6	4	20	80	100
3	CHE-PC-403	Generic Elective* (Related to subject)	(a) Chemical Kinetics (b) Bioinorganic, Bioorganic & Biophysical Chemistry	6	4	20	80	100
4	CHE-PC-404	Core& Gen. Practical	Instrumental Methods of Analysis	6	4	-	-	100
5	CHE-PC-405	Core-Practicals/ Project work	Project work	6	4	-	-	100
6	CHE-406	Open Elective (For other departments)	(a)Drug Chemistry or (b) Electroanalytical Techniques	6	4	20	80	100
		Total		36	24			600

^{*}Among the Generic Elective a student shall choose any one.

CHE-	101	INORGANIC CHEISTRY I L-5,T-1,P-0 4Credits										
Pre-re	equisite:	Unders	standing	of grad	uate lev	el chemi	istry			•		
Co	urse Ob	jective	s:									
• Co	mprehen	d the k	ey featu	res of c	oordina	tion con	npounds	, Crystal	Field T	heory, di	ifferent p	roperties
and	d bondin	g by spe	ectrosco	pic tech	niques							
• Stu	dy the p	olymor	phic for	ms of no	on-transi	ition ele	ments ar	nd their sy	ynthesis	and proj	perties	
• Un	derstand	the bas	sics of r	eaction	mechan	ism and	the med	chanistic	concep	ts of Dis	sociative	(Id) and
	Associative interchange Mechanism (Ia), Taube's classification, Trans effect and Electron Transfer											
Rea	Reactions											
• Far												
	EAN and 18-electron rule											
Cours	e Outco	mes: A	t the end	of the	course,	the stude	ent will l	be able				
CO1	To und	erstand	the key	features	of coor	dination	compo	unds, Cry	stal Fie	ld Theor	y, magne	tic
	To understand the key features of coordination compounds, Crystal Field Theory, magnetic properties and bonding in transition metal complexes.											
CO2	To lear	n about	the poly	morphi	c forms	of Carb	on, Sulp	hur and F	Phospho	rus, synt	hesis and	1
	propert	ies of si	ulphur-n	itrogen	compou	ınds, bo	ranes, ca	rbides, si	licates a	and to kn	ow Wade	es rules.
CO3	To ovn	lain tha	roootivi	ty of co	mployog	in torm	e of Wale	ence bond	l and C	rystol Fig	ıld thaori	26
COS	_			-	-			ence bond sfer React		rystai rie	eid theori	es,
CO4								erent meta		nvila avm	orgistic	ffoot
CO4	and 18		-	synthes	is and s	uctures	s or unite	nem men	ıı carbo	nyis, syn	ergistic e	riect
	and 18	electroi	i ruie.									
]	Mappin	g of cou	irse out	comes v	with the	progran	outco	mes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	3	_	1	_	1	-	2	_	1
CO2	3	1	-	3	-	2	2	2	2	1	-	2
CO3	3	2	-	3	2	-	-	1	-	1	2	1
CO4	3	1	1	3	-	2	2	2	1	-	1	1

CHE 101: INORGANIC CHEISTRY I

UNIT-I: CO-ORDINATION COMPOUNDS

15 Hrs

Introduction to Crystal field Theory, CFSE and its calculation, Paring energy, Splitting of 'd' orbitals in Trigonal bi pyramidal, square planar, square pyramid and pentagonal bipyramidal geometries, Jahn – Teller effect, Application of CFT, OSSE, site Selection in Spinels, Short comings of CFT, Evidence for covalency –Nephelauxetic effect. MOT of co-ordinate bonds –M.O. Diagrams for octahedral, tetrahedral and square planar complexes. Experimental evidences for π - bonding – Crystallography, Infrared spectroscopy and Photoelectron spectroscopy.

UNIT-II: CHEMISTRY OF NON-TRANSITION ELEMENTS 15 Hrs

General characteristics of the non-transition elements special features of individual elements; Synthesis' properties and structure of their Halides and Oxides, Polymorphism of Carbon, Phosphorus and Sulphur, Synthesis, properties and structure of boranes, Carboranes, borazines, Silicates, Carbides, Sulphurnitrogen compounds. Electron counting in boranes, Wades rules (Poly hedral skeletal electron pair theory), Isopopoly and hetero poly acids.

UNIT-III: REACTION MECHANISMS IN COMPLEXES 15 Hrs

Reactivity of metal complexes. Inert and Labile complexes. Concept of Labile and Inert complexes in

terms of Valence bond and Crystal Field theories. Taube's classification of complexes as labile and inert complexes. Dissociative (D) and Dissociative interchange Mechanism (Id) & Associative (A) and Associative interchange Mechanism (Ia). Substitution reactions in octahedral complexes- Acid Hydrolysis -factors affecting Acid Hydrolysis - Base Hydrolysis-conjugate Base Mechanisms - Anation Reactions -Substitution Reactions in Square Planar complexes- Trans effect – Mechanisms of Trans effect: polarization and π -bonding theories. Electron Transfer Reaction-Inner Sphere and outer Sphere Mechanisms- Marcus theory.

UNIT-IV: METAL π COMPLEXES-I 15 Hrs

Nature of π bonding, Classification of π ligands, π donor ligands and π -acceptor ligands.

Metal Carbonyls: Synthesis of metal carbonyls, Structures of metal carbonyls of the types M(CO)n (M=Cr, Fe, Ni; n=4-6), $M_2(CO)n$ (M=Co, Fe, Mn; n=8-10), $M_3(CO)_{12}$ (M=Fe, Ru and Os), $M_4(CO)_{12}$ (M=Co, Rh, Ir). IR Spectraof metal carbonyls (i) Detection of bridging and terminal CO ligand, (ii) Synergistic effect, EAN and 18-electron rule. Electron counting methods (i) Oxidation state method and (ii) Neutral Atom method.

Metal Nitrosyls: Synthesis of metal Nitrosyls, bonding, Electron donation by nitric oxide, Models for NO bonding (i) Covalent model and (ii) Ionic models, Structures of metal nitrosyls (1) $[Fe_4S_3(NO)]$ (2) $[Fe_2(NO)_2I_2]$ (3) $[(\phi_3P)_2Ir(CO)Cl(NO)]^+$ (4) $[(\phi_3P)_2Ru(NO)_2Cl]$, Detection of bridging NO ligand, Applications of metal nitrosyls.

Books Suggested

- 1. F.A.Cotton and G. Wilkinson, Advanced In-organic chemistry VI Edition, 1999. John wiley & sons. Inc., New York.
- 2. James E. Huheey, Inorganic chemistry- Principles of structure and reactivity, VI Edition 1993. Harper Collins College Publishers, New York.
- 3. J.D. Lee: Concise Inorganic Chemistry (Blackwell)
- 4. Gary Wolfsburg: Inorganic Chemistry (5th Ed. (Viva Books)
- 5. W.L. Jolly: Modern Inorganic Chemistry (McGraw-Hill)
- 6. B.N Figgis: Introduction to Ligand Fields (John-Willey)
- 7. S.F.A. Kettle: Coordination compounds.
- 8. Coordination Chemistry. Bassalo & Jahnson.

(Mandatory Core)

CHE	-102		Organic Chemistry I L-3,T-1,P-2 4Credits											
Pre-re	quisite:	Unders	standing	of grad	uate lev	el Orga	nic Che	mistry	·					
 Classison Fanster neig Un pote med Stude terp 	nerism to iliarize eochemical boring derstandential echanisms	olecules by the ap with distry in g group p I therm nergy of s, isotop t occurre	oplication ifferent alipha participa odynam diagram be effect rence, is	on of Ca types of tic and ation ic and s, trans s in reac solation	hn-Ingo of substi l aroma kinetic sition s ctive into	old-Prelocation reatic nucleon require tates are estable	og rules. reactions cleophil ments, nd inter tes olishmer	s, able tic substice substitution kinetice rmediate and s	o predititution and the	ct produ reaction ermodyn hods of	ncts, incomes, eff	cluding ect of ontrol, mining		
C	CO1		etect ste			uctures	of the m	olecule	s, stereo	selectiv	e and			
C	CO2	To a	nscertain p partici	the ster	reochem and to fa	ımiliariz	the va		pes of a	ffect of romatic	_	_		
C	203	To k		concep	t of isot	ope effe	cts, pote			agrams a	ınd			
C	CO4	To fa	amiliariz adation	ze with s	stereosp s of terp	ecific sy enoids	nthesis			curring to	erpenoio	ds and		
		Ma	apping	of cours	se outco	mes wi	th the p	rogram	outcon	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	1	3	2	-	1	1	-	1	-	-		
CO2	3	2	1	3	-	1	2		-	2	1	1		
CO3	3	1	2	3	-	1	1	2	1	-	1	-		
CO4	3	2	2	3	2	1	1	1	-	1	1	1		

CHE102: Organic Chemistry I

UNIT-I: Stereochemistry

Sereoisomerism-Stereoisomers Classification – Configuration and conformation.

Molecular Three dimensional representations: Wedge, Fischer, Newman and Saw-horse formulae, their description and interconversions.

Molecular Symmetry & Chirality: Symmetry operations and symmetry elements (Cn & Sn). Criteria for Chirality. Dissymmetrization.

Optical isomerism: Molecular Symmetry and Chirality-Cahn-Ingold-Prelog rules R, S-nomenclature, stereoisomerism resulting from more than one chiral center, meso and pseudoasymmetric compounds -Axial Chirality - Stereochemistry of allenes spiranes - biphenyl derivatives and atropisomerism -Planar chirality - Ansa compounds and trans - Cycloalkenes - Helicity. Helically chiral compounds Geometrical isomerism - E, Z - nomenclature - Physical and Chemical methods of determining the configuration of geometrical isomers-Stereoisomerism in 3, 4 and 5-membered cyclic compounds.

UNIT-II: Substitution Reactions

- i) Aliphatic Nucleophilic substitutions: The S_N2 , S_N1 , mixed S_N1 and S_N2 , SET mechanisms. Reactivity- effects of substrates, attacking nucleophiles, leaving groups and reaction medium.Common carbocation rearrangements primary, secondary and tertiary. The neighbouring group participation (NGP) -anchimeric assistance, NGP by σ and π bonds, phenonium ions, norbornyl and norbornenyl systems, Classical and nonclassical carbocations, NGP by halogens and heteroatoms (O,N,S) The S_N^i and S_N^i mechanisms. Nucleophilic substitution at an allylic, and vinylic carbons.
- ii. Aromatic Nucleophilic Substitution: The S_NAr , S_N1 , benzyne and $S_{RN}1$ mechanisms. Reactivity effect of substrate, structure, leaving group and attacking nucleophile. The von Richter, Sommelet Hauser and Smiles rearrangements.

UNIT-III: Reactive intermediates

Types of reactions, types of bond cleavage mechanisms, generation, structure, stability and reactivity of carbocations, carbanions, free radicals, carbenes, nitrenes and arynes. Thermodynamic and kinetic requirements, kinetic and thermodynamic control, potential energy diagrams, transition states and intermediates, methods of determining mechanisms, isotope effects.

UNIT-IV: Terpenoids

Classification of terpenoids, occurrence, isolation, general methods of structure determination. Isoprene and special isoprene rule. Structure determination and synthesis of the following representative molecules: Farnesol, Zingeberine, Cadinene and Abietic acid.

Books Suggested:

- 1. Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, John Wiley.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J Sundberg, Plenum.
- 3. Structure and Mechanism in Organic Chemistry C.K. Inglod, Cornell University Press.
- 4. Organic Chemistry, R.T Morrison and R.N. Boyd, Prentice Hall.
- 5. Principles of Organic Synthesis, R.O.C Norman and J. M. Coxon, Blackie Academic.
- 6. Stereochemistry, P.S. Kalsi, Wiley Eastern.
- 7. Text book of Organic Chemistry, M.C. Murry
- 8. Organic Chemistry, Vol I, I.L. Finar, ELBS Eds.

(Mand	latory	Core))
١	IVIUIIC	iuioi y	COLC	,

CHE-103	Physical Chemistry I	L-5,T-1,P-6	4Credits
Pre-requisite: B	asic knowledge about Physical Chemis	try	

Course Objectives:

- Acquire knowledge in Quantum Chemistry, postulates of Quantum Mechanics., Applications of Schrodinger wave equation and Born-Oppenheimer approximation
- Study on Chemical Dynamics and theories in unimolecular, chain and fast reactions and determination of reaction rates.
- Familiarize with concepts of Thermodynamics and statistical thermodynamics, Gibbs- Duhem equation and Sackur-Tetrade equation
- Know about Thermodynamic and Kinetic concept of Electrochemistry and conductance, conductivity of electrolytes

cone	ductivity	y of elec	trolytes											
Cours	e Outco	mes At	the end	of the c	ourse, t	he stude	nt will b	oe able t	:0					
CO1	To kn	ow the c	concepts	such as	Operat	or algeb	ra, Eige	n values	s and Ei	gen fund	ctions,			
	Degen	eracy, S	Schrodin	iger wav	ve equat	ion and	the post	ulates o	f Quant	um Mec	hanics.			
CO2	To lea	To learn about theories of reaction rates, Lindemann, Lindemann-Hinshel wood, and RRKM theories.												
	RRKN	A theori	es.											
CO3														
	irreve	To know about Thermodynamic concepts and entropy change in reversible process and irreversible process, Gibbs- Duhem equation, calculation of thermodynamic properties.												
CO4	To stu	To study the Thermodynamic and Kinetic Derivation of Nernst Equation and the derivation												
	of Del	oye-Huc	kle Equ	ation an	d its Ve	erificatio	n							
	•	Ma	apping	of cours	se outco	mes wit	th the p	rogram	outcon	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	ı	1	3	2	1		1	2		1	1		
CO2	3	1	2	3	1		1		1	1	-	1		
CO3	3	i	1	3	2	1	ı	1		-	2	-		
CO4	3	1	2	3	-	1	1	-	2	1	-	1		

CHE-103: Physical Chemistry I

UNIT-I: Quantum Chemistry-I

(A)Introduction to Exact Quantum Mechanical Results

Operator algebra, Eigen values and Eigen functions, Operators for momentum and energy, Degeneracy, Linear combination of Eigen functions of an operator, well behaved wave functions, Normalized and orthogonal functions, The schrodinger wave equation and the postulates of Quantum Mechanics, (B) **Applications of Schrodinger wave equation:** Particle in one dimensional and three dimensional box, harmonic oscillator, rigid rotor, hydrogen atom and its applications. Hydrogen like wave function, hydrogen like orbitals and their representation, polar plots, contour plots and boundary diagram. (C)**Approximate Methods:** The variation Theorem, Linear variation principle, perturbation Theory (first Order and non-degenerate), Application of variation Method and perturbation theory to the helium atom, The Born-Oppenheimer approximation.

UNIT-II: Chemical Dynamics

(A)**Theories of reaction rates:** Collision theory, steric factor. Theory of Absolute Reaction Rates-Reaction coordinate, activated complex and the transition state. Thermodynamic formiulation of reacton rates.

(B) **Unimolecular reactions:** Lindemann, Lindemann-Hinshel wood, and RRKM theories. Termolecular reactions. Complex reactions-Rate expressions for opposing, parallel and consecutive reaction (all first order type) (C) **Chain reactions:** Dynamic chain, hydrogen-bromine reaction, pyrolysis of acetaldehyde, decomposition of ethane, photochemical reactions- H₂-Br₂, H₂-Cl₂ reactions, Autocatalysis, H₂-O₂ reaction explosion limits. (D) **Fast Reactions:** Flow system –

Temperature and pressure Jump Methods – Relaxation Techniques.

UNIT – III : Thermodynamics

(A) **Brief review of Thermodynamic concepts:** Enthalpy, entropy, free energy. Concept of Entropy –Entropy as a state function –Entropy change in reversible process and irreversible process – Temperature – Entropy diagrams – Entropy change and phase change – Entropy of mixing – Entropy and disorder. (B) **Statistical thermodynamics:** Partial molar properties: their significance and determination of partial molar properties, fugacity and its determination. Concept of distribution, thermodynamic probability and most probable Distribution, Ensemble averaging, postulates of ensemble averaging, canonical, grand canonical and micro- canonical ensembles, partition functions, translational, rotational, vibrational and electronic partition functions, Gibbs-Duhem equation, calculation of thermodynamic properties in terms of partition functions, Entropy of monatomic gases (Sackur-Tetrade equation)

UNIT-IV: Electrochemistry I

(A) Thermodynamic and Kinetic concept of Electrochemistry

Thermodynamic and Kinetic Derivation of Nernst Equation, Chemical and Concentration Cells with and without Transference, Liquid Junction Potential, Derivation of the Expression for Liquid Junction Potentials-its determination and elimination, Applications of EMF Measurements: (i)Solubility product, (ii)pH Determination, (iii) Potentiometric Titrations.; (B)Conductivity: Theory of Electrolytic Conductance, Derivation of Debye-Huckle Equation and its Verification, Debye- Falkenhagen Effect, and Wein Effect, kohlrausch law. Calculation of Solubility of Sparingly soluble Salt from Conductance Measurements.

Conductometric Titrations: Titration of Strong Acid Vs Strong Base (HCl vs NaoH); Titration of Weak Acid Vs Strong Base (AcoH vs NaoH); Titration of mixture of Strong and Weak Acids vs Strong Base; Precipitation Titrations.

Books Suggested

- 1. physical chemistry, P. W. Atkins (ELBS)
- 2. Quantum Chemistry, Ira N. Levine (Prentice Hall)
- 3. Atomic Structure and Chemical bond, Manas Chandra.
- 4. Chemical Kinetics, K.J. Laidler (Mc Graw Hill)
- 5. Kinetics and Mechanism of Chemical Transformations, J. Rajaraman and J. Kuriacose (Mcmilan)
- 6. Thermodynamics for chemists, S. Glasstone
- 7. Chemical thermodynamics, I.M. Klotz
- 8. Statistical Thermodynamics, M. Dole
- 9. Modern Electrochemistry, Vol. I & II, J.O. M. Bockris and A.K.N. Reddy (plen
- 10. An Introduction to Electrochemistry (3rded.), S. Glasstone (Affiliated East-West).

(Compulsory Foundation)

CHE-104 (A)	General Chemistry I	L-5,T-1,P-0	4Credits										
Pre-requisite: U	Pre-requisite: Understanding of graduate level Chemistry												
Course Objecti	ves:												

- Gain knowledge on precision and accuracy, Limit of detection, Limit of determination, Sensitivity and selectivity, statistical evaluation of data
- Familiarize with principles and concepts of flame emission spectroscopy and atomic absorption spectroscopy and their applications.

- To know about ecosystem, nutrient cycle and dessert ecosystem and forest ecosystem and aquatic ecosystem.
- Gain knowledge on air pollution, water pollution, soil pollution, marine pollution, noise pollution and solid waste management.

			0									
Cour	se Outco	mes: A	t the end	d of the	course,	the stud	ent will	be able				
CO1	To kno	w about	mean a	nd medi	an value	es, stand	lard dev	iation aı	nd coeff	icient of	f variation	on.
CO2		ire kno AS a				l instrun	nentatio	n of AA	S and d	ifference	e betwe	en
CO3	To kno	w about	the prin	ciple an	id conce	ept of ec	osystem	and the	ir funct	ioning		
CO4	To have	e an idea	on env	ironmer	ntal poll	ution an	d enviro	onmenta	l impac	t assessr	nent.	
		Ma	apping o	of cours	se outco	mes wit	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	1	-	1	-	-	2	1	1
CO2	3	2	-	3	1	-	2	1	-	1	1	-
CO3	3	3	2	3	2	1		1	2	1	1	2
001	•	•		•	-					_		-

CHE104-A: General Chemistry I

3 | 2 | 1 | 2 | 3 | 1 | 1 | 1 | - | 2 | 1 |

UNIT-I: TREATMENT OF ANALYTICAL DATA

15 Hrs

Precision and accuracy —mean and median values —Standard deviation — coefficient of variation, Types of errors: Determinate and indeterminate errors, confidence limits, significant figures, computations, minimization of errors, statistical evaluation of data —T-test ,F- test , and X^2 —test. Correlation coefficient and coefficient of determination; Limit of detection (LOQ); Limit of determination(LOD) Sensitivity and selectivity of an analytical method.

UNIT-II: FLAME EMISSION AND ATOMIC ABSORPTION SPECTROSCOPY 15 Hrs

- (a) **Flame Emission Spectroscopy**: Principles, chemical reactions in flames, Interferences, evaluation methods, flame photometer and experimental technique, procedure for determinations, limitations and disadvantages. Applications
- (b)**Atomic Absorption Spectroscopy: Flame AAS:** Principle, Instrumentation Sources of radiation (HCL and EDL), Different types of burners, Interferences- Physical, Chemical, spectral and back ground correction, and methods of minimization
- GF AAS: Principle and technique –Comparison between Flame AAS and furnace AAS, Applications of AAS, Comparison between Atomic Absorption & Flame Photometry.

UNIT-III: ECOSYSTEMS

CO₄

15 Hrs

Concept of an ecosystem (Abiotic and biotic environment), structure and function of an ecosystem Producers, Consumers and decomposers. Energy flow in the ecosystem, (Nutrient cycle in the ecosystem) Ecological succession Food Chain, food webs and ecological pyramids. Introduction, types, characteristic features, structure and function of the following ecosystems, Forest ecosystem, Grassl and ecosystem, Desert ecosystems aquatic ecosystems [ponds, streams, lakes, rivers, ocean estuaries].

UNIT-IV: ENVIRONMENTAL POLLUTION

15 Hrs

Definition a) Air pollution b) Water pollution c) Soil pollution d) Marine pollution e) Noise

pollution f) Thermal pollution g) Nuclear pollution Solid waste management : Causes, effects and control measures of urban and industrial wastes. Environmental impact assessment.

Books Suggested

- 1. H.W. Willard, LL. Merritt and J.A. Dean: Instrumental Methods of Analysis
- 2. Vogel's Text book of Quantitative Inorganic Analysis.
- 3. Analytical Chemistry
- 4. Instrumental Methods of Analysis H. Kaur

CHE 1	104B		Gen	eral Ch	emistry	7 I	L-	3,T-1,P	-2	40	Credits			
Pre-re	Pre-requisite: Understanding of graduate level Chemistry													
Cours	e Objec	tives:												
• To f	amiliari	ze with	the sign	ificance	e of gree	en chem	istry and	d assessi	ment of	the imp	act.			
• To §	gain kno	wledge	on bioc	atalyst i	n oxida	tion, red	luction a	and hydr	olytic re	eactions				
• To l	nave an	idea on	solvent	free rea	ctions a	nd mode	ern reac	tion tecl	nniques.					
• To f	familiari	ze with	the use	of ionic	liquids	as green	n solven	its.						
Cours	e Outco	mes: A	t the end	d of the	course,	the stud	ent will	be able						
C	:01	To g	et know	ledge or	n green	reaction	condition	ons and	their im	pact on	environ	ment.		
C	O2	To k	now abo	out use o	of differ	ent bioc	atalysts	as envir	onment	ally frie	ndly rea	gents.		
C	03		cquire k owave e	•	ge on th	e use of	modern	technic	jues like	ultraso	und,			
C	O4	To h	ave an i	dea on t	he use o	of ionic	liquids i	n differe	ent react	tions.				
		Ma	apping	of cours	se outco	mes wit	th the p	rogram	outcon	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1		
										0	1	2		
CO1	3	2	1	ı	2	1	1	-	1	-	1	1		
CO2	3	1	1	3	1	_	1	1	-	1	_	1		
CO3	3	3	2	3	2	1		2	-	1	1	1		
CO4	3	2	1	2	3	1	1	1	1	-	1	1		

CHE 104B: General Chemistry I

UNIT-I

Fundamentals and significance of Green Chemistry: Discussion of the current state of chemistry and the environment and the definition of green chemistry. Assessment of the impact of chemistry in the environment and definition of risk hazard. An introduction to the tools of green chemistry and its fundamental principles.

Principles of Green Chemistry: Prevention of waste / by-products, Hazardous products-Designing of safer chemicals- Selection of appropriate solvents and starting materials- Use of protecting groups and catalysis- Designing of biodegradable products.

UNIT-II

Catalysis for Green Chemistry: Use of biocatalysts- Biochemical Oxidation, Biochemical Reduction, Enzyme Catalyzed Hydrolytic Process, Modified biocatalysis- transition metal catalysis-Reformatsky reaction, Wurtz reaction, Pinacol coupling, Simmons-Smith reaction, Mukaiyama reaction, Heak reaction, Ullmann's coupling.

UNIT-III

Solvent Free Reactions: Solvent free techniques- Reactions on solid mineral supports, Phase Transfer Catalysis- C-alkylation, N-alkylation, S-alkylation, Darzen's reaction, Wittig reaction. Ultrasound assisted green synthesis- Oxidation, Reduction, Hydroboration, Bouveault reaction, Strecker reaction, Microwave assisted green synthesis- Biginelli reaction, Aza-Michael reaction, Suzuki reaction, Stille reaction, Sonogashira reaction.

UNIT-IV

Ionic liquids: Definition- Types of Ionic Liquids-Synthesis of Ionic Liquids- Selection of ionic liquids- physical properties- Application in organic synthesis- alkylation, allylation, oxidation, reduction, polymerization, hydrogenation, hydroformylation, alkoxycarbonylation, carbon-carbon bond forming reactions, alkene metathesis.

Books suggested:

- 1. New Trends in Green Chemistry by V.K. Ahluwalia, M. Kidwai.
- 2. Green Chemistry: Environment Friendly Alternatives by Rashmi Sanghi, M M Srivastava

- 3. Green Solvents for Organic Synthesis by V.K. Ahluwalia, Rajender S. Varma
- 4. Green Analytical Chemistry by Mihkel Koel and Mihkel Kaljurand

CHE 1	.05 A &	\mathbf{B}			-	ctical I:			5,T-1,P	-0	4	Credits	;			
			In	organic	& Phys	sical Ch	emistry	,								
Pre-re	quisite:	Unc	ders	standing	of grad	uate lev	el Inorg	anic & 1	Physical	Chemis	stry prac	ctical.				
Cours	e Objec	tives	S:													
		•		-			l analysi									
• Qua	ntitative	e esti	ma	tion of i	norgani	c compo	ounds th	rough v	olumetr	ic techn	iques.					
• Cali	bration	of vo	oluı	metric a	pparatus	s and sta	tistical	analysis	of the c	lata.						
• Det	erminati	on o	f cı	itical so	lution to	emperat	ure of pl	henol-w	ater sys	tem.						
Cours	e Outco	mes	: A	t the end	d of the	course,	the stud	ent will	be able							
	CO1	7	То	at the end of the course, the student will be able demonstrate mastery of basic semi-micro qualitative analysis of simple salts												
			and	interpre	ets analy	tical da	ta and w	ill mak	e scienti	fic clair	ns that a	are supp	orted			
				the obse	•							11				
	CO2						mes of t	itration	and calc	ulation	of error	2				
	.02		10	1 a i i i i i i i i i i i i i i i i i i	ize with	teening	ucs of the	mation	and care	uration	or crior	· · · · · · · · · · · · · · · · · · ·				
(CO3	'	To	study th	e detern	nination	of critic	cal solut	ion tem	perature	, eutecti	c comp	osition,			
		(dist	ribution	coeffic	ient, ads	sorption	of diffe	rent s	ystems.						
	CO4	'	То	calibrate	e the sta	tistical d	lata									
			Ma	apping o	of cours	se outco	mes wit	h the p	rogram	outcon	nes					
	PO1	PC)2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1			
											0	1	2			
CO1	3	2		2	3	1	2	-	1	2	1	2	-			
CO2	3	2		2	2	-	2	1	1	-	2	2	1			
CO3	3	2		1	2	2	1	-	2	1	1	2	1			
CO4	3	2		2	1	2	1	-	2	2	1	1	1			

CHE 105 A & B: Core practical I: Inorganic & Physical Chemistry

Semi Micro Qualitative Analysis

Qualitative Analysis of a mixture containing four cations including two less common cations (viz., W, Mo, Se, Te, V, Ce, Th, Zr, Li and U).

- 1. Determination of critical solution temperature, eutectic composition and temperature of binary system.
- 2. Calibration of volumetric apparatus and statistical analysis of the data.
- 3. Determination of critical solution temperature of phenol-water system and study the effect of electrolyte on CST.
- 4. Determination of Eutectic composition and temperature of binary system
- 5. Determination of distribution coefficient of benzoic acid between water and benzene.
- 6. Study the adsorption of acetic acid on charcoal and analysis of the data on the basis of Langmuir and Freundlich adsorption isotherms.
- 7. Determination of rate constant of acid hydrolysis of an ester and investigate the effect of catalyst concentration, reactant concentration and temperature.

CHE 106A & B	Core practical I: Organic & General Chemistry	L-5,T-1,P-0	4 Credits
Pre-requisite: Un	nderstanding of graduate level Organic	& General Chemis	stry practical.
• Identification of	es: of single organic component by system	natic qualitative ana	lysis

- Preparation of derivatives and purification process
- Single step preparations
- Calibration of spectral analysis to this structures

Ider	ntificatio	on of sir	ngle orga	anic con	nponent	by syste	ematic q	ualitativ	e analy	sis.		
Cours	e Outco	mes: A	t the end	d of the	course,	the stud	ent will	be able				
(CO1	To f	amiliari	ze the sy	stemati	c proced	dures of	analysis	of orga	anic con	nponents	S.
(CO2	To k	now the	confor	mationa	l tests fo	or variou	ıs functi	onal gro	oups.		
(CO3		understa logically				l familia	rize wit	h metho	odologie	s to prej	pare
	CO4	Pu	rification	of com	pounds	by diffe	erent pro	ocess				
		M	apping	of cours	se outco	mes wit	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1
										0	1	2
CO1	3	2	3	3	1	2	-	1	-	1	1	-
CO2	3	2	2	3	_	2	1	1	1	-	1	2
CO3	2	2	2	1	2	1	2	1	-	1	-	2
CO4	1	2	2	1	1	1	1	-	1	1	1	2

CHE: 106 B: PRACTICAL – II: ORGANIC CHEMISTRY

Single step preparations

- 1. Preparation of aspirin
- 2. Preparation of p-nitroacetanilide
- 3. Preparation of p-bromoacetanilide

СН	E 107	Hu	man Va		id Profe ics-I	essional	L-3	3,T-1,P-	2	4	4 Credit	S				
				Etin	105-1											
Pre-re	quisite:	Unders	standing	of grad	uate lev	el Huma	an Valu	es and p	rofessio	nal ethic	es					
	e Objec															
	ılyze val			-												
	derstand															
	cept of			_				•								
	cal inter					uation o	r practi	ce and a	ssess o	wn ethic	al value	s with				
				ext and problems												
Cours	e Outco	mes: A	t the end of the course, the student will be able to													
		_														
C	: 01	To k	now abo	out the n	eeds an	d impor	tance of	profess	ional et	hics.						
C	CO2	To a	nalyze n	ature of	Values	, basic N	Moral C	oncepts	characte	er and C	onduct.					
C	:O3	To g	ain knov	vledge o	on indiv	idual an	d societ	y ethica	l values	, ahimsa	ı, satya a	ınd				
		brah	machary	a.												
C	CO4	To u	nderstar	d value	s of Bha	agavd G	ita, vari	ous relig	gions, re	ligious	tolerence	е,				
		Gano	dhian etl	nics.						_						
		Ma	apping o	of cours	se outco	mes wit	h the p	rogram	outcon	nes						
	DO 1										DO11	DO 12				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12				
CO1	3	1	-	3	2	-	1	2	3	1	1	2				
CO2	3	2	2	3	1	1	1	2	3	-	-	2				
CO3	3	1	2	3	2	-	1	-	_	1	1	3				
CO4	3	1	1	3	-	1	2	2	2	2	-	3				

CHE 107: ELECTIVE FOUNDATION (HUMAN VALUES AND PROFESSIONAL ETHICS

Chapter I: Definition and Nature of Ethics – Is relation to Religion, Politics, Business, Law, Medicine and Environment. Need and Importance of Professional Ethics – Goals – Ethical Values in Various Professions.

Chapter II: Nature of Values – Good and Bad, Ends and Means, Actual and Potential Values, Objective and Subjective Values, Analysis of Basic Moral Concepts – Right, Ought, Duty, Obligation, Justice, Responsibility and Freedom, Good Behavior and Respect for Elders, Character and Conduct.

Chapter III: Individual and Society: Ahimsa (Non-Violence), Satya (Truth), Brahmacharya (Celibacy), Asteya (Non Possesion) and Aparigraha (Non-stealing). Purusharthas (Cardinal virtues) - Dharma (Righteousness), Artha (Wealth), Kama (Fulfillment Bodily Desires), Moksha (Liberation), Crime and Theories of Punishment – (a) Reformative, Retributive and Deterrent, (b) Views on Manu and Yajnavalkya

Chapter IV: Bhagavd Gita – (a) Niskama Karma, (b) Buddhism – The Four Nobel Truths – Arya astanga marga, (c) Jainism - Mahavratas and Anuvratas. Values Embedded in Various Religions, Religious Tolerence, Gandhian Ethics.

Books for study:

- 1. Johns S Mackenjie: A Manual of ethics
- 2. "The Ethics of Management" by Larue Tone Hosmer, Richard D. Irwin Inc.
- 3. "Ethics in Management" by S.A. Shelekar, Himalaya Publishing House.
- 4. Harold H. Titus: Ethics for Today

- 5. Maitra, S.K: Hindu Ethics
- 6. William Lilly: Introduction to Ethics
- 7. Manu: Manava Dharma Sastra or the Institute of Manu: Comprising the Indian System of Duties: Religious and Civil (ed) G.C. Haughton.
- 8. Sasruta Samhita: Tr. Kaviraj Kunjanlal, Kunjanlal Brishagratha, Chowkamba Sanskrit Series, Vol I,II and III, Varanasi, Vol I PP, 16-20, 21-32 and 74-77 only.
- 9. Charaka Samhita: Tr. Dr. Ram Karan Sarma and Vaidya Bhagavan Dash, Chowkambha Sanskrit Series Office. Varanasi I, II, III Vol I PP 183-191.
- 10. Ethics, Theory and Contemporary Issues. Barbara Mackinnon, Wadsworth/Thomson Learning, 2001.
- 11. Analyzing Moral Issues, Judith A. Boss, Mayfield Publishing Company, 1999.
- 12. I.C. Sharma Ethical Philosophy of India. Nagin& Co Julundhar.

L.5 T.1 P.0

Inorganic Chemistry II

CHE -	201		Inorga	anic Che	emistry	111		L-5, T-	1, P-U	4	Credits	
Pre-re	quisite:	Unders	tanding	of gradu	ate leve	el chemi	istry					
C	ourse O	bjective	es:									
•	Understa	and mag	gnetic p	roperties	of trai	nsition 1	metal co	mplexes	and va	rious rea	ctions or	n ligands
,	with resp	pect to s	ynthesis	S.								
•	Gain kn	owledg	e on e	lectronic	specti	a of co	omplex	molecule	es of o	ctahedra	l and te	trahedral
	geometr	y										
•	Understa	and ma	gnetic	propertie	es viz.	, diama	gnetism	and pa	ramagn	etism a	nd other	related
			_	olecules				•				
•]	Familiar	ize witl	h differ	ent cata	lytic re	actions	of com	plex mol	lecules	and fact	ors effec	cting the
	reactions				•			1				Č
Cours	e Outco	mes: A	t the end	of the c	ourse, 1	he stude	ent will l	oe able				
CO1	To fam	iliarize	with the	general	method	ls of cor	nplex pr	eparation	s and p	roperties	, nature o	f
	bonding	g and st	ructural	features	of meta	al compl	lexes.					
CO2	To kno	w about	Russel-	-Saunder	s coupl	ing, spli	itting of	energy le	vels in	octahedra	al field ar	nd
	differen	ntiate be	etween C	Orgel dia	grams a	and Tana	abe-Sug	ano diagr	ams.			
CO3	To und	erstand	about th	e laws o	f Hund	s, Curie	and We	iss, magn	etism a	nd magn	etic susce	eptibility
	determ	ination 1	by Gouy	's and F	arady n	nethods.						
CO4	To gair	knowl	edge on	Induced	reactio	ns, Free	radical	reactions	, Therm	al decom	position	
	reaction	ns, Chai	n reactio	ons.								
		I	Mappin	g of cou	rse out	comes v	vith the	program	outco	mes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	-	2	1	-	2	1	-	1
CO2	3	2	-	3	1	2	1	-	1	2	1	1
CO3	3	-	2	3	-	2	1	1	-	1		1
CO4	3	1	1	3	-	2	-	1	1	1	1	-

CHE 201: INORGANIC CHEISTRY II

UNIT – I: TRANSITION METAL II – COMPLEXES II

CHE - 201

15 Hrs

Transition metal π – complexes with unsaturated organic molecules – alkenes, alkynes, diene, dienyl and Cyclopentadienyl complexes and arene complexes-general methods of preparation, properties, nature of bonding and structural features – Important reactions relating to Nucleophilic and Electrophilic attack on ligands and to organic synthesis.

UNIT - II: ELECTRONIC SPECTRA OF COMPLEXES

15 Hrs

Russel-Saunders coupling – Spectroscopic term symbols- Derivation of term symbols of p² and d² configuration, Hole Formulation, Energy ordering of terms (Hund's Rules), Splitting of energy levels and spectroscopic states in Octahedral field, Selection rules – Break – down of selection rules, Orgel diagrams, Definition and utility–Orgel Diagrams for d¹ to d9 configurations in Octahedral and tetrahedral fields. Interpretation of electronic spectra of high spin octahedral and tetra hedral complexes of Ti(III), V(III), Cr(III), Mn(III), Mn(II), Fe(II), Fe(III), Co(III), Co(II), Ni(II) and Cu(II) complexes, Calculation of Dq and B¹ parameters for Cr(III) and Ni(II) complexes. Tanabe – Sugano diagrams, Differences between Orgel diagrams and Tanabe – Sugano diagrams, Tanabe – Sugano diagrams of d² to d6 and d8 configurations. Charge transfer spectra- LMCT and MLCT.

Diamagnetism and paramagnetism-orbital and spin contributions, spin-orbit coupling, Hunds third rule and Energies of J levels – Curie law and Curie – Weiss law- Ferromagnetism and antiferromagnetism – Temperature independent magnetism Magnetic susceptibility and its determination by Gouy's and Faraday methods. Calculation of magnetic moment from magnetic susceptibility, spin-only formula, Orbital contribution to magnetic moment (Oh and Td Complexes) –Paramagnetism and crystalline fields – Ti (III), V (III), VO²⁺, Cr (III), Mn (II), Fe (III), Co(II), Ni (II) and Cu (II). Magnetic Exchange in copper acetate and other dimmers – spin cross over in complexes.

UNIT –IV: CATALYSIS 15 Hrs

Homogeneous catalysis, Metal ion catalyzed reactions – Redox potentials and processes – Mechanism of redox processes involving ligands – Factors affecting redox potentials - other types of metal catalyzed reactions – Reactions involving Ag (I), Cu (II) and Os (VIII) – Reactions of Oxyanions – Factors affecting rate (General discussion only) – Induced reactions – Free radical reactions – Thermal decomposition of peroxy disulphate – Fe(III) – S_2O_8 reactions – chain reactions – H-Br reactions, H_2O_2 – S_2O_8 reactions.

Books Suggested

- 1. Inorganic Chemistry principles of Structure and Reactivity 6th Edition. James E. Huheey.
- 2. Organometallic Chemistry: R.C. Mehrotra and Singh.
- 3. R. S. Drago: Structural methods in Inorganic Chemistry.
- 4. H. H. Willard, L. L. Merritt, Jr., J. A. Dean and F. A. Settle, Jr.: Instrumental Methods of Analysis (CBS Publishers).
- 5. R. L. Carlin: Magnetic Chemistry. R. L. Datta and A. Syamal: Elements of Magnetic Chemistry.

Organic Chemistry II

L-3 T-1 P-2

4 Credits

CHE	-202		Orga	nic Che	emistry	11	L-	3, 1-1,	P-2	4	Credits	;	
Pre-re	quisite:	Unders	standing	of Orga	nic Che	emistry	1						
Course	e Object	tives:											
• Able	e to reco	ognize,	classify	, explai	n, and a	apply fu	ndamen	tal orga	nic read	ctions su	ich as E	E2, E1,	
E1C			•					Ü					
• Fam	iliar wi	th mol	ecular 1	rearrang	ements	involvi	ng elec	tron de	ficient	carbon,	nitroge	en and	
	oxygen atoms and electron rich carbon atom.												
	Provide Hantzsch-Widmann nomenclature for the three and four membered heterocycles. Be												
	able to predict synthetic routes and chemical reactions of these heterocycles.												
	• Be familiar with occurrence, isolation, structural elucidation and synthesis of natural products-												
	loids												
						the stud							
CO1		To familiarize the mechanisms of E_1 , E_2 and E_{1CB} reactions, steroselectivity and											
	synpyrolytic eliminations and use of isotopes, chemical trapping and crossover												
	experiments.												
CO2	To learn the rearrangements involving electron deficient carbon, nitrogen and oxygen												
			ctron ri	ch carbo	on atom	and fan	niliarize	with th	e limita	itions ar	ıd appli	cations	
	of reac												
CO3	To lea	rn the	synthesi	is of the	ree and	four m	embere	d hetero	cycles,	mechan	ism of	ring	
						electron	donatii	ng and v	withdrav	wing sul	bstituen	ts in	
	selecti	vity of 1	ring ope	ning rea	ctions.								
CO4	To unc	lerstand	l the stru	ıctural e	lucidati	on and s	ynthesi	s of alka	lloids us	sing spec	cific rea	gents.	
	Mapping of course outcomes with the program outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	2	3	_	2	1	_	1	1	1	_	
CO2	3	2	2	3	2	2		1	1	-	1	1	
CO3	3	2	2	3	2	2	1	1	_	1	-	1	
CO4	3	2	2	3	-	2	-	1	-	1	1	1	
L	L					<u>l</u>							

CHE-202: ORGANIC CHEMISTRY II

UNIT-I: Reaction mechanism-I

CHE-202

15 Hrs

Electrophilic addition to carbon carbon double bond: Stereoselective addition to carbon carbon double bond; anti addition- Bromination and epoxidation followed by ring opening. Syn addition of OsO_4 and $KMnO_4$.

Elimination reactions Elimination reactions E_2 , E_1 , E_{1CB} mechanisms. Orientation and stereoselectivity in E_2 eliminations. Pyrolytic syn elimination and α -elimination, elimination Vs substitution. Facors influencing the elimination reactions

Determination of reaction mechanism: Determination of reaction mechanism: Energy profiles of addition and elimination reactions, transition states, product isolation and structure of intermediates, use of isotopes, chemical trapping, crossover experiments. Use of IR and NMR in the investigation of reaction mechanism.

UNIT-II: Molecular Rearrangements:

15 Hrs

Rearrangements to electron deficient Carbon atom:

Pinacol-Pinacolone, Wagner-Meerwein, Dienone-Phenol and Demjonove Rearrngements Rearrangements to electron deficient Nitrogen atom:

Hofmann, Curtius, Schimidt and Beckmann Rearrangements.

Rearrangements to electron deficient Oxygen atom: Baeyer-Villiger and Dakins Rearrangements

Rearrangements to electron rich Carbon atom: Favorski and Neber Rearrangements

Aromatic and Sigmatropic Rearrangements: Fries and Claisen Rearrangements

UNIT III: Three and four membered heterocycles:

15 Hrs

Systematic nomenclature (Hantzsch-Widmann system) and Replacement nomenclature for monocyclic heterocycles (Three and four membered rings). Synthesis and chemical reactions of aziridines, oxiranes, thiiranes, azetidines, oxetanes, and thietanes.

UNIT-IV: Alkaloids 15 Hrs

Occurrence, isolation, general methods of structure elucidation and physiological action, degradation, classification based on nitrogen heterocyclic ring, structure elucidation and synthesis of the following: Atropine, Papaverine and Quinine.

Books Suggested:

- 1. Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, John Wiley.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J Sundberg, Plenum.
- 3. Structure and Mechanism in Organic Chemistry C.K. Inglod, Cornell University Press.
- 4. Organic Chemistry, R.T Morrison and R.N. Boyd, Prentice Hall.
- 5. Modern Organic Reactions, H.O. House, Benjamin.
- 6. Principles of Organic Synthesis, R.O.C Norman and J. M. Coxon, Blackie Academic.
- 7. Stereochemistry, P.S. Kalsi, Wiley Eastern.
- 8. Text book of Organic Chemistry, M.C. Murry
- 9. Text book of Organic Chemistry, Fessendon and Fessendon.
- 10. Text book of Organic Chemistry, T.W. Solomon,
- 11. Organic Chemistry, Vol II, I.L. Finar, ELBS Eds.
- 12. Heterocyclic chemistry T.L Gilchrist, Longman Scientific Technical
- 13. An Introduction to the Heterocyclic compounds, R M Acheson, John Wiley.

(Mandatory Core)

CHE -203	Physical chemistry II	L-5,T-1,P-6	4Credits
Pre-requisite: Ba	asic knowledge about Physical Chemis	try	

Course Objectives:

- Learn Angular momentum and Molecular Orbital Theory and application of Huckel theory to organic molecules.
- Know about concepts in Surface Chemistry, concept of electric double layer model and Micelles.
- Get knowledge on symmetry and group theory their use in spectroscopy, Mulliken character tables.
- Understand Irreversible Electrode phenomenon controlled potential electrolysis and polarography.

Course Outcomes At the end of the course, the student will be able

- CO1 To know about Pauli Exclusion principle and Slater determinant, atomic orbitals, Simple molecular orbitals and Huckel theory of conjugated systems.
- CO2 To learn Gibbs adsorption isotherm, BET equation and correlate limitations, critical micellar concentration (CMC) and factors affecting the CMC of surfactants.
- CO3 To identify Relation between order of a finite group and its sub-group, conjugacy, Symmetry point group (MLS, MHS and MSS) and orthogonality theorem.
- CO4 To acquire knowledge on DC-Polarography, AC-Polarography, Controlled Potential Electrolysis, to derive equation for Tafel plots, half-wave potentials for reversible system.

Mapping of course outcomes with the program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	3	-	2	-	1	1	1	2	-
CO ₂	3	2	2	3	2	2	-	1	1	1	-	1
CO ₃	3	2	2	3	-		1	-	-	1	1	-
CO4	3	2	-	2	1	1	-	1	1	1	1	-

CHE-AC-203 Physical Chemistry III

UNIT-I: Quantum Chemistry-II

15 Hrs

- (A) Angular momentum: Angular momentum, Rotations and angular momentum, Eigen functions and Eigen values of angular momentum, Ladder operator, addition of angular momenta, spin, antisymmetry and pauli Exclusion principle. Slater determinant.;
- (B) Molecular Orbital TheoryAtomic Orbitals, Simple Molecular Orbitals, Hybrid Atomic Orbitals, Shapes and energies of Molecular Orbital, Systems of Organic Molecules (Ex: Methane, Ethylene, Acetylene). Huckel theory of conjugated systems, Π-bond order and charge density calculations, application of Huckel theory to ethylene, butadiene and benzene.

UNIT-II: Surface Chemistry

15 Hrs

Surface tension, capillary action, pressure difference across curved surface, (Laplace equation), vapour pressure of droplets (Kelvin equation), Gibbs adsorption isotherm, BET adsorption isotherm, derivation of BET equation, limitations of BET equation, estimation of surface area from BET equation, Surface films on liquids. Concept of electric double layer model- Helmholtz perrin, Gouy- Chapman and stern models (no derivation)

Micells: Surface active agents, classification of surface active agents micellisation, hydrophobic interaction, critical micellar concentration (CMC), factors affecting the CMC of surfactants, thermodynamics of micellisation, emulsions, reverse micelles.

UNIT-III: SYMMETRY AND GROUP THEORY

15 Hrs

Definition of a group, rules that are set for a group, sub-group, order of a group, Relation between order of a finite group and its sub-group, conjugacy relation and class of a group, symmetry elements and symmetry operation. Symmetry point group (MLS, MHS and MSS), Schoenflies symbols - Representation of groups

by matrices (representation for C_n , C_{nv} , D_{nh} etc. groups to be worked out explicitly), character of a representation, group multiplication tables, reducible - irreducible representations. The great orthogonality

theorem (without proof) - character tables (H₂O,NH₃) and their use in spectroscopy, Mulliken character tables.

UNIT-IV: ELECTROCHEMISTRY-II

15 Hrs

Irreversible Electrode phenomenon: Reversibility and irreversibility, Dissolution and deposition potentials, Decomposition voltage, overvoltage, diffusion overvoltage, charge transfer overvoltage, concentration overvoltage-hydrogen and oxygen overvoltages, Tafel plots, Exchange current density and Transfer coefficient, Butler-Volmer equation for one electron transfer processes.

Polarography: Theory, classification, principle, Instrumentation of Polarography, DME, HMDE diffusion current, Ilkovic equation, DC-Polarography, AC-Polarography, Controlled Potential Electrolysis, Millicoulometry, Equation for half-wave potentials, for reversible system when oxidant alone, reductant alone and both are present.

Books Suggested

- 1. P.W. Atkins: Physical Chemistry (ELBS).
- 2. Ira N. Levine: Quantum Chemistry (Prentice Hall).
- 3. R. Mcweeny: Coulson's Valence (ELBS).
- 4. J.O.M. Bockris and A.K.N. Reddy, Modern Electrochemistry, vol.I & II (Plenum).
- 5. S. Glasstone; An Introduction to Electrochemistry (3rd ed.)(Affiliated East-West).
- 6. V. Moroi: Micelles, theoretical and applied aspects (Plenum).
- 7. Maron and prutton: principles of physical Chemistry.
- 8. Silbey, Alberty, Bawendi. Physical Chemistry. Jhon-Wiley & Sons. 4th edition-2006.
- 9. D.N. Bajpai: Advanced physical Chemistry: S. Chand & Company, 1998.

(COMPULSORY FOUNDATION)

CHE-204 A	General Chemistry II	L-5,T-1,P-0	4Credits

Pre-requisite: Understanding of graduate level Chemistry

Course Objectives:

- Gain knowledge on the principles of different electro analytical methods
- Familiarize with chromatographic techniques.
- To study on biodiversity and conservation of biodiversity
- To know about natural resources and non-renewable resources

Cours	Course Outcomes: At the end of the course, the student will be able											
CO1	CO1 To acquire knowledge on ion selective electrodes, solid membrane electrodes and glass											
electrodes and principles of amperometric titrations.												
CO2 To learn general principles and classifications of chromatographic separations and												
applications of TLC, GLC and HPLC.												
CO3 To know about biodiversity, ecosystem diversity and conservation of biodiversity.												
CO4	CO4 To acquire knowledge on natural resources related to food, water, mineral, energy and land.											
	Mapping of course outcomes with the program outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1
										0	1	2
CO1	3	2	2	3	1	2		1	1	1	1	2
CO2	3	- 1	2	3	-	2	1	-	2	1	1	1
CO3	3	3	2	2	1	2	-	1	-	-	1	2
CO4	3	3	2	2	2	2	1	1	-	1	1	1

CHE 204-A: General Chemistry II

UNIT-I: ELECTRO ANALYTICAL METHODS

Theory of potentiometry, calculation electrode potential at the equivalence. Finding of equivalence volume, derivative and linear titration plots. Ion-sensitive electrodes –types of ion sensitive electrodes –metal based cation and anion sensitive electrodes, solid membrane electrodes, glass electrodes. Liquid ion-exchange electrodes, gas sensing membrane electrodes, Amperometric titrations - Anodic stripping voltammetry, chronoamperometry, chronopotentiometry, Cyclic Voltammetry, Differential Pulse Polarography, linear sweep voltammetry, square wave voltammetry.

UNIT-II: CHROMATOGRAPHY

General principles and classifications of chromatographic separations

Thin layer chromatography: Classification, principle, experimental technique, sample application, development of plate, retardation factor.

Gas liquid chromatography: Gas liquid chromatography - instrumentation (columns and detectors), retention time and retention volume. Chromatographic behaviour of solutes, column efficiency and resolution, column processes and band broadening, time of analysis and resolution, Van-Deemter equation.

High performance liquid chromatography: Theory and instrumentation-column performance, gradient elution, delivery system, sample introduction, separation columns, detectors and applications of HPLC.

Unit – III: Biodiversity

Conservation introduction definition genetic species and ecosystem diversity, hot spots of biodiversity, threats to biodiversity habitat loss poaching of wildlife, man wildlife conflicts. Endangered and endemic species of India, conservation of biodiversity in – situ an ex-situ conservation of biodiversity.

Unit – IV Natural resources and non-renewable resources

An overview of natural resources and associated problems with references to a) Forest resources b) Water resources c) Mineral resources d) Food resources e) Energy resources f) Land resources.

Books Suggested

- 1. H.W. Willard, LL. Merrit and J.A.Dean: Instrumental Methods of Analysis. Affiliated East-West).
- 2. G.H. Jeffery J. Bassett, J. Mendham and R.C. Denny. Vogel's Text Book of Quantitative Chemical Analysis (ELBS).

- 3. D.A. Skoog and D.M. West: Principles of Instrumental Analysis (Holt, Rinehart and Wilson).
- 4. J.G. Dick: Analytical Chemistry (McGraw Hill).
- 5. D. Midgley and K. Torrance: potentiometric Water Analysis (John Wiley).
- 6. Silbey, Alberty, Bawendi. Physical chemistry. Jhon-Wiley & sons. 4th edition-2006.

Pre-requisite: Understanding of graduate level Chemistry												
Pre-re	quisite:	Unders	standing	of grad	uate lev	el Chem	nistry					
Cours	e Objec	tives:										
• To l	To know about quality control and impurities in Pharmaceuticals.											
• To 1	To have an idea on body fluids, blood, enzymes and forensic.											
• To gain knowledge on composition of milk, oil, fats etc.												
• To familiarize with different types of fuels, soils and its ingredients.												
Course Outcomes: At the end of the course, the student will be able												
CO1 To acquire knowledge in pharmaceutical chemicals												
	O2	To familiarize with blood fluids, blood, enzymes and forensic										
C	03	To k	now abo	out ferm	entation	, detecti	ion of p	urity, be	verages			
C	O4	To a	cquire k	nowled	ge on ga	seous fu	iels, soi	l ingred	ients and	d analys	is of tra	ce
		elem	ents	`						•		
		Ma	apping	of cours	se outco	mes wit	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	1	2	-	2	2	-	1	1
CO2	3	1	2	3	1	2	1	-	2	2	1	-
CO3	3	2	2	3	1	2	2	1	-	2	1	1
CO4	3	2	3	2	1	2	1	2	-	1	1	1

Chemistry in Contemporary Society L-3,T-1,P-2

CHE 204B: Chemistry in Contemporary Society

UNIT - I: PHARMACEUTICALS

CHE 204B

15 Hrs

4Credits

Pharmaceuticals: Importance of quality control, drugs and pharmaceuticals, sources of impurities in pharmaceutical chemicals, analytical quality control in finished / final products, common methods of assay. **Common drugs and their uses**: Analgesics – aspirin, paracetamol; Antheimentics – mebendazole; Antiallergies – chlorpenneramine malleate; Antibiotics-pencillin, chloromecytin; Anti-inflammatory agents-oxyphenbutazone; **Antimalarials** – primaquine phosphate; Antituberculosists – INH; Narcotics – nicotine, morphine; Expectorants – Benadryl; Sedatives – diazepam; Vitamins – B1, B2, B6, niacin and folic acid.

UNIT - II: FORENSIC AND BIOMEDICALS

15 Hrs

Body fluids: Composition and detection of abnormal level of certain constituents leading to diagnosis, sample collection and preservation of physiological fluids, analytical methods for the constituents of physiological fluids (blood, urine).

Blood: Estimation of glucose, cholesterol, urea, haemoglobin and bilirubin.

Urine: Urea, uric acid, creatinine, calcium phosphate, sodium, potassium and chloride.

Enzymes: Biological significance, assay of enzymes (pepsin, tyrasinase), vitamins (thiamine ascorbic acid, vitamin A) and harmones (progesterone, oxytocin, insulin), chemical, instrumental and biological assays to be discussed wherever necessary.

Forensic: General discussion of poisons with special reference to mode of action of cyanide organophosphates and snake venom, poisonous materials such as lead, mercury and arsenic in biological materials.

UNIT – III : FOOD AND BEVERAGES

15 Hrs

Milk and milk products: Composition, alcohol test, fermentation, dye reduction-methylene blue and resazurin tests, analysis of fat content, minerals in milk and butter, estimation of added water in milk.

Oils and fats: General composition of edible oils, detection of purity, tests for common edible oils and groundnut oil, cottonseed oil and mustard oil, tests for adulterants like argemone oil and mineral oils,

Beverages: Soft drinks, alcoholic drinks, tea, coffee and fruit juice, analysis of caffeine in coffee and tea, detection of chicory in coffee, chloral hydrate in toddy, food preservatives like benzoates, propionates, sorbates, bisulphites, artificial sweetners, like saccharin, dulcin and sodium cyclamate, flavours – vanillin, esters (fruit flavours) and monosodium glutamate, artificial food colourants-coal tar dyes and non-permitted colours and metallic salts, control of food quality – codex alimentarices, Indian standards.

UNIT - IV: FUEL AND SOIL

15 Hrs

Fuels: Definition, classification and characteristics of fuels, sampling, determination of calorific value. Liquid fuels-determination of flash point, fire point, aniline point. Knocking of petrol and diesel – octane and cetere numbers carbon residue. **Gaseous fuels**: Coal gas, waste gas, producer gas, gober gas and blast furnace gas, calorific value determination by Junker's gas calorimeter, relatice merits of solid, liquid and gaseous fules. **Soil**: Ingradiants of soil-organic matter, nitrogen, sulphur, sodium, potassium and calcium, analysis of trace elements, copper, molybdenum, zinc and boron.

Reference Books:

- 1. Pharmaceutical Analysis, T. Higuchi and E.B. Hanseen, John Wiley and Sons, New York.
- 2. Quantitative Analysis of drugs, P.D. Sethi, 3rd edition, CBS Publishers, New Delhi, 1997.
- 3. Practical Clinical biochemistry methods and interpretations, R. Chawala, J.P. Brothers Medical Publishers (P) Ltd., 1995.
- 4. Laboratory manual in biochemistry, J. Jayaraman. New Age International Publishers, New Delhi, 1981.

morganic & Thysical Chemistry	CHE 205 A & B Core practical I: L-5,T-1,P-0 4 Cre Inorganic & Physical Chemistry	dits
-------------------------------	--	------

Pre-requisite: Understanding of graduate level Inorganic & Physical Chemistry practical.

Course Objectives:

- Separation and determination of the two component mixtures
- Preparation of metal complexes
- Familiarize with conductometric, potentiometric and redox methods of analysis
- colorometric and pHmetric methods of analysis

Course Outcomes: At the end of the course, the student will be able

CO1	To sepa	arate and	d determ	ine the	two con	nponent	mixture	es				
CO2	To acc	To acquire knowledge in the preparation of metal complexes										
CO3	To study the determination of cell constant and verification of Onsagar equation, strength											
	of stro	of strong acid by Titration of a strong acid with a strong base and vice versa										
CO4	To get knowledge on the applications of conductometry, potentiometry, coulometry and											
	pHmetry.											
	Mapping of course outcomes with the program outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1
										0	1	2
CO1	3	2	2	3	3	1	-	2		1	1	-
CO2	3	2	2	3	2	2	1	ı	1	-	1	2
CO3	3	2	2	3	3	1	1	2	-	1	1	-
CO4	3	2	2	3	2		1	-	1	1	-	2

CHE 205 A & B: Core practical I: Inorganic & Physical Chemistry

I . Quantitative Analysis:

Separation and determination of two component mixtures:

- (i) Separation of Al(III) and Determination of Fe (III)
- (ii) Separation of Cu(II) and Determination of Zn (II)
- (iii) Separation of Ca(II) and Determination of Mg (II)
- (iv) Separation of Cu(II) and Determination of Ni (II)
- (v) Determination of Ferrocyanide and Ferricyanide

II. Physical Chemistry

- 1. Conductometry:
 - (a) Determination of cell constant
 - (b) Verification of Onsagar equation
 - (c) Determination of dissociation constant of a weak acid
 - (d) Titration of a strong acid with a strong base
 - (e) Titration of a weak acid with a strong base
- 2. Potentiometry:
 - (a) Titration of a strong acid with a strong base
 - (b) Titration of a weak acid with a strong base
 - (c) Redox titration
- 3. Coulometry: Estimation of Manganese
- 4. pHmetry: Strong acid, Strong base titrations.

CHE 206A & B	Core practical I: Organic & General Chemistry	L-5,T-1,P-0	4 Credits										
	Organic & General Chemistry												
Pre-requisite: U	Pre-requisite: Understanding of graduate level Organic & General Chemistry practical.												
Course Objectives:													
• Familiarize with two component mixture separation and identification.													
 Preparation of 	derivatives.												
 Purification by 	components by different methods.												
 Calibration of 	products by spectral methods.												
Course Outcom	es: At the end of the course, the studen	t will be able											
CO1	To familiarize with binary mixture sep	aration											
CO2	To gain hands-on-experience in purific derivatives.	cation of the compo	nents, preparation of										

(To get knowledge about the chemical behavior of different components and mechanisms											
(CO4 Purification and calibration of data											
	Mapping of course outcomes with the program outcomes											
	PO1	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1 PO1 PO1										
										0	1	2
CO1	3	2	2	3	1	-	1	1	-	3	3	1
CO2	3	2	2	3	-	1	-	2	1	3	3	-
CO3	3	2	2	3	1	1	2	1	-	2	-	2
CO4	3	2	2	3	1	2		1	1	2	1	2

CHE 206 A & B: Core practical II: Organic & General Chemistry

CHE-206 A: PRACTICAL – II: ORGANIC CHEMISTRY

Separation and Identification of two component organic mixture by systematic qualitative analysis.

CHE-206 B: PRACTICALS - II: GENERAL CHEMISTRY

Preparation of Metal Complexes:

- (i) Tetra(ammine) copper (II) sulphate.
- (ii) Mercury tetra(thiocyanato) cobaltate(II).
- (iii) Hexa(ammine) Nickel (II) chloride.
- (iv) Tris(acetylacetonato) Manganese (III) chloride.
- (v) Tris (ethylenediammine) Nickel (II) thiosulpha

CHE	207	H	luman `		and pro	fessiona	l L-	3,T-1,P	-2	4	Credits	
Pre-re	anisite:	Unders	standing			ies and p	rofessi	onal eth	ics			
	quisite.	Chach	, tunum 5	or rran	ian vara	ies una p	1010551	onar cur	ics			
Course	Course Objectives:											
	Gain knowledge on value education, family values and adjustability											
	-	nics to	wards 1	nedical,	health	care p	rofessi	onals a	nd ethic	cal issu	es in g	genetic
_	neering											
						ics towa	rds org	gan trad	e, huma	an traffi	c king	human
_	ts violati			-			11			C		,
		w about environmental ethics, ecological crises, pollution and protection of environment										
	rse Outcomes: At the end of the course, the student will be able to											
CO1	To understand the concepts of human values, responsibilities of family values and status											
	of women in family and society.											
CO2	_		_			edical et		e views o	of chara	ka and s	sushruta	on
						titioners						
CO3	To gain	n know	ledge or	n social	ethics ar	nd under	stand tl	ne chara	cteristic	s of ethi	ical prol	olems
	in man	_										
CO4	To fan	niliarize	enviror	nmental	ethics, e	ethical th	eory ar	nd ecolo	gical cri	isis.		
	•	Ma	apping o	of cours	se outco	mes wit	h the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1
										0	1	2
CO1	3	2	1	3	1	2	2	2	3	1	1	1
CO2	3	1	2	3	1	2	2	3	3	1	1	1
CO3	3	2	1	3	-	2	1	2	2	3	-	1
CO4	3	1	1	3	1	2	1	1	2	3	1	1

CHE 207: ELECTIVE FOUNDATION (HUMAN VALUES AND PROFESSIONAL ETHICS-II)

Chapter I: Value Education – Definition – Relevance to present day – Concept of human values - Self introspection – Self-esteem. Family values-Components, Structure and responsibilities of family Neutralization of anger – Adjustability – Threats of family life – Status of women in family and society – Caring for needy and elderly – Time allotment for sharing ideas and concerns.

Chapter II: Medical ethics – Views of Charaka, Sushruta and Hippocratus on moral responsibility of medical practitioners. Code of ethics for medical and healthcare professionals. Euthanasia, Ethical obligation to animals, Ethical issues in relation to health care professionals and patients. Social justice in health care, human cloning, problem of abortion. Ethical issues in genetic engineering and Ethical issues raised by new biological technology or knowledge.

Chapter III: Social ethics – Organ trade, Human trafficking, Human rights violation and social disparities, Feminist ethics, Surrogacy/pregnancy. Ethics of media – Impact of Newspapers, Television, Movies and Internet, Business ethics – Ethical standards of business – Immoral and illegal practices and their solutions. Characteristics of ethical problems in management, ethical theories, causes of unethical behavior, Ethical abuses and work ethics.

Chapter IV: Environmental ethics – Ethical theory, man and nature - Ecological crisis, Pest control, Pollution and waste, Climate change, Energy and pollution, Justice and environmental health.

Books for study:

1. Johns S Mackenjie: A Manual of ethics

- 2. "The Ethics of Management" by Larue Tone Hosmer, Richard D. Irwin Inc.
- 3. Management Ethics Integrity at work by Joseph A. Petrick and John F. Quinn, Response Books, New Delhi.
- 4. "Ethics in Management" by S.A. Shelekar, Himalaya Publishing House.
- 5. Harold H. Titus: Ethics for Today
- 6. Maitra, S.K: Hindu Ethics
- 7. William Lilly: Introduction to Ethics
- 8. Sinha: A Manual of Ethics
- 9. Manu: Manava Dharma Sastra or the Institute of Manu: Comprising the Indian System of Duties: Religious and Civil (ed) G.C. Haughton.
- 10. Sasruta Samhita: Tr. KavirajKunjanlal, KunjanlalBrishagratha, Chowkamba Sanskrit Series, Vol I,II and III, Varanasi, Vol I PP, 16-20, 21-32 and 74-77 only.
- 11. Charaka Samhita: Tr. Dr. Ram Karan Sarma and Vaidya Bhagavan Dash, Chowkambha Sanskrit Series Office. Varanasi I, II, III Vol I PP 183-191.
- 12. Ethics, Theory and Contemporary Issues. Barbara Mackinnon, Wadsworth/Thomson Learning, 2001.
- 13. Text Book for Intermediate First Year Ethics and Human Values, Board of Intermediate Eduction Telugu Academy, Hyderabad.
- 14. I.C. Sharma Ethical Philosophy of India. Nagin& Co Julundhar.

(Mandatory Core)

CHE-AC- 301	Inorganic Spectroscopy and Thermal Methods of Analysis	L-5,T-1,P-0	4Credits			
Pre-requisite: Understanding of Basic Inorganic Spectroscopy and Thermal Methods of Analysis						

Course Objectives: • Gain knowledge on thermal methods of analysis and principles and applications to inorganic materials. • Familiarize with basics of Mossbauer and NQR spectroscopy. • Learn the properties like g-factor, nuclear spin, hyperfine coupling constants. • Study the ESR instrumentation, various applications and photoelectron spectroscopy. **Course Outcomes**: At the end of the course, the student will be able CO₁ To know about TG and DTA and applications of different scanning calorimetry. CO₂ To gain knowledge on Doppler shift and chemical shift, basic principles and applications of NQR spectroscopy. To learn zero field splitting and Kramer's degeneracy, relaxation processes, CO₃ instrumentation and applications of ESR. To know about photoelectric effect and Koopmans theorem and impart the applications of **CO4** X-ray and UV photoelectron spectroscopy. Mapping of course outcomes with the program outcomes PO₁ PO2 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO₁ 3 2 2 3 2 2 1 CO₂ 3 2 2 3 2 2 2 2 2 1 1 1 **CO3** 3 2 2 3 2 2 2 1

CHE-AC- 301: Inorganic Spectroscopy and Thermal Methods of Analysis

2

3

UNIT -I: THERMAL METHODS OF ANALYSIS

2

CO₄

3

15 Hrs

2

Thermo gravimetry –Principle, Factors affecting the results, instrumentation. Application with special reference to CuSO₄5H₂O, CaC₂O₄ 2H₂O. Different thermal analysis – principle, instrumentation, difference between TG and DTA, applications with special reference to the clays and minerals. Different scanning calorimetry –principle, and applications to inorganic materials like chlorates and perchlorates, ammonium nitrate.

UNIT -II: MOSSBAUER SPECTROSCOPY and NOR

15 Hrs

Mossbauer spectroscopy: Basic principles, Recoil energy, Doppler shift, Chemical shift, Quadrapole effects, Magnetic effects. Instrumentation, spectral parameters and spectrum display. Aapplication of the technique to the studies of (1) bonding and structures of Fe^{2+} and Fe^{3+} compounds, (2) Sn^{2+} and Sn^{4+} compounds.

NQR spectroscopy: Basic principles of NQR spectroscopy, quadrupole nuclei, quadrupole moments, electric field gradient, coupling constant and applications.

UNIT -III: ELECTRON SPIN RESONANCE SPECTROSCOPY

15 Hrs

Basic Principles, Hyper fine splitting, Factors affecting the 'g' value. Isotropic and anisotropic hyperfine coupling constants, Hamiltonian and spin densities. Zero field splitting and Kramer's degeneracy, Relaxation process and line widths. Instrumentation and Applications. The EPR spectrum of bis(salicylidimine)-copper(II) complex, study of inorganic free radicals, biological applications of Electron Spin Resonance (Study of free radicals and Iron-sulfur proteins)

UNIT -IV: PHOTO ELECTRON SPECTROSCOPY

15 Hrs

Photoelectric effect, Koopmans's theorem, ionization energy.

X-ray photoelectron spectroscopy (ESCA): Principle, Binding energies, Chemical shift, Applications of XPES to Qualitative analysis, to surface studies and structural analysis. Ultraviolet photoelectron spectroscopy- Principle, application of UPES in studying the molecular orbitals of O_2 and N_2 molecules. Block diagram of photoelectron spectrophotometer. Sources of radiation,

detectors. Auger spectra – Principle, Applications of Auger spectra to surface studies and use of Auger spectra as a finger print tool.

Books Suggested

- 1. F.A. Cotton and G. Wilkinson, Advanced In-organic chemistry VI Edition, 1999. John wiley & sons. Inc., New York.
- 2. J.E. Huheey, E.A. Keiter and R.L. Keiter: Inorganic Chemsitry, Principles of Structure and Reactivity (4th Ed.) (Addison-Wesley)
- 3. Gary Wulfsberg: Inorganic Chemistry (5th Ed. (Viva Books)
- 4. J.D. Lee: Concise Inorganic Chemistry (Blackwell)
- 5. W.L. Jolly: Modern Inorganic Chemsitry (McGraw-Hill)
- 6. R.L. Carlin: Magneto-chemsitry (Springer-Verlag)
- 7. R.L. Dutta and A. Syamal: Elements of Magnetochemsitry (Affiliate East-West).
- 8. K. Hussain Reddy Text book of Bioinorganic chemistry

(Mandatory Core)

CHE-AC 302	Organic Spectroscopy and Applications	L-5,T-1,P-0	4Credits
Pre-requisite:	Understanding of Organic Spectroscopy	and Applications	

Course Objectives:

- Familiarize with the instrumentation of UV and visible spectroscopy, applications of identifying the structures of the molecules.
- Understand IR spectrometry and applications to ascertain the fundamental groups by observing absorption bands
- Study on the applications of NMR spectroscopy in ascertaining the stereochemical structures of the molecules.
- Understand the working principle and fragmentation rules of different molecules in Mass spectroscopy

Cours	Course Outcomes: At the end of the course, the student will be able to											
CO1	To get experience to calculate λ max values for dienes, enones, polyenes, aromatic and heteroaromatic compounds.											
CO2	To familiarize with the absorption bands of the molecules with specific functional groups											
CO3	To interpret the data to different types of protons and carbons present in a molecule so as to ascertain the structure of the molecule based on the data provided											
CO4	To acquire knowledge about specific fragmentation rules of different molecules which are unique.											
		Ma	apping o	of cours	se outco	mes wit	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
CO1	3	2	2	3	2	2	-	1	-	2	2	1
CO2	3	2	2	3	2	2	1	-	1	2	2	1
CO3	3	2	2	3	2	2	_	1	-	2	2	2
CO4	3	2	2	3	2	2	1	2	1	2	2	-

CHE 302: CORE THEORY: ORGANIC SPECTROSCOPY AND APPLICATIONS

UNIT-I: ULTRAVIOLET AND VISIBLE SPECTROSCOPY: 15Hrs

Various electronic transitions (185-800 nm), effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, conjugated polyenes. Fisher-Woodward rules for conjugated dienes and carbonyl compounds, ultraviolet spectra of aromatic and heterocyclic compounds. Steric effect in biphenyls.

UNIT – II: INFRARED SPECTROSCOPY

Instrumentation and sample handling. Characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ether, phenols and amines. Detailed study of vibrational frequencies of carbonyl compounds (ketones, aldehydes, esters, amides, acids, anhydrides, lactones, lactams and conjugated carbonyl compounds). Effect of hydrogen bonding and solvent effect on vibrational frequencies, overtones, combination bands and fermi resonance, FT-IR

UNIT -III: NMR SPECTROSCOPY:

15Hrs

15Hrs

¹H NMR spectroscopy: Magnetic properties of nuclei, Principles of NMR. Instrumentation, CW and pulsed FT instrumentation, equivalent and nonequivalent protons, enantiotopic and diastereotopic protons, Chemical shifts, factors affecting the chemical shifts, electronegativity and anisotropy, shielding and deshielding effects, Signal integration, Spin-spin coupling: vicinal, germinal and long range, Coupling constants and factors affecting coupling constants.

Applications of ¹H NMR spectroscopy: Reaction mechanisms (cyclic bromonium ion, electrophilic and nucleophilic substitutions, carbocations and carbanions), E, Z isomers, conformation of cyclohexane and decalins, keto-enol tautomerism, hydrogen bonding, proton exchange processes (alcohols, amines and carboxylic acids), C-N rotation. Stereochemistry, hindered rotation, Karplus curve variation of coupling constant with dihedral angle. Simplification of complex spectra, nuclear magnetic double resonance, contact shift reagents, nuclear Overhauser effect (NOE).

¹³C NMR spectroscopy: General considerations, chemical shift (aliphatic, olefinic, alkyne, aromatic, heteroaromatic and carbonyl carbon), coupling constants. Two dimensional NMR

UNIT-IV: MASS SPECTROMETRY

15Hrs

Introduction, ion production, type of ionization, EI, CI, FD, and FAB-factors affecting fragmentation, ion analysis, ion abundance. Mass spectral fragmentation of organic compounds, common functional groups, molecular-ion peak, metastable peak, Mc. Lafferty rearrangement. Nitrogen rule, isotope labeling. High resolution mass spectrometry, Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.

Books suggested:

- 1. Organic spectroscopy, W. Kemp 5th Ed, ELBS
- 2. Spectroscopy of organic compounds, RM Silversteen and others, 5th Ed,John Wiley
- 3. Spectroscopy of organic compounds, P.S. Kalsi, Wiley, 1993.
- 4. NMR in chemistry-A multi nuclear introduction, William Kemp, Mc Millan, 1986.
- 5. Spectroscopic methods in Organic chemistry, DH Williams & I Flemmi

(Mandatory Core)

CHE-A	.C-303A		Orga	anic Ch	emistry	· III	I	3,T-1,	P-2	40	Credits	
Pre-re	quisite:	Unders	standing	of Orga	nic Che	emistry						
Fam stereStudUnd syntApp stere	niliarize eochemic dy the malerstand thesis. olication eo contr	with the istry. The tethods of the topocities of difficult olled property of the topocities of the top		cations aration a chirality,	of diffe	ications ary and educing	of organ reagen agents	nometall t-contro in organ	lic reage lled me	ents.	in asym	nmetric
CO1	To familiarize with the specific functions of the reagents particularly diazomethane, N-bromosuccinimide, Ziegler Natta catalyst, 1,3-dithianes and Merrifield resin in the synthesis of a variety of complex molecules.											
CO2			ledge in									stereo
CO3	To un		d diaste									killary
CO4		so the r	owledge eagents									
		Ma	apping o	of cours	se outco	mes wit	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
CO1	3	2	2	3	2	2	1	2	2	2	2	1
CO2	3	2	2	2	2	2	1	2	1	1	2	-
CO3	3	2	2	3	2	2	-	1	-	1	_	2
CO4	3	2	2	3	2	2	1	2	1	2	2	1

CHE-AC-303A Core-Theory Organic Chemistry III

UNIT I: REAGENTS IN ORGANIC SYNTHESIS

15 Hrs

Use of the following reagents in organic synthesis: Anhydrous AlCl₃, Boran trifluoride, N-Bromosuccinimide, Diazomethane, Dicyclohexylcarbodiimide, Lead tetraacetate, Zieglar-Natta catalysts, DDQ, Dithianes, Merrifield resin.

UNIT-II: ORGANOMETALLIC REAGENTS

15 Hrs

Synthesis and applications of Grignard reagents, Organolithium, Zinc, Copper, Mercury, Palladium and Rhodium compounds in Organic Synthesis, Homogeneous catalytic hydrogenation and hydroformylation reactions

UNIT III: ASYMMETRIC SYNTHESIS

15 Hrs

Topocity - Prochirality- Substrate selectivity - Diastereoselectivity and enantioselectivity-Substrate controlled methods-use of chiral substrates - examples

Auxiliary controlled methods-Use of chiral auxiliaries-Chiral enolates-alkylation of chiral imines – Stereoselective Diels-Alder reaction

Reagent controlled methods-Use of chiral reagents-Asymmetric oxidation-Sharpless epoxidation-Asymmetric reduction-Use of lithium aluminium hydride and borate reagents.

UNIT IV: METHODS OF ORGANIC SYNTHESIS

15 Hrs

i). Oxidations: (a) Alcohols to carbonyls-Chromium (iv) oxidants-Dimethylsulfoxide

periodate xidation, Oppenauer oxidation, oxidation with manganese dioxide, oxidation with silver carbonate (b) Alkenes to epoxides-peroxide induced epoxidations. (c) Alkenes to diols-oxidation with potassium permanaganate, osmium tetraoxide, Prevost reaction (d) Ketones to esters-Bayer-Villiger oxidation (e) Oxidative bond cleavage-cleavage of alkenes by transition metals. (f) Oxidation of alkyl or alkenyl fragments-selenium dioxide and chromium trioxide oxidations.

ii). Reductions: Reduction with lithium aluminium hydride, sodium borohydride, alkoxides, bismethoxy ethoxy aluminium hydride, Boran aluminium hydride and derivatives-catalytic, hydrogenation-dissolving metal reductions, Non-Metallic reducing agents including enzymatic and microbial reductions.

Suggested Books

- 1. Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, John Wiley.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J. Sundberg, Plenum.
- 3. Structure and Mechanism in Organic Chemistry, C.K. Inglod, Cornell University Press.
- 4. Organic Chemistry, R.T Morrison and R.N. Boyd, Prentice Hall.
- 5. Name reactions and reagents in organic synthesis, B.P. Muway and M.G Ellord, John Wiley.
- 6. Principles of Organic Synthesis, R.O.C Norman and J.M Coxon, Blackie Academic & Professional.
- 7. Reaction Mechanism in Organic Chemistry, P.S. Kalsi, New Age International.
- 8. Principles of organometallic chemistry, P. Powell, ELBS.
- 9. Organo transition metal chemistry-Applications to organic synthesis, S.G. Davis, Pergmon.
- 10. Stereochemistry to Organic Compounds, D. Nasipuri, New Age International.
- 11. Stereochemistry, P.S. Kalsi, Wiley Eastern.

CHE-A	AC-303B Physical Chemistry III L-5,T-1,P-0 4Credits											
Pre-r	equisite:	Unders	standing	of grad	uate lev	el Physi	cal Che	mistry	•			
Cours	Course Objectives:											
Learn applications of Group Theory, symmetry criteria and symmetry restrictions												
• Ap	Applications of X-ray Diffraction and Electron Diffraction on solid state chemistry											
• Far	niliarize	with the	e applica	ations o	f Micro	wave sp	ectrosco	py, infr	ared spe	ectrosco	py and l	Raman
spe	ctroscop	у										
• Ge	t knowle	edge on	concep	ot of Tl	nermody	ynamics	of pol	ymer di	issolutio	on and	Flory-H	uggins
the	ory of po	olymer s	olutions	3								
Cours	Course Outcomes: At the end of the course, the student will be able to											
001												
CO1												
COA	Coordinates and to learn the Mutual exclusion Principle.											
CO2	To learn the Bragg conditions-Miller Indices- Laue method, Bragg method, Debye Scherrer method of X-ray structural analysis of crystals.											
GOA											DOD 1	
CO ₃										oscopy,	PQR br	anches,
004						ional Ra			• •	T'1 1 1	1	
CO4		•	-				_		•	Hildebra	na	
	solubili	ty paran	neter, co	oncept of	I Flory-	Huggins	tneory	or pory	mer son	itions		
		Ma	apping o	of cours	se outco	mes wit	h the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
								100		1010		
CO1	3	2	2	3	-	2	-	1	-	1	2	1
CO2	3	2	2	2	2	2	2	-	2	2	1	-
CO3	3	2	2	3	2	2		2	-	1	1	2
CO4	3	2	2	3	1	2	1	-	1	2		2

DL ' LOL ' LII

CHE-AC-303B CORE-THEORY PHYSICAL CHEMISTRY III

UNIT-I Applications of Group Theory

CHE AC 202D

15 Hrs

1Cmad:4a

Construction of reducible and irreducible representations, Determination of Character Coordinate of C_2V point group based on 3N Coordinates. Standard reduction formula, Determination of normal modes of vibrations of SO_2 , NH_3 , $POcl_3$, $Ptcl_4^{2-} \cdot H_2O_2$ molecules. Mutual exclusion Principle, Direct Product, Accidental Degeneracy and Fermi resonance Group Theory and Spectroscopy: IR Spectral activity of NH_3 molecule, selection rules, symmetry Criteria for optical activity, symmetry restrictions on dipole moments, symmetry and stereo isomerism. Prediction of IR and Raman Spectral activity of H_2O and CO_2 .

UNIT-II: X-ray Diffraction:

15 Hrs

- (A) Solid State Chemistry: Dislocation of Solids, Schottky and Frenkel defects, insulaters, a, d semiconductors, Bandtheory of solids, solid state reactions.
- (B) Bragg conditions-Miller Indices- Laue method, Bragg method, Debye Scherrer method of X-ray structural analysis of crystals. Index reflections, identification of unit cells from systematic absences in diffraction pattern- structure of simple lattices and X-ray intensities- structure factor and its relation to intensity and electron density- Description of procedure for X-ray structure analysis (NaCl and KCl)
- **(C) Electron Diffraction:** Scattering intensity Vs scattering angle, Wierlequation, and its importance. Measurement techniques, Elucidation of structures of simple gas phase molecules, Low energy electron diffraction (LEED) for the study of surfaces.

UNIT-III: SPECTROSCOPHY

15 Hrs

Microwave spectroscopy: classification of molecules, rigid rotator model, effect of isotopic substitution on the transition frequencies, intensities- stark effect.

Infrared spectroscopy: Linear harmonic oscillator, zero point energy, anharmonity, Mores potential energy diagram, fundamental and overtone transitions, hot bands and combinations bands. Vibration-rotation spectroscopy, PQR branches, selection rules, factors affecting the band positions and intensities for IR region. Raman spectroscopy: Classical and quantum theories of Raman effect, pure rotational, pure vibrational Raman spectroscopy, selection rules, mutual exclusion principle, resonance Raman spectroscopy and coherent antistokes Raman spectroscopy. Vibrational- rotational Raman spectroscopy.

UNIT-IV: POLYMER SOLUTIONS

15 Hrs

Thermodynamics of polymer dissolution, effect of molecular weight on solubility, solubility of crystalline and amorphous polymer, heat of dissolution, regular solution theory, Hildebrand solubility parameter, Flory-Huggins theory of polymer solutions, conformational entropy, osmotic pressure and viscosity of polymer solutions. Molecular weight determination by light scattering, ultra-centrifugation and sedimentation equilibrium method. Liquid Crystals- synthesis and applications

Books Suggested

- 1. F.A. Cotton: Introduction to Group theory for chemists.
- 2. Geroge Davidson Elsevier: Introductory Group Theory for Chemists.
- 3. Gurdeep Raj, Ajay Bhagi&Vinod Jain: Group Theory and Symmetry in Chemistry
- 4. Instrumental methods of analysis M.H. Willard, Meritt Jr. and J.A. Dean
- 5. Principles of instrumental analysis Skoog and West
- 6. F. W. Billmeyer, Jr.: Text Book of Polymer Science. Wiley Interscience.
- 7. V. R. Gowariker, N. V. Viswanathan, Jayadev Sreedhar: Polymer Science. New Age international Publishers.

CHE A	AC 304		Core pra alytical			actical	L.	-5,T-1,P	2-0	4	Credits	}
Pre-requisite: Understanding of Analytical Chemistry- Practical.												
Course	e Objec	tives:										
	•		synthes	sis of inc	organic	complex	es.					
• Ana	lysis of	ores, al	loys and	l water.		-						
• Acq	uire kno	owledge	on wor	king pri	nciple o	f colorii	netry.					
								ric meth	od.			
Course	• Estimation of metal ions by complex metric and colorimetric method. Course Outcomes: At the end of the course, the student will be able											
(CO1 To know the basic principles of instrumental methods of analysis.											
(CO2					istry of						
(CO3	_				ity, theo	•	working	princip	le of col	ourimet	rv
	CO4				-	colorime	•		princip	10 01 001		1.5
•	J U4											
		Ma	apping	of cours	se outco	mes wit	n tne p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1
										0	1	2
CO1	3	1	-	3	1	2	3	2	-	2	1	1
CO2	3	2	2	3	2	2	3	2	2	1	-	2
CO3	3	-	1	3		2	2	2	-	1	1	-
CO4	3	2	2	3	1	-	2	2	1	1	-	2

CHE -AC -304: Core-Practical Classical Methods of Analysis Practical –I

- I. Analysis of ores and alloys:
 - a) Brass/Bronze
 - b) Cement
 - c) Illmenite/Chalcopyrite
 - d) Dolamite
 - e) Copper and Nickel alloy

II. Water Analysis:

- a) Determination of dissolved Oxygen
- b) Determination of BOD of Waste water
- c) Determination of COD of Waste water
- d) Hardness of Water
- e) Chloride, sulphates, carbonates and bicarbonates.

CHE AC 305A	Chemotherapy and Drug Analysis	L-5,T-1,P-0	4Credits

Pre-requisite: Understanding of Chemotherapy and Drug Analysis												
Course	Course Objectives:											
	•		on che	mothera	py and	analysis	of drug	S.				
•	Analysis	s of drug	gs chem	ically ar	nd biolo	gically.	_					
Course	e Outco	mes: A	t the end	d of the	course,	the stud	ent will	be able				
CO1	To know about the classification and synthesis of drugs.											
CO2	To familiarize with the qualitative and quantitative analysis of drugs.											
CO3												
CO4												
		Ma	apping o	of cours	se outco	mes wit	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	3	-	2	3	2	1	1	1	I
CO2	3	3 2 2 3 2 2 3 2 2 1 - 2										
CO3												
CO4												

CHE: AC: 305 (A): (SKILL ORIENTED COURSE: THEORY): CHEMOTHEROPY AND DRUG ANALYSIS

UNIT-I: Chemotherapy

Definition, History, and Evolution of Chemotherapy; Discovery, Classification, Nomenclature, Mode of action and synthesis of the following classes of compounds with special references to specific drugs mentioned under each class

- i) Sulfa drugs- Sulfanilamide and Sulfamethoxazole.
- ii) Antibacterials
- a) Lactum group of antibiotics Penicillin, Ampicillin and Amoxycillin.
- b) Cephalosporin-C and Ciprofloxacin.
- iii) Anticancer drugs 5-Flurouracil, Methotrexate.
- iv) Antifungals Griseofulvin
- v) Antimalarials Chloroquin

UNIT-II: Chemical and Biochemical analysis of Drugs

Qualitative and Quantitative Analysis of drugs: Uses of IR, UV, GLC and HPLC methods.

Drug Assay by Biochemical Analysis – ELISA (Cortisol, alcohol, opiates).

Radio Immuno Assay (RIA) – Enalapril, Insulin; Kidney, Lungs and Liver function tests; Use of isotopes in the Bioanalysis of drugs and in drug design programmes.

Book Suggested

- 1. Medicinal Chemistry and Pharmaceutical Chemistry Harikishan Singh and Kapur
- 2. Medicinal Chemistry and Biochemistry R.L.Nath
- 3. Introduction to Medicinal Chemistry Patrick
- 4. The Organic Chemistry of Drug Synthesis Vols. 1-6 Ledneicer Top drugs top synthetic routes John Saunders
- 5. Medicinal Chemistry Ashutoshkar
- 6. Synthetic Organic Chemistry and Drugs Gurideep R Chetwal
- 7. Biochemistry Harper, Conn & Stumpf, Lehninger

- 8. Biochemistry Western Jodd
- 9. Biochemistry Cann & Stumpf
- 10. Bergers Medicinal Chemistry Vols. 1-5 Manfred E. Wolf
- 11. Introduction to drug design Siverman
- 12. Biochemical approach to Medicinal Chemistry Thomas Nogrady
- 13. Prinicples of Medicinal chemistry William Foye
- 14. Text book of organic medicinal and pharmaceutical chemistry Delgrado and William A
- 15. Industrial Microbiology Casida

CHE A	C 305B	C 305B Instrumental Methods of Analysis L-3,T-1,P-2 4Credits										
Pre-re	quisite:	Unders	standing	of Instr	umenta	l Method	ds of Ar	nalysis F	ractical			
Cor	urse Ob	jectives	s :									
•	Gain kno	owledge	e on syn	thesis of	f inorga	nic com	plexes.					
•]	Estimati	on of m	etal ion	s by con	nplex m	etric and	d colori	metric n	nethod.			
Cours	e Outco	mes: A	t the end	d of the	course,	the stud	ent will	be able				
CO1	To Understand the complexity, theory and working principle of colourimetry.											
CO2	2 To gain knowledge on analysis of organic components											
CO3												
CO4												
		Ma	apping	of cours	se outco	mes wit	th the p	rogram	outcon	nes		
	<u> </u>											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	3	1	2	3	2	1	-	1	-
CO2	3	2	2	3	2	2	3	2	-	1	1	2
CO3												
CO ₄												

$CHE: AC\ 305\ (B): PRACTICALS\ (SKILL\ ORIENTED\ COURSE): Instrumental\ methods\ of\ analysis$

- 1. Colorimetric Determinations:
- a) Determination of manganese
- b) Determination of nickel
- c) Determination of iron by 1,10 Pheren-thiroline
- d) Determination of chromium
- e) Determination of Phosphate
- f) Determination of Pesticides
- g) Determination of Nitrite.

CHE AC	Spectral Techniques	L-5,T-1,P-0	4 Credits
306			

Pre-requisite: Understanding of Spectral Techniques

Course Objectives:

- Familiarize with the instrumentation of UV and visible spectroscopy, applications of identifying the structures of the molecules.
- Understand IR spectrometry and applications to ascertain the fundamental groups by observing absorption bands.
- Study on the applications of flame atomic absorption spectroscopy.
- Understand the working principle and fragmentation rules of different molecules in Mass spectroscopy.

Course Outcomes:	At the end of the course,	the student will able
Course Outcomes.	At the cha of the course.	the student will able

CO ₁	To know	the basic	principles	of spectroscopy.
~ ~	10 1110 11	uic cubic	principles	or spectroscop,.

- To familiarize with the analysis of various functional groups by using different spectroscopic techniques.
- CO3 To Understand the applications of AAS.
- CO4 To gain knowledge about Mass spectral fragmentation of organic compounds and common functional groups.

Mapping of course outcomes with the program outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	3	-	2	3	2	1	2	1	1
CO2	3	2	2	3	2	2	3	2	-	1	-	2
CO3	3	2	2	2	2		2	1	1	-	1	-
CO4	3	2	2	3	-	2	_	2	-	1	-	2

CHE: AC: 306(A): (OPEN ELECTIVE) SPECTRAL TECHNIQUES

UNIT – I: ULTRAVIOLET AND VISIBLE SPECTROSCOPY

15 Hrs

Various electronic transitions (185-800nm.), Beer-Lambert Law, effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, Fieser-Woodward rules for conjugated dienes and carbonyl compounds

UNIT - II: INFRARED SPECTROSCOPY

15 Hrs

Instrumentation and sample handling, characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ethers, phenols, amines, ketones, aldehydes, esters, amides, acids and anhydrides. Effect of hydrogen bonding.

UNIT – III:ATOMIC ABSORPTION SPECTROSCOPY: FLAME AAS: 15 Hrs

Principle, Instrumentation – Sources of radiation (HCL and EDL), Different types of burners, Interferences- Physical, Chemical, spectral and back ground correction, and methods of minimization

GF AAS: Principle and technique –Comparison between Flame AAS and furnace AAS, Applications of AAS, Comparison between Atomic Absorption & Flame Photometry.

UNIT -IV: MASS SPECTROMETRY

15 Hrs

Principle, instrumentation, different methods of ionization, EI, CI, FD and FAB, Mass spectramolecular ion, base peak, meta-stable peak, nitrogen rule and Mc Lafferty rearrangement. Mass spectral fragmentation of organic compounds and common functional groups. Normal and branched alkanes, alkenes, cycloalkanes, benzene and its derivatives, alcohols and phenols, ethers, aldehydes and ketones, carboxylic acids and their derivatives , amines and nitro compounds. Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.

Books Suggested:

1. Organic spectroscopy, W. Kemp 5th Ed, ELBS .2.

- 2. Spectroscopy of organic compounds, RM Silversteen and others 5th Ed, John Wiley 1991
- 3. Spectroscopy of organic compounds, PS Kalsi, Wiley, 1993
- 4. NMR in chemistry A Multi nuclear introduction, William Kemp, Mc Millan 1986
- 5. Spectroscopic methods in Organic Chemistry, DH Williams & I Flemmi TMH . 2005

CHE A	CHE AC 306 Chromatographic Techniques L-5,T-1,P-0 4Credits Pre-requisite: Understanding of graduate level Chromatographic Techniques												
Pre-re	quisite:	Unders	tanding	of grad	uate lev	el Chror	natogra	phic Ted	chnique	S			
Cours	Course Objectives:												
• Fan	Familiarize with Classification of Chromatographic methods.												
• Unc	lerstand	Demon	stration	experin	nent in T	ΓLC.							
• Stud	ly on the	e applic	ations o	f High-l	Perform	ance Lic	uid Chi	romatog	raphy (HPLC).			
• Unc	lerstand	the wor	king pri	nciple o	of gas ch	romatog	graphy.						
Cours	e Outco	mes: A	t the end	d of the	course,	the stud	ent will	able to					
~~1													
CO1	To kno	w the st	ationary	and mo	bile pha	ases in c	hromato	ographic	technic	ques.			
CO2	To fam	iliarize	applicat	ions of	different	t chroma	tograph	nic meth	ods.				
CO3	To Unc	lerstand	the prin	ciple of	chroma	atograph	ic techn	iques.					
CO4	To gain	knowle	edge on	the nori	nal phas	se and re	verse p	hase.					
		Ma	apping o	of cours	se outco	mes wit	h the p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	2	2	2	1	1	-	2	1	_	-	
CO2	3	3	2	2	2	1	1	-	2	1	-	-	
CO3	CO3 3 3 2 2 2 1 1												
CO4	3	3	2	2	2	1	1	-	2	1	-	-	

CHE AC 306: Chromatographic Techniques

Unit –**I:** Introduction - Classification of Chromatographic methods – Column chromatography-Adsorption phenomenon: Nature of adsorbents-Solvent systems-Differential migration-Separation of mixture of o-/p-nitro anilines (A demonstration experiment).

Unit –II: Thin-Layer Chromatography (TLC)-Coating materials and preparation of TLC plates-Solvents for development-Detection of compounds in TLC- R_f values in TLC-Applications of TLC in chemistry-Preparative TLC – Demonstration experiment in TLC.

Unit –III: High-Performance Liquid Chromatography (HPLC) - Application of HPLC- HPLC instrument-Stationary phases in HPLC-Normal and reversed phase HPLC: A comparison- Normal phase HPLC: Principle-Retention times in Normal and reversed phase HPLC- Reversed phase HPLC: Principle.

Unit –IV: Gas-Liquid Chromatography- Instruments for Gas-Liquid Chromatography- Gas-Chromatographic Columns and the Stationary Phase- Application of Gas-Liquid Chromatography-Gas-Solid Chromatography.

Reference Books:

- 1. Analytical chemistry: G L David Krupadanam, D. Vijaya prsad, K. Varaprasad Rao, KLN Reddy, C. Sudhakar.
- 2. Analytical chemistry: Skoog West Holler.
- 3. Modern Analytical Chemistry: David Harvey DePauw University.
- 4. J.G. Dick. Analytical Chemistry, Mc Grraw Hill, New Delhi, (1973).

CHE-E	C- 301		organio hermal	_			L-	5,T-1,P	-0	40	Credits		
Pre-re	quisite	Unders	standing	of Basi	c Inorga	anic Spe	ctrosco	y and T	Thermal	Method	s of An	alysis	
Cours	e Objec	tives:											
		edge on	therma	l metho	ds of a	nalysis	and pri	nciples	and app	olication	s to inc	organic	
mater													
						QR spec	-	•					
	-	-	_		-	oin, hype							
		the ESR instrumentation, various applications and photoelectron spectroscopy.											
	• Outcomes :At the end of the course, the student will be able												
CO1	To know about TG and DTA and applications of different scanning calorimetry.												
CO2	To ga	in know	ledge or	n Doppl	er shift	and che	mical sh	ift, basi	c princi	oles and	applica	tions of	
	NQR	spectros	scopy.										
CO3	To lea	rn zero	field sp	litting a	nd Kran	ner's de	generacy	y, relaxa	tion pro	cesses,			
	instru	mentatio	on and a	pplication	ons of E	ESR.							
CO4							pmans t	heorem	and im	part the	applica	tions of	
	X-ray a		photoel		_								
		Ma	apping	of cours	se outco	mes wi	th the p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	2	3	-	2	1	2	1	-	2	1	
CO2	3	2	2	3	2	2	1	-	1	2	2	2	
CO3	3	2	2	3	2	2	-	1	-	2	1	2	
CO4	3	2	2	3	2	-	1	1	1	-	2	1	

CHE-EC- 301: Inorganic Spectroscopy and Thermal Methods of Analysis

UNIT -I: THERMAL METHODS OF ANALYSIS

15 Hrs

Thermo gravimetry –Principle, Factors affecting the results, instrumentation. Application with special reference to CuSO₄5H₂O, CaC₂O₄ 2H₂O. Different thermal analysis – principle, instrumentation, difference between TG and DTA, applications with special reference to the clays and minerals. Different scanning calorimetry –principle, and applications to inorganic materials like chlorates and perchlorates, ammonium nitrate.

UNIT -II: MOSSBAUER SPECTROSCOPY and NQR

15 Hrs

Mossbauer spectroscopy: Basic principles, Recoil energy, Doppler shift, Chemical shift, Quadrapole effects, Magnetic effects. Instrumentation, spectral parameters and spectrum display. Aapplication of the technique to the studies of (1) bonding and structures of Fe^{2+} and Fe^{3+} compounds, (2) Sn^{2+} and Sn^{4+} compounds.

NQR spectroscopy: Basic principles of NQR spectroscopy, quadrupole nuclei, quadrupole moments, electric field gradient, coupling constant and applications.

UNIT -III: ELECTRON SPIN RESONANCE SPECTROSCOPY

15 Hrs

Basic Principles, Hyper fine splitting, Factors affecting the 'g' value. Isotropic and anisotropic hyperfine coupling constants, Hamiltonian and spin densities. Zero field splitting and Kramer's degeneracy, Relaxation process and line widths. Instrumentation and Applications. The EPR spectrum of bis(salicylidimine)-copper(II) complex, study of inorganic free radicals, biological applications of Electron Spin Resonance (Study of free radicals and Iron-sulfur proteins)

UNIT -IV: PHOTO ELECTRON SPECTROSCOPY

15 Hrs

Photoelectric effect, Koopmans's theorem, ionization energy.

X-ray photoelectron spectroscopy (**ESCA**): Principle, Binding energies, Chemical shift, Applications of XPES to Qualitative analysis, to surface studies and structural analysis. Ultraviolet

photoelectron spectroscopy- Principle, application of UPES in studying the molecular orbitals of O_2 and N_2 molecules. Block diagram of photoelectron spectrophotometer. Sources of radiation, detectors. Auger spectra – Principle, Applications of Auger spectra to surface studies and use of Auger spectra as a finger print tool.

Books Suggested

- 1. F.A. Cotton and G. Wilkinson, Advanced In-organic chemistry VI Edition, 1999. John wiley & sons. Inc., New York.
- 2. J.E. Huheey, E.A. Keiter and R.L. Keiter: Inorganic Chemsitry, Principles of Structure and Reactivity (4th Ed.) (Addison-Wesley)
- 3. Gary Wulfsberg: Inorganic Chemistry (5th Ed. (Viva Books)
- 4. J.D. Lee: Concise Inorganic Chemistry (Blackwell)
- 5. W.L. Jolly: Modern Inorganic Chemsitry (McGraw-Hill)
- 6. R.L. Carlin: Magneto-chemsitry (Springer-Verlag)
- 7. R.L. Dutta and A. Syamal: Elements of Magnetochemsitry (Affiliate East-West).
- 8. K. Hussain Reddy Text book of Bioinorganic chemistry

(Mandatory Core)

CHE-EC 302	Organic Spectroscopy Applications	and	L-5,T-1,P-0	4Credits
Pre-requisite:	Understanding of Organic Spectr	roscop	y and Applications	

Course Objectives:

- Familiarize with the instrumentation of UV and visible spectroscopy, applications of identifying the structures of the molecules.
- Understand IR spectrometry and applications to ascertain the fundamental groups by observing absorption bands
- Study on the applications of NMR spectroscopy in ascertaining the stereochemical structures of the molecules.
- Understand the working principle and fragmentation rules of different molecules in Mass spectroscopy

Course Outcomes: At the end of the course, the student will be able to

CO1	To get experience to calculate λ max values for dienes, enones, polyenes, aromatic and
	heteroaromatic compounds.
CO2	To familiarize with the absorption bands of the molecules with specific functional groups
CO3	To interpret the data to different types of protons and carbons present in a molecule so as to ascertain the structure of the molecule based on the data provided
CO4	To acquire knowledge about specific fragmentation rules of different molecules which are

Mapping of course outcomes with the program outcomes PO3 PO4 PO₁ PO2 PO₅ **PO6** PO7 PO8 PO9 PO10 PO11 PO12 **CO1** 3 2 2 3 2 2 2 2 2 2 1 CO₂ 2 2 3 2 2 2 2 3 1 1 CO₃ 3 3 2 2 2 2 2 1 2 2 2 **CO4** 3 2 3

CHE-EC 302: CORE THEORY: ORGANIC SPECTROSCOPY AND APPLICATIONS

UNIT-I: ULTRAVIOLET AND VISIBLE SPECTROSCOPY:

Various electronic transitions (185-800 nm), effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, conjugated polyenes. Fisher-Woodward rules for conjugated dienes and carbonyl compounds, ultraviolet spectra of aromatic and heterocyclic compounds. Steric effect in biphenyls.

UNIT - II: INFRARED SPECTROSCOPY

15Hrs

15Hrs

Instrumentation and sample handling. Characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ether, phenols and amines. Detailed study of vibrational frequencies of carbonyl compounds (ketones, aldehydes, esters, amides, acids, anhydrides, lactones, lactams and conjugated carbonyl compounds). Effect of hydrogen bonding and solvent effect on vibrational frequencies, overtones, combination bands and fermi resonance, FT-IR

UNIT -III: NMR SPECTROSCOPY:

15Hrs

¹H NMR spectroscopy: Magnetic properties of nuclei, Principles of NMR. Instrumentation, CW and pulsed FT instrumentation, equivalent and nonequivalent protons, enantiotopic and diastereotopic protons, Chemical shifts, factors affecting the chemical shifts, electronegativity and anisotropy, shielding and deshielding effects, Signal integration, Spin-spin coupling: vicinal, germinal and long range, Coupling constants and factors affecting coupling constants.

Applications of ¹H NMR spectroscopy: Reaction mechanisms (cyclic bromonium ion, electrophilic and nucleophilic substitutions, carbocations and carbanions), E, Z isomers, conformation of cyclohexane and decalins, keto-enol tautomerism, hydrogen bonding, proton exchange processes

(alcohols, amines and carboxylic acids), C-N rotation. Stereochemistry, hindered rotation, Karplus curve variation of coupling constant with dihedral angle. Simplification of complex spectra, nuclear magnetic double resonance, contact shift reagents, nuclear Overhauser effect (NOE).

¹³C NMR spectroscopy: General considerations, chemical shift (aliphatic, olefinic, alkyne, aromatic, heteroaromatic and carbonyl carbon), coupling constants. Two dimensional NMR spectroscopy-COSY.

UNIT-IV: MASS SPECTROMETRY

15Hrs

Introduction, ion production, type of ionization, EI, CI, FD, and FAB-factors affecting fragmentation, ion analysis, ion abundance. Mass spectral fragmentation of organic compounds, common functional groups, molecular-ion peak, metastable peak, Mc. Lafferty rearrangement. Nitrogen rule, isotope labeling. High resolution mass spectrometry, Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.

Books suggested:

- 1. Organic spectroscopy, W. Kemp 5th Ed, ELBS
- 2. Spectroscopy of organic compounds, RM Silversteen and others, 5th Ed,John Wiley
- 3. Spectroscopy of organic compounds, P.S. Kalsi, Wiley, 1993.
- 4. NMR in chemistry-A multi nuclear introduction, William Kemp, Mc Millan, 1986.
- 5. Spectroscopic methods in Organic chemistry, DH Williams & I Flemmi

(Mandatory Core)

СНЕ-Е	-EC-303A Organic Chemistry III L-3,T-1,P-2 4Credits											
Pre-re	quisite:	Unders	standing	of Orga	nic Che	emistry			<u>, , , , , , , , , , , , , , , , , , , </u>			
• Fam	niliarize	with th	Course (ne applio	•		rent rea	gents ir	n organi	c synth	esis, M	echanisı	ms and
	stereochemistry. Study the methods of preparation and applications of organometallic reagents.											
	Understand topocity, prochirality, auxillary and reagent-controlled methods in asymmetric synthesis.											
				d of the	course,	the stud	ent will	be able	to			
CO1	O1 To familiarize with the specific functions of the reagents particularly diazomethane, N-bromosuccinimide, Ziegler Natta catalyst, 1,3-dithianes and Merrifield resin in the synthesis of a variety of complex molecules.											
CO2	To ga	in know	ledge in	n the sy	nthesis	of diffe		ganomet				stereo
CO3		derstan lled rea		ereosele	ctivity,	stereose	electivit	y and s	ubstrate	e contro	olled au	xillary
CO4		so the r	_		•	_		ises oxi olete red			_	
		Ma	apping	of cours	se outco	mes wit	th the p	rogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	3	2	2	3	2	1	-	1	1
CO2	3	2	2	3	2	2	3	2	2	1	1	2
CO3	3	1	1	3	-	2	-	2	1	-	2	-
CO4	3	2	2	3	1	-	1	2	1	1	-	2

CHE-EC-303A Core-Theory Organic Chemistry III

UNIT I: REAGENTS IN ORGANIC SYNTHESIS

CITE EC 2024

15 Hrs

Use of the following reagents in organic synthesis: Anhydrous AlCl₃, Boran trifluoride, N-Bromosuccinimide, Diazomethane, Dicyclohexylcarbodiimide, Lead tetraacetate, Zieglar-Natta catalysts, DDQ, Dithianes, Merrifield resin.

UNIT-II: ORGANOMETALLIC REAGENTS

15 Hrs

Synthesis and applications of Grignard reagents, Organolithium, Zinc, Copper, Mercury, Palladium and Rhodium compounds in Organic Synthesis, Homogeneous catalytic hydrogenation and hydroformylation reactions

UNIT III: ASYMMETRIC SYNTHESIS

15 Hrs

Topocity - Prochirality- Substrate selectivity - Diastereoselectivity and enantioselectivity-Substrate controlled methods-use of chiral substrates - examples

Auxiliary controlled methods-Use of chiral auxiliaries-Chiral enolates-alkylation of chiral imines – Stereoselective Diels-Alder reaction

Reagent controlled methods-Use of chiral reagents-Asymmetric oxidation-Sharpless epoxidation-Asymmetric reduction-Use of lithium aluminium hydride and borate reagents.

UNIT IV: METHODS OF ORGANIC SYNTHESIS

15 Hrs

i). Oxidations: (a) Alcohols to carbonyls-Chromium (iv) oxidants-Dimethylsulfoxide

oxidation,

periodate xidation, Oppenauer oxidation, oxidation with manganese dioxide, oxidation with silver carbonate (b) Alkenes to epoxides-peroxide induced epoxidations. (c) Alkenes to diols-oxidation with potassium permanaganate, osmium tetraoxide, Prevost reaction (d) Ketones to esters-Bayer-Villiger oxidation (e) Oxidative bond cleavage-cleavage of alkenes by transition metals. (f) Oxidation of alkyl or alkenyl fragments-selenium dioxide and chromium trioxide oxidations.

ii). Reductions: Reduction with lithium aluminium hydride, sodium borohydride, alkoxides, bismethoxy ethoxy aluminium hydride, Boran aluminium hydride and derivatives-catalytic,hydrogenation-dissolving metal reductions, Non-Metallic reducing agents including enzymatic and microbial reductions.

Suggested Books

- 1. Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, John Wiley.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J. Sundberg, Plenum.
- 3. Structure and Mechanism in Organic Chemistry, C.K. Inglod, Cornell University Press.
- 4. Organic Chemistry, R.T Morrison and R.N. Boyd, Prentice Hall.
- 5. Name reactions and reagents in organic synthesis, B.P. Muway and M.G Ellord, John Wiley.
- 6. Principles of Organic Synthesis, R.O.C Norman and J.M Coxon, Blackie Academic & Professional.
- 7. Reaction Mechanism in Organic Chemistry, P.S. Kalsi, New Age International.
- 8. Principles of organometallic chemistry, P. Powell, ELBS.
- 9. Organo transition metal chemistry-Applications to organic synthesis, S.G. Davis, Pergmon.
- 10. Stereochemistry to Organic Compounds, D. Nasipuri, New Age International.
- 11. Stereochemistry, P.S. Kalsi, Wiley Eastern.

CHE-I	-EC-303B Physical Chemistry III L-5,1-1,P-0 4 Credits											
Pre-re	equisite:	Unders	standing	of grad	uate lev	el Physi	cal Che	mistry	<u>'</u>			
LeaApFarspeGet	spectroscopy											
Cours	rse Outcomes: At the end of the course, the student will be able to											
CO1	To know	w the de	termina	tion of (Characte	er Co-or	dinate o	of C ₂ V p	oint gro	up base	d on 3N	
	To know the determination of Character Co-ordinate of C ₂ V point group based on 3N Coordinates and to learn the Mutual exclusion Principle.											
CO2								ethod, B	ragg me	thod, D	ebye Sc	herrer
			•		•	crystals.						
CO3			•						-	oscopy,	PQR br	anches,
004								ectrosco		**** 1		
CO4										Hildebra	nd	
	SOIUUIII	iy paran	neter, co	шсері О	1 F101 y	rruggilis	dieory	of poly	nei soit	itions		
		Ma	apping o	of cours	se outco	mes wit	h the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	1	2	2	-	2	-	2	2
CO2	3	2	2	3	2	2	1	2	-	2	1	-
CO3	3 2 2 3 2 2 - 1 1 1 2											
CO4	3	2	2	3	_	2	1	1	1	2	-	2

I -5 T-1 P-0

Physical Chemistry III

CHE-AC-303B CORE-THEORY PHYSICAL CHEMISTRY III

UNIT-I Applications of Group Theory

15 Hrs

4 Credits

Construction of reducible and irreducible representations, Determination of Character Co-ordinate of C_2V point group based on 3N Co-ordinates. Standard reduction formula, Determination of normal modes of vibrations of SO_2 , NH_3 , $POCl_3$, $PtCl_4^{2-} \cdot H_2O_2$ molecules. Mutual exclusion Principle, Direct Product, Accidental Degeneracy and Fermi resonance Group Theory and Spectroscopy: IR Spectral activity of NH_3 molecule, selection rules, symmetry Criteria for optical activity, symmetry restrictions on dipole moments, symmetry and stereo isomerism. Prediction of IR and Raman Spectral activity of H_2O and CO_2 .

UNIT-II: X-ray Diffraction:

CHE-EC-303B

15 Hrs

- (A) Solid State Chemistry Dislocation of Solids, Schottky and Frenkeldefects, insulaters, a,d semiconductors, Band theory of solids, solid state reactions.
- **(B)** Bragg conditions-Miller Indices- Laue method, Bragg method, Debye Scherrer method of X-ray structural analysis of crystals. Index reflections, identification of unit cells from systematic absences in diffraction pattern- structure of simple lattices and X-ray intensities- structure factor and its relation to intensity and electron density- Description of procedure for X-ray structure analysis (NaCl and KCl)
- **(C) Electron Diffraction:** Scattering intensity Vs scattering angle, Wierlequation, and its importance. Measurement techniques, Elucidation of structures of simple gas phase molecules, Low energy electron diffraction (LEED) for the study of surfaces.

UNIT-III: SPECTROSCOPHY

15 Hrs

Microwave spectroscopy: classification of molecules, rigid rotator model, effect of isotopic

substitution on the transition frequencies, intensities- stark effect.

Infrared spectroscopy: Linear harmonic oscillator, zero point energy, anharmonity, Mores potential energy diagram, fundamental and overtone transitions, hot bands and combinations bands. Vibration-rotation spectroscopy, PQR branches, selection rules, factors affecting the band positions and intensities for IR region. **Raman spectroscopy:** Classical and quantum theories of Raman effect, pure rotational, pure vibrational Raman spectroscopy, selection rules, mutual exclusion principle, resonance Raman spectroscopy and coherent antistokes Raman spectroscopy. Vibrational- rotational Raman spectroscopy.

UNIT-IV: POLYMER SOLUTIONS

15 Hrs

Thermodynamics of polymer dissolution, effect of molecular weight on solubility, solubility of crystalline and amorphous polymer, heat of dissolution, regular solution theory, Hildebrand solubility parameter, Flory-Huggins theory of polymer solutions, conformational entropy, osmotic pressure and viscosity of polymer solutions. Molecular weight determination by light scattering, ultra-centrifugation and sedimentation equilibrium method. Liquid Crystals- synthesis and applications

Books Suggested

- 8. F.A. Cotton: Introduction to Group theory for chemists.
- 9. Geroge Davidson Elsevier: Introductory Group Theory for Chemists.
- 10. Gurdeep Raj, Ajay Bhagi&Vinod Jain: Group Theory and Symmetry in Chemistry
- 11. Instrumental methods of analysis M.H. Willard, Meritt Jr. and J.A. Dean
- 12. Principles of instrumental analysis Skoog and West
- 13. F. W. Billmeyer, Jr.: Text Book of Polymer Science. Wiley Interscience.
- 14. V. R. Gowariker, N. V. Viswanathan, Jayadev Sreedhar.: polymer Science. New Age international Publishers.

CHE	EC 304	1		ore pra				-5,T-1,I	P-0	4	Credit	S
			Enviro	nmenta	l Chem	istry -						
				Pract	tical							
Pre-re	Pre-requisite: Understanding of Environmental Chemistry- Practical.											
Cours	Course Objectives:											
• Fan	niliarize	with	the water	analysis	technic	ques to a	nlyse ac	idity an	d alkali	nity		
• Gai	n knowl	edge	on BOD	and COI	Э.							
• Uno	lerstand	the b	asics of s	oil analy	'sis							
• Det	erminat	ion of	heavy m	etals in s	soil.							
Cours	e Outco	mes:	At the en	d of the	course,	the stud	ent will	be able				
	CO1	To	know th	e basic i	dea on t	echniqu	es of wa	iter anal	ysis and	l acidity	alkalin	ity
	CO2	To	get expe	rience w	ith the	calculati	ons of E	OD and	d COD			
(CO3	To	Underst	and the l	oasics of	f soil ana	alysis <i>vi</i>	z. pH, C	Conduciv	vity		
(CO4	To	have an	experier	nce on th	ne detern	nination	of heav	y metal	ls in soil	-	
]	Mapping	of cour	se outco	omes wi	th the p	rogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	3	-	2	3	2	_	1	1	1
CO2	3	2	2	3	2	2	3	2	2	1	1	2
CO3	3	-	1	3	1	2		2	2	-	2	-
CO4	3	2	2	3	1	-	2	2	2	1	-	2

CHE: EC-304: PRACTICALS (Core & Gen.) :: WATER & SOIL ANALYSIS

Water Analysis

- a. Alkalinity
- b. Acidity
- c. Temporary, Permanent and total hardness
- d. Sulphate
- e. Phosphorus
- f. Nitrites
- g. Cholorides
- h. D.O, BOD and COD
- i. Insecticides

Soil Analysis

Determination Of:

- a) pH
- **b**) Conductivity
- c) Ca
- d) Mg
- e) Heavy metals like Cr, Pb, Cd, Zn.

CHE EC 305A	Chemotherapy and Drug Analysis	L-5,T-1,P-0	4Credits
Pre-requisite: U	Inderstanding of Chemotherapy and Dru	ıg Analysis	

Course Objectives:													
•	Gain knowledge on chemotherapy and analysis of drugs.												
•	Analysis of drugs chemically and biologically.												
Course	Course Outcomes: At the end of the course, the student will be able												
CO1	To kn	ow abou	it the cla	assificat	ion and	synthes	is of dru	igs.					
CO2	To far	niliarize	with th	e qualit	ative and	d quanti	tative a	nalysis o	of drugs				
CO3													
CO4													
		Ma	apping o	of cours	se outco	mes wit	th the p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	1	3	-	2	3	2	1	1	1	1	
CO2	3 2 2 3 2 3 2 1 1 - 2												
CO3	CO3												
CO4													

CHE EC 305A: (SKILL ORIENTED COURSE : THEORY) : CHEMOTHEROPY AND DRUG ANALYSIS

UNIT-I: Chemotherapy

Definition, History, and Evolution of Chemotherapy; Discovery, Classification, Nomenclature, Mode of action and synthesis of the following classes of compounds with special references to specific drugs mentioned under each class

- vi) Sulfa drugs- Sulfanilamide and Sulfamethoxazole.
- vii) Antibacterials
- c) Lactum group of antibiotics Penicillin, Ampicillin and Amoxycillin.
- d) Cephalosporin-C and Ciprofloxacin.
- viii) Anticancer drugs 5-Flurouracil, Methotrexate.
- ix) Antifungals Griseofulvin
- x) Antimalarials Chloroquin

UNIT-II: Chemical and Biochemical analysis of Drugs

Qualitative and Quantitative Analysis of drugs: Uses of IR, UV, GLC and HPLC methods.

Drug Assay by Biochemical Analysis – ELISA (Cortisol, alcohol, opiates).

Radio Immuno Assay (RIA) – Enalapril, Insulin; Kidney, Lungs and Liver function tests; Use of isotopes in the Bioanalysis of drugs and in drug design programmes.

Book Suggested

- 1. Medicinal Chemistry and Pharmaceutical Chemistry Harikishan Singh and Kapur
- 2. Medicinal Chemistry and Biochemistry R.L.Nath
- 3. Introduction to Medicinal Chemistry Patrick
- 4. The Organic Chemistry of Drug Synthesis Vols. 1-6 Ledneicer Top drugs top synthetic routes John Saunders
- 5. Medicinal Chemistry Ashutoshkar
- 6. Synthetic Organic Chemistry and Drugs Gurideep R Chetwal
- 7. Biochemistry Harper, Conn & Stumpf, Lehninger
- 8. Biochemistry Western Jodd
- 9. Biochemistry Cann & Stumpf
- 10. Bergers Medicinal Chemistry Vols. 1-5 Manfred E. Wolf

- 11. Introduction to drug design Siverman
- 12. Biochemical approach to Medicinal Chemistry Thomas Nogrady
- 13. Prinicples of Medicinal chemistry William Foye
- 14. Text book of organic medicinal and pharmaceutical chemistry Delgrado and William A
- 15. Industrial Microbiology Casida

CHE E	C 305B	Inst	rument	al Meth	ods of	Analysi	s L-	3,T-1,P	-2	40	Credits	
Pre-re	Pre-requisite: Understanding of Instrumental Methods of Analysis Practical											
Cou	Course Objectives:											
• 1												
• 5												
Course	e Outcomes: At the end of the course, the student will be able											
CO1	To know about the potentometric analysis of mixtures of acids and halides											
CO2	To fai	miliariz	e with th	e Flame	e photon	netric ar	nalysis o	of Na, K	, and Li			
CO3												
CO4												
		Ma	apping o	of cours	se outco	mes wit	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	3	3	-	2	3	2	1	1	1	_
CO2	3	2	1	3	2	2	3	2	1	-	1	2
CO3			_							_		_
CO4												

CHE: AC 305 (B): PRACTICALS (SKILL ORIENTED COURSE): INSTRUMENTAL METHODS OF ANALYSIS

1. Colorimetric Determinations:

- a. Determination of manganese
- b. Determination of nickel
- c. Determination of iron by 1,10 Pheren-thiroline
- d. Determination of chromium
- e. Determination of Phosphate
- f. Determination of Pesticides
- g. Determination of Nitrite.

CHE EC 306	Spectral Techniques	L-5,T-1,P-0	4 Credits						
Pre-requisite: Understanding of Spectral Techniques									

Course Objectives:

- Familiarize with the instrumentation of UV and visible spectroscopy, applications of identifying the structures of the molecules.
- Understand IR spectrometry and applications to ascertain the fundamental groups by observing absorption bands.
- Study on the applications of flame atomic absorption spectroscopy.
- Understand the working principle and fragmentation rules of different molecules in Mass spectroscopy.

٥	spectroscopy.											
Cours	Course Outcomes: At the end of the course, the student will able											
CO1	CO1 To know the basic principles of spectroscopy.											
CO2												
CO3	CO3 To Understand the applications of AAS.											
CO4	CO4 To gain knowledge about Mass spectral fragmentation of organic compounds and common											
	functional groups.											
	Mapping of course outcomes with the program outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	-	3	-	2	3	2	1	-	1	1
CO2	3	2	2	3	2	2	3	2	2	1	-	2
CO3	3	2	1	2	2		2	1	-	1	1	-
CO4	3	2	2	3	_	2	1	_	2	1		2

CHE: AC: 306(A): (OPEN ELECTIVE) SPECTRAL TECHNIQUES

UNIT - I: ULTRAVIOLET AND VISIBLE SPECTROSCOPY

15 Hrs

Various electronic transitions (185-800nm.), Beer-Lambert Law, effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, Fieser-Woodward rules for conjugated dienes and carbonyl compounds

UNIT - II: INFRARED SPECTROSCOPY

15 Hrs

Instrumentation and sample handling, characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ethers, phenols, amines, ketones, aldehydes, esters, amides, acids and anhydrides. Effect of hydrogen bonding.

UNIT – III:ATOMIC ABSORPTION SPECTROSCOPY: FLAME AAS: 15 Hrs

Principle, Instrumentation – Sources of radiation (HCL and EDL), Different types of burners, Interferences- Physical, Chemical, spectral and back ground correction, and methods of minimization

GF AAS: Principle and technique –Comparison between Flame AAS and furnace AAS, Applications of AAS, Comparison between Atomic Absorption & Flame Photometry.

UNIT -IV: MASS SPECTROMETRY

15 Hrs

Principle, instrumentation, different methods of ionization, EI, CI, FD and FAB, Mass spectramolecular ion, base peak, meta-stable peak, nitrogen rule and Mc Lafferty rearrangement. Mass spectral fragmentation of organic compounds and common functional groups. Normal and branched alkanes, alkenes, cycloalkanes, benzene and its derivatives, alcohols and phenols, ethers, aldehydes and ketones, carboxylic acids and their derivatives , amines and nitro compounds. Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.

Books Suggested:

- 1. Organic spectroscopy, W. Kemp 5th Ed, ELBS .2.
- 2. Spectroscopy of organic compounds, RM Silversteen and others 5th Ed, John Wiley 1991
- 3. Spectroscopy of organic compounds, PS Kalsi, Wiley, 1993

- $4.\ NMR\ in\ chemistry-A\ Multi \ nuclear\ introduction,\ William\ Kemp,\ Mc\ Millan\ 1986$
- 5. Spectroscopic methods in Organic Chemistry, DH Williams & I Flemmi TMH . 2005

						1		- , ,				
Pre-requisite: Understanding of graduate level Chromatographic Techniques												
Cours	Course Objectives:											
• Fan	Familiarize with Classification of Chromatographic methods.											
• Uno	Understand Demonstration experiment in TLC.											
• Stu	dy on th	e applic	ations o	f High-l	Perform	ance Lie	quid Ch	romatog	graphy (HPLC).		
• Uno	derstand	the wor	rking pri	inciple o	of gas cl	nromato	graphy.					
Cours	e Outco	mes: A	t the end	d of the	course,	the stud	ent will	able to				
CO1	CO1 To know the stationary and mobile phases in chromatographic techniques.											
CO2	To fam	iliarize	applicat	ions of	differen	t chrom	atograpl	nic meth	ods.			
CO3	To Uno	derstand	the prin	nciple of	chroma	atograpl	nic techi	niques.				
CO4	To gair	n knowle	edge on	the nor	mal pha	se and re	everse p	hase.				
		Ma	apping	of cours	se outco	mes wi	th the p	rogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	2	-	3	2	2	1	-	1	-
CO2	3	2	2	2	2	2	3	2		1	1	2
CO3	3	2	1	2	2		2	-	2	_	1	-
CO4	3	2	2	1	2	1	1	1	1	1	-	2

L-5,T-1,P-0

4Credits

CHE EC 306 | Chromatographic Techniques

CHE EC 306: Chromatographic Techniques

Unit –I: Introduction - Classification of Chromatographic methods – Column chromatography-Adsorption phenomenon: Nature of adsorbents-Solvent systems-Differential migration-Separation of mixture of o-/p-nitro anilines (A demonstration experiment).

Unit –II: Thin-Layer Chromatography (TLC)-Coating materials and preparation of TLC plates-Solvents for development-Detection of compounds in TLC- R_f values in TLC-Applications of TLC in chemistry-Preparative TLC – Demonstration experiment in TLC.

Unit –III: High-Performance Liquid Chromatography (HPLC) - Application of HPLC- HPLC instrument-Stationary phases in HPLC-Normal and reversed phase HPLC: A comparison- Normal phase HPLC: Principle-Retention times in Normal and reversed phase HPLC- Reversed phase HPLC: Principle.

Unit –**IV:** Gas-Liquid Chromatography- Instruments for Gas-Liquid Chromatography- Gas-Chromatographic Columns and the Stationary Phase- Application of Gas-Liquid Chromatography- Gas-Solid Chromatography.

Reference Books:

- 5. Analytical chemistry: G L David Krupadanam, D. Vijaya prsad, K. Varaprasad Rao, KLN Reddy, C. Sudhakar.
- 6. Analytical chemistry: Skoog West Holler.
- 7. Modern Analytical Chemistry: David Harvey DePauw University.
- 8. J.G. Dick. Analytical Chemistry, Mc Grraw Hill, New Delhi, (1973).

CHE-I	C- 301		organio	_			L-	5,T-1,P	'-0	4	Credits	
		11	hermal	Metnod	IS OI An	iaiysis						
Pre-requisite: Understanding of Basic Inorganic Spectroscopy and Thermal Methods of Analysis												
C	- Obi-	4										
	e Objec		41	1 41	1 C	1 .	1 .	. 1	1	1	, .	
	• Gain knowledge on thermal methods of analysis and principles and applications to inorganic materials											
		vith basi	ics of M	ossbaue	r and N	QR spe	ctroscop	y.				
						oin, hype			constant	S		
• Study	y the ES	R instru	ımentati	on, vari	ous app	lications	s and ph	otoelect	ron spec	ctroscop	y.	
Cours	e Outco	mes :A	t the end	d of the	course,	the stud	lent will	be able				
CO1	To kn	ow abou	ıt TG ar	nd DTA	and app	olication	s of diff	erent sc	anning	calorime	etry.	
CO2	To ga	in know	ledge or	n Doppl	er shift	and che	mical sh	ift, basi	c princij	ples and	applica	tions of
	NQR	spectros	scopy.									
CO3						ner's de	generac	y, relaxa	tion pro	cesses,		
			on and a									
CO4							pmans t	heorem	and im	part the	applica	tions of
	X-ray a		photoel		_							
	Mapping of course outcomes with the program outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	_	2	-	2	1	1	2	1
CO2	3	2	2	3	2	2	2	-	2	2	2	2
CO3	3	2	2	3	2	2	1	2	-	2	1	-
CO4	3	2	2	3	2	1	1	-	1	-	2	1

CHE-IC- 301: INORGANIC SPECTROSCOPY AND THERMAL METHODS OF ANALYSIS

UNIT -I: THERMAL METHODS OF ANALYSIS

15 Hrs

Thermo gravimetry –Principle, Factors affecting the results, instrumentation. Application with special reference to CuSO₄5H₂O, CaC₂O₄ 2H₂O. Different thermal analysis – principle, instrumentation, difference between TG and DTA, applications with special reference to the clays and minerals. Different scanning calorimetry –principle, and applications to inorganic materials like chlorates and perchlorates, ammonium nitrate.

UNIT -II: MOSSBAUER SPECTROSCOPY and NQR

15 Hrs

Mossbauer spectroscopy: Basic principles, Recoil energy, Doppler shift, Chemical shift, Quadrapole effects, Magnetic effects. Instrumentation, spectral parameters and spectrum display. Aapplication of the technique to the studies of (1) bonding and structures of Fe^{2+} and Fe^{3+} compounds, (2) Sn^{2+} and Sn^{4+} compounds.

NQR spectroscopy: Basic principles of NQR spectroscopy, quadrupole nuclei, quadrupole moments, electric field gradient, coupling constant and applications.

UNIT -III: ELECTRON SPIN RESONANCE SPECTROSCOPY

15 Hrs

Basic Principles, Hyper fine splitting, Factors affecting the 'g' value. Isotropic and anisotropic hyperfine coupling constants, Hamiltonian and spin densities. Zero field splitting and Kramer's degeneracy, Relaxation process and line widths. Instrumentation and Applications. The EPR spectrum of bis(salicylidimine)-copper(II) complex, study of inorganic free radicals, biological applications of Electron Spin Resonance (Study of free radicals and Iron-sulfur proteins)

Photoelectric effect, Koopmans's theorem, ionization energy.

X-ray photoelectron spectroscopy (ESCA): Principle, Binding energies, Chemical shift, Applications of XPES to Qualitative analysis, to surface studies and structural analysis. Ultraviolet photoelectron spectroscopy- Principle, application of UPES in studying the molecular orbitals of O_2 and N_2 molecules. Block diagram of photoelectron spectrophotometer. Sources of radiation, detectors. Auger spectra – Principle, Applications of Auger spectra to surface studies and use of Auger spectra as a finger print tool.

Books Suggested

- 8. F.A. Cotton and G. Wilkinson, Advanced In-organic chemistry VI Edition, 1999. John wiley & sons. Inc., New York.
- 9. J.E. Huheey, E.A. Keiter and R.L. Keiter: Inorganic Chemsitry, Principles of Structure and Reactivity (4th Ed.) (Addison-Wesley)
- 10. Gary Wulfsberg: Inorganic Chemistry (5th Ed. (Viva Books)
- 11. J.D. Lee: Concise Inorganic Chemistry (Blackwell)
- 12. W.L. Jolly: Modern Inorganic Chemsitry (McGraw-Hill)
- 13. R.L. Carlin: Magneto-chemsitry (Springer-Verlag)
- 14. R.L. Dutta and A. Syamal: Elements of Magnetochemsitry (Affiliate East-West).
- 8. K. Hussain Reddy Text book of Bioinorganic chemistry

(Mandatory Core)

CHE-IC 302	Organic Spectroscopy and Applications	L-5,T-1,P-0	4Credits
Pre-requisite:			

Course Objectives:

- Familiarize with the instrumentation of UV and visible spectroscopy, applications of identifying the structures of the molecules.
- Understand IR spectrometry and applications to ascertain the fundamental groups by observing absorption bands
- Study on the applications of NMR spectroscopy in ascertaining the stereochemical structures of the molecules.
- Understand the working principle and fragmentation rules of different molecules in Mass spectroscopy

Course Outcomes: At the end of the course, the student will be able to

CO1	To get experience to calculate λ max values for dienes, enones, polyenes, aromatic and
	heteroaromatic compounds.
CO2	To familiarize with the absorption bands of the molecules with specific functional groups
CO3	To interpret the data to different types of protons and carbons present in a molecule so as to ascertain the structure of the molecule based on the data provided
CO4	To acquire knowledge about specific fragmentation rules of different molecules which are unique.

Mapping of course outcomes with the program outcomes

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	2	2	-	1	-	2	2	1
CO2	3	2	2	3	2	2	2	1	1	2	2	-
CO3	3	2	2	3	2	2	-	2	-	2	2	2
CO4	3	2	2	3	2	2	1	1	-	2	2	-

CHE-IC 302: CORE THEORY: ORGANIC SPECTROSCOPY AND APPLICATIONS

UNIT-I: ULTRAVIOLET AND VISIBLE SPECTROSCOPY: 15Hrs

Various electronic transitions (185-800 nm), effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, conjugated polyenes. Fisher-Woodward rules for conjugated dienes and carbonyl compounds, ultraviolet spectra of aromatic and heterocyclic compounds. Steric effect in biphenyls.

UNIT – II: INFRARED SPECTROSCOPY

15Hrs

Instrumentation and sample handling. Characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ether, phenols and amines. Detailed study of vibrational frequencies of carbonyl compounds (ketones, aldehydes, esters, amides, acids, anhydrides, lactones, lactams and conjugated carbonyl compounds). Effect of hydrogen bonding and solvent effect on vibrational frequencies, overtones, combination bands and fermi resonance, FT-IR

UNIT -III: NMR SPECTROSCOPY:

15Hrs

¹H NMR spectroscopy: Magnetic properties of nuclei, Principles of NMR. Instrumentation, CW and pulsed FT instrumentation, equivalent and nonequivalent protons, enantiotopic and diastereotopic protons, Chemical shifts, factors affecting the chemical shifts, electronegativity and anisotropy, shielding and deshielding effects, Signal integration, Spin-spin coupling: vicinal, germinal and long range, Coupling constants and factors affecting coupling constants.

Applications of ¹H NMR spectroscopy: Reaction mechanisms (cyclic bromonium ion, electrophilic

and nucleophilic substitutions, carbocations and carbanions), E, Z isomers, conformation of cyclohexane and decalins, keto-enol tautomerism, hydrogen bonding, proton exchange processes (alcohols, amines and carboxylic acids), C-N rotation. Stereochemistry, hindered rotation, Karplus curve variation of coupling constant with dihedral angle. Simplification of complex spectra, nuclear magnetic double resonance, contact shift reagents, nuclear Overhauser effect (NOE).

¹³C NMR spectroscopy: General considerations, chemical shift (aliphatic, olefinic, alkyne, aromatic, heteroaromatic and carbonyl carbon), coupling constants. Two dimensional NMR spectroscopy-COSY.

UNIT-IV: MASS SPECTROMETRY

15Hrs

Introduction, ion production, type of ionization, EI, CI, FD, and FAB-factors affecting fragmentation, ion analysis, ion abundance. Mass spectral fragmentation of organic compounds, common functional groups, molecular-ion peak, metastable peak, Mc. Lafferty rearrangement. Nitrogen rule, isotope labeling. High resolution mass spectrometry, Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.

Books suggested:

- 6. Organic spectroscopy, W. Kemp 5th Ed, ELBS
- 7. Spectroscopy of organic compounds, RM Silversteen and others, 5th Ed,John Wiley
- 8. Spectroscopy of organic compounds, P.S. Kalsi, Wiley, 1993.
- 9. NMR in chemistry-A multi nuclear introduction, William Kemp, Mc Millan, 1986.
- 10. Spectroscopic methods in Organic chemistry, DH Williams & I Flemmi

(Mandatory Core)

CHE-I	C-303A		Org	anic Ch	emistry	III	I	L-3,T-1,	P-2	4	Credits	
Pre-re	quisite	Unders	standing	of Orga	nic Che	emistry	<u> </u>					
Fam stereStudUnd syntApp stere	niliarize eochem ly the m lerstand hesis. olication eo contr	istry. nethods topocin as of dif colled pr	of preparty, proceedings.	cations ration a chirality,	of diffe	ications ary and educing	of orgai reagen agents	n organi nometal it-contro in organ be able	lic reago lled m	ents. ethods	in asyn	nmetric
CO2	N-bro synthe	mosuccesis of a	inimide, variety	Ziegle of comp	r Natta olex mol	catalys lecules.	t, 1,3-d	reagent ithianes ganomet	and M	Ierrifield	d resin	in the
COZ								organo				stereo
CO3	To ur		d diaste					y and s				xillary
CO4		so the rounds.	eagents	that cau	ises sele	ective ar	nd comp	uses oxicolete red	uctions	to synt		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	2	2	-	2	1	2	2	1
CO2	3	2	2	3	2	2	-	2	2	-	2	1
CO3	3	2	2	3	2	2	1	-	1	1	-	2
	3	l	2	3	2	2		2	1	2	2	

CHE-IC-303A Core-Theory Organic Chemistry III

UNIT I: REAGENTS IN ORGANIC SYNTHESIS

15 Hrs

Use of the following reagents in organic synthesis: Anhydrous AlCl₃, Boran trifluoride, N-Bromosuccinimide, Diazomethane, Dicyclohexylcarbodiimide, Lead tetraacetate, Zieglar-Natta catalysts, DDQ, Dithianes, Merrifield resin.

UNIT-II: ORGANOMETALLIC REAGENTS

15 Hrs

Synthesis and applications of Grignard reagents, Organolithium, Zinc, Copper, Mercury, Palladium and Rhodium compounds in Organic Synthesis, Homogeneous catalytic hydrogenation and hydroformylation reactions

UNIT III: ASYMMETRIC SYNTHESIS

15 Hrs

Topocity - Prochirality- Substrate selectivity - Diastereoselectivity and enantioselectivity-Substrate controlled methods-use of chiral substrates - examples

Auxiliary controlled methods-Use of chiral auxiliaries-Chiral enolates-alkylation of chiral imines

- Stereoselective Diels-Alder reaction

Reagent controlled methods-Use of chiral reagents-Asymmetric oxidation-Sharpless epoxidation-Asymmetric reduction-Use of lithium aluminium hydride and borate reagents.

UNIT IV: METHODS OF ORGANIC SYNTHESIS

15 Hrs

- i). Oxidations: (a) Alcohols to carbonyls-Chromium (iv) oxidants-Dimethylsulfoxide oxidation, periodate xidation, Oppenauer oxidation, oxidation with manganese dioxide, oxidation with silver carbonate (b) Alkenes to epoxides-peroxide induced epoxidations. (c) Alkenes to diols-oxidation with potassium permanaganate, osmium tetraoxide, Prevost reaction (d) Ketones to esters-Bayer-Villiger oxidation (e) Oxidative bond cleavage-cleavage of alkenes by transition metals. (f) Oxidation of alkyl or alkenyl fragments-selenium dioxide and chromium trioxide oxidations.
- **ii).** Reductions: Reduction with lithium aluminium hydride, sodium borohydride, alkoxides, bismethoxy ethoxy aluminium hydride, Boran aluminium hydride and derivatives-catalytic, hydrogenation-dissolving metal reductions, Non-Metallic reducing agents including enzymatic and microbial reductions.

Suggested Books

- 1. Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, John Wiley.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J. Sundberg, Plenum.
- 3. Structure and Mechanism in Organic Chemistry, C.K. Inglod, Cornell University Press.
- 4. Organic Chemistry, R.T Morrison and R.N. Boyd, Prentice Hall.
- 5. Name reactions and reagents in organic synthesis, B.P. Muway and M.G Ellord, John Wiley.
- Principles of Organic Synthesis, R.O.C Norman and J.M Coxon, Blackie Academic & Professional.
- 7. Reaction Mechanism in Organic Chemistry, P.S. Kalsi, New Age International.
- 8. Principles of organometallic chemistry, P. Powell, ELBS.
- 9. Organo transition metal chemistry-Applications to organic synthesis, S.G. Davis, Pergmon.
- 10. Stereochemistry to Organic Compounds, D. Nasipuri, New Age International.
- 11. Stereochemistry, P.S. Kalsi, Wiley Eastern.

CHE-I	-1C-303B Physical Chemistry III L-5,1-1,P-0 4 Credits											
Pre-r	equisite:	Unders	standing	of grad	uate lev	el Physi	cal Che	mistry	•			
• Lea	Course Objectives: • Learn applications of Group Theory, symmetry criteria and symmetry restrictions.											
• Far	 Applications of X-ray Diffraction and Electron Diffraction on solid state chemistry. Familiarize with the applications of Microwave spectroscopy, infrared spectroscopy and Raman spectroscopy. 											
• Get	t knowle ory of po	edge on olymer s	olutions	S.				-		on and l	Flory-H	uggins
Cours	se Outco	mes: A	t the end	d of the	course,	the stud	ent will	be able	to			
CO1	To know	w the de	termina	tion of (Characte	er Co-or	dinate o	of C ₂ V p	oint gro	up base	d on 3N	
	Coordin	nates and	d to lear	n the M	utual ex	clusion	Principl	le.				
CO2	To learn	the Br	agg con	ditions-	Miller Iı	ndices- l	Laue me	ethod, B	ragg me	ethod, D	ebye Sc	herrer
			•		•	crystals.						
CO3			•							oscopy,	PQR br	anches,
G 0.4								ectrosco				
CO4		•	-				_		•	Hildebra	ind	
	solubili	ty paran	neter, co	oncept of	f Flory-	Huggins	theory	of poly	mer solu	ıtıons		
		Ma	apping	of cours	se outco	mes wit	h the p	rogram	outcon	nes		
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											
CO1	3	2	2	3		2	2	1	-	1	2	1
CO2	3	2	2	3	2	2	-	2	-	2	1	-
CO3	3	2	2	3	2	2	2		1		1	2
CO4	3	2	2	3	-	2	1	1	-	2	_	2

L-5 T-1 P-0

Physical Chemistry III

CHE-AC-303B CORE-THEORY PHYSICAL CHEMISTRY III

UNIT-I Applications of Group Theory

15 Hrs

4 Credits

Construction of reducible and irreducible representations, Determination of Character Co-ordinate of C₂V point group based on 3N Coordinates. Standard reduction formula, Determination of normal modes of vibrations of SO₂, NH₃, POCl₃, PtCl₄²⁻·H₂O₂ molecules. Mutual exclusion Principle, Direct Product, Accidental Degeneracy and Fermi resonance Group Theory and Spectroscopy: IR Spectral activity of NH₃ molecule, selection rules, symmetry Criteria for optical activity, symmetry restrictions on dipole moments, symmetry and stereo isomerism. Prediction of IR and Raman Spectral activity of H₂O and CO₂.

UNIT-II: X-ray Diffraction:

CHE-IC-303B

15 Hrs

- (A) Solid State Chemistry Dislocation of Solids, Schottky and Frenkeldefects, insulaters, a,d semiconductors, Band theory of solids, solid state reactions.
- **(B)** Bragg conditions-Miller Indices- Laue method, Bragg method, Debye Scherrer method of X-ray structural analysis of crystals. Index reflections, identification of unit cells from systematic absences in diffraction pattern- structure of simple lattices and X-ray intensities- structure factor and its relation to intensity and electron density- Description of procedure for X-ray structure analysis (NaCl and KCl)
- **(C) Electron Diffraction:** Scattering intensity Vs scattering angle, Wierlequation, and its importance. Measurement techniques, Elucidation of structures of simple gas phase molecules, Low energy electron diffraction (LEED) for the study of surfaces.

UNIT-III: SPECTROSCOPHY

15 Hrs

Microwave spectroscopy: classification of molecules, rigid rotator model, effect of isotopic

substitution on the transition frequencies, intensities- stark effect.

Infrared spectroscopy: Linear harmonic oscillator, zero point energy, anharmonity, Mores potential energy diagram, fundamental and overtone transitions, hot bands and combinations bands. Vibration-rotation spectroscopy, PQR branches, selection rules, factors affecting the band positions and intensities for IR region. **Raman spectroscopy:** Classical and quantum theories of Raman effect, pure rotational, pure vibrational Raman spectroscopy, selection rules, mutual exclusion principle, resonance Raman spectroscopy and coherent antistokes Raman spectroscopy. Vibrational- rotational Raman spectroscopy.

UNIT-IV: POLYMER SOLUTIONS

15 Hrs

Thermodynamics of polymer dissolution, effect of molecular weight on solubility, solubility of crystalline and amorphous polymer, heat of dissolution, regular solution theory, Hildebrand solubility parameter, Flory-Huggins theory of polymer solutions, conformational entropy, osmotic pressure and viscosity of polymer solutions. Molecular weight determination by light scattering, ultra-centrifugation and sedimentation equilibrium method. Liquid Crystals- synthesis and applications

Books Suggested

- 1. F.A. Cotton: Introduction to Group theory for chemists.
- 2. Geroge Davidson Elsevier: Introductory Group Theory for Chemists.
- 3. Gurdeep Raj, Ajay Bhagi&Vinod Jain: Group Theory and Symmetry in Chemistry
- 4. Instrumental methods of analysis M.H. Willard, Meritt Jr. and J.A. Dean
- 5. Principles of instrumental analysis Skoog and West
- 6. F. W. Billmeyer, Jr.: Text Book of Polymer Science. Wiley Interscience.
- 7. V. R. Gowariker, N. V. Viswanathan, Jayadev Sreedhar.: polymer Science. New Age international Publishers.

CHE I	IC 304 Core practical I: L-5,T-1,P-0 4 Credits Inorganic Chemistry - Practical											
Pre-re	quisite	: Under	standing	of Inor	ganic C	hemistr	y - Pract	tical.				
Cours	e Objec	ctives:										
• Gai	n know]	ledge or	synthe	sis of in	organic	complex	xes – su	lphates	and chlo	orides		
• Exp	erience	with the	e charac	terizatio	on techn	iques						
• Prep	paration	ration of cobaltates and ferrates										
• Abl	e to cha	o characterize the complexes										
Cours	e Outco	Outcomes: At the end of the course, the student will be able										
CO1	To k	To know the synthesis of inorganic complexes Tris thiourea Zinc (II) Sulphate, Tris										
		thiourea Copper(I) Sulphate, Hexamine nickel (II) Chloride, Chloropentamanine cobalt										
	(III) (Chloride	•	•						•		
CO2	To ga	in knov	vledge o	n charac	cterizati	on techr	niques					
CO3	To g	et expe	rience o	on the	prepara	tion of	Mercui	y tetral	cristhioc	cyanato	cobalta	te (II)
	Sodiu	ım triox	alato fer	rate (III	()							
CO4	To fa	miliariz	e with tl	ne chara	cterizati	ion of co	omplexe	es.				
		M	apping	of cour	se outco	omes wi	th the p	rogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	1	2	-	2	3	2	1	2	1	-
CO2	3	2	2	3	2	2	3	2	1	1	-	2
CO3	3	1	-	2	1	2	1	2	-	1	1	-
CO4	3	2	2	3		1	-	2	1	1	-	2

CHE: IC-304: PRACTICALS (Core & Gen.)

Preparation of Inorganic complexes and characterization:

- a) Tris thiourea Zinc (II) Sulphate
- **b**) Tris thiourea Copper(I) Sulphate
- c) Hexamine nickel (II) Chloride
- d) Chloropentamanine cobalt (III) Chloride
- e) Cis potassium diaquodioxalato chromate (III)
- f) Tris (acetylacetonato) manganese (III)
- g) Mercury tetrakristhiocyanato cobaltate (II)
- h) Sodium trioxalato ferrate (III)
- i) Tetrammine Copper (II) Sulphate
- j) Potassium hexathiocyanato chromate (III) tetrahydrate

CHE IC 305A	Chemotherapy and Drug Analysis	L-5,T-1,P-0	4 Credits

Pre-re	Pre-requisite: Understanding of Chemotherapy and Drug Analysis											
Course	e Objec	tives:										
		owledge				•	of drug	S.				
•	Analysis	s of drug	gs chem	ically ar	nd biolog	gically.						
Course	e Outco	mes: A	t the end	d of the	course,	the stud	ent will	be able				
CO1	To kn	ow abou	it the cla	assificat	ion and	synthes	is of dru	ıgs.				
CO2	To far	niliarize	with th	e qualit	ative and	d quanti	tative a	nalysis o	of drugs	•		
CO3												
CO4												
		Ma	apping o	of cours	se outco	mes wit	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	3	-	2	3	2	1	1	1	1
CO2	3 2 2 3 2 - 1 - 2											
CO3												
CO4												

CHE IC 305A: (SKILL ORIENTED COURSE : THEORY) : CHEMOTHEROPY AND DRUG ANALYSIS

UNIT-I: Chemotherapy

Definition, History, and Evolution of Chemotherapy; Discovery, Classification, Nomenclature, Mode of action and synthesis of the following classes of compounds with special references to specific drugs mentioned under each class

- a) Sulfa drugs- Sulfanilamide and Sulfamethoxazole.
- b) Antibacterials
- c) Lactum group of antibiotics Penicillin, Ampicillin and Amoxycillin.
- d) Cephalosporin-C and Ciprofloxacin.
- e) Anticancer drugs 5-Flurouracil, Methotrexate.
- f) Antifungals Griseofulvin
- g) Antimalarials Chloroquin

UNIT-II: Chemical and Biochemical analysis of Drugs

Qualitative and Quantitative Analysis of drugs: Uses of IR, UV, GLC and HPLC methods.

Drug Assay by Biochemical Analysis – ELISA (Cortisol, alcohol, opiates).

Radio Immuno Assay (RIA) – Enalapril, Insulin; Kidney, Lungs and Liver function tests; Use of isotopes in the Bioanalysis of drugs and in drug design programmes.

Book Suggested

- 1. Medicinal Chemistry and Pharmaceutical Chemistry Harikishan Singh and Kapur
- 2. Medicinal Chemistry and Biochemistry R.L.Nath
- 3. Introduction to Medicinal Chemistry Patrick
- 4. The Organic Chemistry of Drug Synthesis Vols. 1-6 Ledneicer Top drugs top synthetic

routes – John Saunders

- 5. Medicinal Chemistry Ashutoshkar
- 6. Synthetic Organic Chemistry and Drugs Gurideep R Chetwal
- 7. Biochemistry Harper, Conn & Stumpf, Lehninger
- 8. Biochemistry Western Jodd
- 9. Biochemistry Cann & Stumpf
- 10. Bergers Medicinal Chemistry Vols. 1-5 Manfred E. Wolf
- 11. Introduction to drug design Siverman
- 12. Biochemical approach to Medicinal Chemistry Thomas Nogrady
- 13. Prinicples of Medicinal chemistry William Foye
- 14. Text book of organic medicinal and pharmaceutical chemistry Delgrado and William A
- 15. Industrial Microbiology Casida

CHE IC	C 305B	Inst	rument	al Meth	ods of	Analysis	s L-	3,T-1,P	-2	40	Credits	
Pre-re	Pre-requisite: Understanding of Instrumental Methods of Analysis Practical											
Cou	ırse Ob	jectives	: :									
• (Gain kn	owledge	e on inst	rumenta	al metho	ds of an	alysis					
•]	Estimati	on of m	etal ion	s by con	nplex m	etric and	d colori	metric n	nethod.			
Cours	e Outco	mes: A	t the end	d of the	course,	the stud	ent will	be able				
001	- T.	1 .	1.1		.1		1.		C 1	•		
CO1	To Ur	iderstan	d the co	mplexit	y, theor	y and w	orking p	orinciple	e of colo	urimetry	у.	
CO2	To ga	in know	ledge o	n analys	sis of org	ganic co	mponen	its.				
CO3												
CO4												
		Ma	anning	of cours	se outco	mes wit	h the n	rogram	outcon	nes		
	DO1										DO 1.1	DO 10
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	3	1	2	3	2	1	-	1	-
CO2	3	2	2	3	2	2	3	2	-	1	-	2
CO3												
CO4												

$CHE:IC\ 305\ (B):PRACTICALS\ (SKILL\ ORIENTED\ COURSE):Instrumental\ methods\ of\ analysis$

1. Colorimetric Determinations:

- a. Determination of manganese
- b. Determination of nickel
- c. Determination of iron by 1,10 Pheren-thiroline
- d. Determination of chromium
- e. Determination of Phosphate
- f. Determination of Pesticides
- g. Determination of Nitrite.

CHE IC 306	Spectral Techniques	L-5,T-1,P-0	4 Credits
Pre-requisite: U	Inderstanding of Spectral Techniques		

Course Objectives:

- Familiarize with the instrumentation of UV and visible spectroscopy, applications of identifying the structures of the molecules.
- Understand IR spectrometry and applications to ascertain the fundamental groups by observing absorption bands.
- Study on the applications of flame atomic absorption spectroscopy.
- Understand the working principle and fragmentation rules of different molecules in Mass spectroscopy.

Cours	Course Outcomes: At the end of the course, the student will able											
CO1	To kno	w the ba	asic prin	ciples o	f spectr	oscopy.						
CO2		o familiarize with the analysis of various functional groups by using different ectroscopic techniques.										
CO3	To Uno	o Understand the applications of AAS.										
CO4	To gain knowledge about Mass spectral fragmentation of organic compounds and common functional groups.											
		Ma	apping	of cours	se outco	omes wi	th the p	rogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	-	3	-	2	3	2	-	-	1	-
CO2	3	1	2	2	2	2	2	2	1	1	-	2
CO3	3	2	1	2	2	1	2	-	2	-	1	1
CO4	3	1	2	3	1	2	-	-	1	1	-	2

CHE: IC: 306(A): (OPEN ELECTIVE) SPECTRAL TECHNIQUES

UNIT - I: ULTRAVIOLET AND VISIBLE SPECTROSCOPY

15 Hrs

Various electronic transitions (185-800nm.), Beer-Lambert Law, effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, Fieser-Woodward rules for conjugated dienes and carbonyl compounds

UNIT – II : INFRARED SPECTROSCOPY

15 Hrs

Instrumentation and sample handling, characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ethers, phenols, amines, ketones, aldehydes, esters, amides, acids and anhydrides. Effect of hydrogen bonding.

UNIT – III:ATOMIC ABSORPTION SPECTROSCOPY: FLAME AAS: 15 Hrs

Principle, Instrumentation – Sources of radiation (HCL and EDL), Different types of burners, Interferences- Physical, Chemical, spectral and back ground correction, and methods of minimization

GF AAS: Principle and technique –Comparison between Flame AAS and furnace AAS, Applications of AAS, Comparison between Atomic Absorption & Flame Photometry.

UNIT -IV: MASS SPECTROMETRY

15 Hrs

Principle, instrumentation, different methods of ionization, EI, CI, FD and FAB, Mass spectramolecular ion, base peak, meta-stable peak, nitrogen rule and Mc Lafferty rearrangement. Mass spectral fragmentation of organic compounds and common functional groups. Normal and branched alkanes, alkenes, cycloalkanes, benzene and its derivatives, alcohols and phenols, ethers, aldehydes and ketones, carboxylic acids and their derivatives, amines and nitro compounds. Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.

Books Suggested:

- 6. Organic spectroscopy, W. Kemp 5th Ed, ELBS .2.
- 7. Spectroscopy of organic compounds, RM Silversteen and others 5th Ed, John Wiley 1991
- 8. Spectroscopy of organic compounds, PS Kalsi, Wiley, 1993
- 9. NMR in chemistry A Multi nuclear introduction, William Kemp, Mc Millan 1986
- 10. Spectroscopic methods in Organic Chemistry, DH Williams & I Flemmi TMH . 2005

CHE	IC 306	Chr	omatog	graphic	Techni	ques	L-	5,T-1,P	P-0	4	Credits	
Pre-re	equisite	Unders	standing	of grad	uate lev	el Chro	matogra	phic Te	chnique	S		
Cours	e Objec	ctives:										
	• Familiarize with Classification of Chromatographic methods.											
	Understand Demonstration experiment in TLC.											
							quid Ch	romatog	graphy (HPLC).		
• Uno	derstand	the wor	king pri	inciple o	of gas cl	nromato	graphy.					
Cours	e Outco	omes: A	t the end	d of the	course,	the stud	lent will	able to				
CO1	T. 1	.1 .	· ·	1	1.1 1		1 .	1.	, 1 .			
	To kno	w the st	ationary	and mo	obile ph	ases in o	chromate	ographic	e technic	ques.		
CO2	To fam	iliarize	applicat	ions of	differen	t chrom	atograpl	nic meth	ods.			
CO3	To Uno	derstand	the prin	nciple of	f chroma	atograpl	nic techr	niques.				
CO4	To gair	n knowl	edge on	the nor	mal pha	se and r	everse p	hase.				
	1	Ma	apping	of cour	se outco	mes wi	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	1	2	-	2	2	2	1	-	1	-
CO2	2	2	2	1	2	2	3	2	-	1	-	2
CO3	3	2	2	2	2	-	2	1	1		1	-
CO4	1	2	2	3	-	2		1	-	1	-	2

CHE IC 306: Chromatographic Techniques

Unit –**I:** Introduction - Classification of Chromatographic methods – Column chromatography-Adsorption phenomenon: Nature of adsorbents-Solvent systems-Differential migration-Separation of mixture of o-/p-nitro anilines (A demonstration experiment).

Unit –II: Thin-Layer Chromatography (TLC)-Coating materials and preparation of TLC plates-Solvents for development-Detection of compounds in TLC- R_f values in TLC-Applications of TLC in chemistry-Preparative TLC – Demonstration experiment in TLC.

Unit –III: High-Performance Liquid Chromatography (HPLC) - Application of HPLC- HPLC instrument-Stationary phases in HPLC-Normal and reversed phase HPLC: A comparison- Normal phase HPLC: Principle-Retention times in Normal and reversed phase HPLC- Reversed phase HPLC: Principle.

Unit –IV: Gas-Liquid Chromatography- Instruments for Gas-Liquid Chromatography- Gas-Chromatographic Columns and the Stationary Phase- Application of Gas-Liquid Chromatography-Gas-Solid Chromatography.

Reference Books:

- 9. Analytical chemistry: G L David Krupadanam, D. Vijaya prsad, K. Varaprasad Rao, KLN Reddy, C. Sudhakar.
- 10. . Analytical chemistry: Skoog West Holler.
- 11. Modern Analytical Chemistry: David Harvey DePauw University.
- 12. J.G. Dick. Analytical Chemistry, Mc Grraw Hill, New Delhi, (1973).

CHE-IO	C-303A Organic Chemistry III L-3,T-1,P-2 4Credits											
Pre-re	quisite	Unders	standing	of Orga	nic Che	emistry	I					
Fam stereStudUnd syntApp stere	stereochemistry. • Study the methods of preparation and applications of organometallic reagents.											
CO1	N-bro synthe	mosuccesis of a	e with inimide, variety	Ziegle of comp	r Natta olex mol	catalys lecules.	t, 1,3-d	ithianes	and M	Ierrifield	d resin	in the
CO2	_		vledge in cificity a	•			_	•		_		stereo
CO3		nderstan olled rea	d diaste ctions	ereosele	ctivity,	stereose	electivit	y and s	ubstrate	contro	olled au	xillary
CO4	and al	lso the rounds.	nowledg eagents	that cau	ises sele	ective an	nd comp	olete red	luctions	to syntl		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	2	2	-	2	-	2	2	1
CO2	3	2	2	3	2	2	1	2	1	-	2	2
CO3	3	2	2	3	2	2	_	1	2	1	-	1
CO4	3	2	2	3	2	2	1	2	-	2	2	-

CHE-IC-303A Core-Theory Organic Chemistry III

UNIT I: REAGENTS IN ORGANIC SYNTHESIS

CHE IC 2024

15 Hrs

Use of the following reagents in organic synthesis: Anhydrous AlCl₃, Boran trifluoride, N-Bromosuccinimide, Diazomethane, Dicyclohexylcarbodiimide, Lead tetraacetate, Zieglar-Natta catalysts, DDQ, Dithianes, Merrifield resin.

UNIT-II: ORGANOMETALLIC REAGENTS

15 Hrs

Synthesis and applications of Grignard reagents, Organolithium, Zinc, Copper, Mercury, Palladium and Rhodium compounds in Organic Synthesis, Homogeneous catalytic hydrogenation and hydroformylation reactions

UNIT III: ASYMMETRIC SYNTHESIS

15 Hrs

Topocity - Prochirality- Substrate selectivity - Diastereoselectivity and enantioselectivity-Substrate controlled methods-use of chiral substrates - examples

Auxiliary controlled methods-Use of chiral auxiliaries-Chiral enolates-alkylation of chiral imines – Stereoselective Diels-Alder reaction

Reagent controlled methods-Use of chiral reagents-Asymmetric oxidation-Sharpless epoxidation-Asymmetric reduction-Use of lithium aluminium hydride and borate reagents.

UNIT IV: METHODS OF ORGANIC SYNTHESIS

15 Hrs

- i). Oxidations: (a) Alcohols to carbonyls-Chromium (iv) oxidants-Dimethylsulfoxide oxidation, periodate xidation, Oppenauer oxidation, oxidation with manganese dioxide, oxidation with silver carbonate (b) Alkenes to epoxides-peroxide induced epoxidations. (c) Alkenes to diols-oxidation with potassium permanaganate, osmium tetraoxide, Prevost reaction (d) Ketones to esters-Bayer-Villiger oxidation (e) Oxidative bond cleavage-cleavage of alkenes by transition metals. (f) Oxidation of alkyl or alkenyl fragments-selenium dioxide and chromium trioxide oxidations.
- **ii).** Reductions: Reduction with lithium aluminium hydride, sodium borohydride, alkoxides, bismethoxy ethoxy aluminium hydride, Boran aluminium hydride and derivatives-catalytic, hydrogenation-dissolving metal reductions, Non-Metallic reducing agents including enzymatic and microbial reductions.

Suggested Books

- 1. Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, John Wiley.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J. Sundberg, Plenum.
- 3. Structure and Mechanism in Organic Chemistry, C.K. Inglod, Cornell University Press.
- 4. Organic Chemistry, R.T Morrison and R.N. Boyd, Prentice Hall.
- 5. Name reactions and reagents in organic synthesis, B.P. Muway and M.G Ellord, John Wiley.
- 6. Principles of Organic Synthesis, R.O.C Norman and J.M Coxon, Blackie Academic & Professional.
- 7. Reaction Mechanism in Organic Chemistry, P.S. Kalsi, New Age International.
- 8. Principles of organometallic chemistry, P. Powell, ELBS.
- 9. Organo transition metal chemistry-Applications to organic synthesis, S.G. Davis, Pergmon.
- 10. Stereochemistry to Organic Compounds, D. Nasipuri, New Age International.
- 11. Stereochemistry, P.S. Kalsi, Wiley Eastern.

CHE OC 306	Spectral Techniques	L-5,T-1,P-0	4 Credits
Pre-requisite: U	Understanding of Spectral Techniques		

Course Objectives:

- Familiarize with the instrumentation of UV and visible spectroscopy, applications of identifying the structures of the molecules.
- Understand IR spectrometry and applications to ascertain the fundamental groups by observing absorption bands
- Study on the applications of NMR spectroscopy in ascertaining the stereochemical structures of the molecules.
- Understand the working principle and fragmentation rules of different molecules in Mass spectroscopy

Course Outcomes: At the end of the course, the student will able

CO1	To get experience to calculate λ max values for dienes, enones, polyenes, aromatic and
	heteroaromatic compounds.
000	

CO2 To familiarize with the absorption bands of the molecules with specific functional groups
 CO3 To interpret the data to different types of protons and carbons present in a molecule so as

to ascertain the structure of the

CO4 To acquire knowledge about specific fragmentation rules of different molecules which

To acquire knowledge about specific fragmentation rules of different molecules which are unique.

	410 41											
	Mapping of course outcomes with the program outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	2	2	2	1	-	2	2	-
CO2	3	2	2	3	2	2	-	2	1	2	2	-
CO3	3	2	2	3	2	2	-	2	-	2	2	2
CO4	3	2	2	3	2	2	1	-	2	2	2	-

CHE-OC 302: CORE THEORY: ORGANIC SPECTROSCOPY AND APPLICATIONS

UNIT-I: ULTRAVIOLET AND VISIBLE SPECTROSCOPY: 15Hrs

Various electronic transitions (185-800 nm), effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, conjugated polyenes. Fisher-Woodward rules for conjugated dienes and carbonyl compounds, ultraviolet spectra of aromatic and heterocyclic compounds. Steric effect in biphenyls.

UNIT - II: INFRARED SPECTROSCOPY

15Hrs

Instrumentation and sample handling. Characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ether, phenols and amines. Detailed study of vibrational frequencies of carbonyl compounds (ketones, aldehydes, esters, amides, acids, anhydrides, lactones, lactams and conjugated carbonyl compounds). Effect of hydrogen bonding and solvent effect on vibrational frequencies, overtones, combination bands and fermi resonance, FT-IR

UNIT -III: NMR SPECTROSCOPY:

15Hrs

¹H NMR spectroscopy: Magnetic properties of nuclei, Principles of NMR. Instrumentation, CW and pulsed FT instrumentation, equivalent and nonequivalent protons, enantiotopic and diastereotopic protons, Chemical shifts, factors affecting the chemical shifts, electronegativity and anisotropy, shielding and deshielding effects, Signal integration, Spin-spin coupling: vicinal,

germinal and long range, Coupling constants and factors affecting coupling constants.

Applications of ¹H NMR spectroscopy: Reaction mechanisms (cyclic bromonium ion, electrophilic and nucleophilic substitutions, carbocations and carbanions), E, Z isomers, conformation of cyclohexane and decalins, keto-enol tautomerism, hydrogen bonding, proton exchange processes (alcohols, amines and carboxylic acids), C-N rotation. Stereochemistry, hindered rotation, Karplus curve variation of coupling constant with dihedral angle. Simplification of complex spectra, nuclear magnetic double resonance, contact shift reagents, nuclear Overhauser effect (NOE).

¹³C NMR spectroscopy: General considerations, chemical shift (aliphatic, olefinic, alkyne, aromatic, heteroaromatic and carbonyl carbon), coupling constants. Two dimensional NMR spectroscopy-COSY.

UNIT-IV: MASS SPECTROMETRY

15Hrs

Introduction, ion production, type of ionization, EI, CI, FD, and FAB-factors affecting fragmentation, ion analysis, ion abundance. Mass spectral fragmentation of organic compounds, common functional groups, molecular-ion peak, metastable peak, Mc. Lafferty rearrangement. Nitrogen rule, isotope labeling. High resolution mass spectrometry, Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.

Books suggested:

- 1. Organic spectroscopy, W. Kemp 5th Ed, ELBS
- 2. Spectroscopy of organic compounds, RM Silversteen and others, 5th Ed, John Wiley
- 3. Spectroscopy of organic compounds, P.S. Kalsi, Wiley, 1993.
- 4. NMR in chemistry-A multi nuclear introduction, William Kemp, Mc Millan, 1986.
- 5. Spectroscopic methods in Organic chemistry, DH Williams & I Flemmi.

(Mandatory Core)

CHE-OC- 303A	Inorganic Spectroscopy and Thermal Methods of Analysis	L-5,T-1,P-0	4Credits						
Pre-requisite: Understanding of Basic Inorganic Spectroscopy and Thermal Methods of Analysis									

Course Objectives: Gain knowledge on thermal methods of analysis and principles and applications to inorganic materials. Familiarize with basics of Mossbauer and NQR spectroscopy. Learn the properties like g-factor, nuclear spin, hyperfine coupling constants Study the ESR instrumentation, various applications and photoelectron spectroscopy. **Course Outcomes:** At the end of the course, the student will be able To know the basic principles of instrumental methods of analysis. CO₁ CO₂ To gain knowledge on chemistry of alloys. CO₃ To Understand the complexity, theory and working principle of colourimetry **CO4** To familiarize with laws of colorimetric titrations. Mapping of course outcomes with the program outcomes PO7 PO₁ PO₂ PO₃ PO4 PO5 PO6 PO8 PO9 PO10 PO11 PO12

2

3

3

2

2

1

1

CHE-OC- 303A: Inorganic Spectroscopy and Thermal Methods of Analysis

2

-

2

3

3

3

3

UNIT -I: THERMAL METHODS OF ANALYSIS

1

2

1

2

1

2

CO₁

CO₂

CO3

CO₄

3

3

3

3

15 Hrs

1

1

2

2

Thermo gravimetry –Principle, Factors affecting the results, instrumentation. Application with special reference to CuSO₄5H₂O, CaC₂O₄ 2H₂O. Different thermal analysis – principle, instrumentation, difference between TG and DTA, applications with special reference to the clays and minerals. Different scanning calorimetry –principle, and applications to inorganic materials like chlorates and perchlorates, ammonium nitrate.

UNIT -II: MOSSBAUER SPECTROSCOPY and NQR

15 Hrs

Mossbauer spectroscopy: Basic principles, Recoil energy, Doppler shift, Chemical shift, Quadrapole effects, Magnetic effects. Instrumentation, spectral parameters and spectrum display. Aapplication of the technique to the studies of (1) bonding and structures of Fe^{2+} and Fe^{3+} compounds, (2) Sn^{2+} and Sn^{4+} compounds.

NQR spectroscopy: Basic principles of NQR spectroscopy, quadrupole nuclei, quadrupole moments, electric field gradient, coupling constant and applications.

UNIT -III: ELECTRON SPIN RESONANCE SPECTROSCOPY

15 Hrs

Basic Principles, Hyper fine splitting, Factors affecting the 'g' value. Isotropic and anisotropic hyperfine coupling constants, Hamiltonian and spin densities. Zero field splitting and Kramer's degeneracy, Relaxation process and line widths. Instrumentation and Applications. The EPR spectrum of bis(salicylidimine)-copper(II) complex, study of inorganic free radicals, biological applications of Electron Spin Resonance (Study of free radicals and Iron-sulfur proteins)

UNIT -IV: PHOTO ELECTRON SPECTROSCOPY

15 Hrs

Photoelectric effect, Koopmans's theorem, ionization energy.

X-ray photoelectron spectroscopy (ESCA): Principle, Binding energies, Chemical shift, Applications of XPES to Qualitative analysis, to surface studies and structural analysis. Ultraviolet photoelectron spectroscopy- Principle, application of UPES in studying the molecular orbitals of O_2 and N_2 molecules. Block diagram of photoelectron spectrophotometer. Sources of radiation,

detectors. Auger spectra – Principle, Applications of Auger spectra to surface studies and use of Auger spectra as a finger print tool.

Books Suggested

- 1. F.A. Cotton and G. Wilkinson, Advanced In-organic chemistry VI Edition, 1999. John wiley & sons. Inc., New York.
- 2. J.E. Huheey, E.A. Keiter and R.L. Keiter: Inorganic Chemsitry, Principles of Structure and Reactivity (4th Ed.) (Addison-Wesley)
- 3. Gary Wulfsberg: Inorganic Chemistry (5th Ed. (Viva Books)
- 4. J.D. Lee: Concise Inorganic Chemistry (Blackwell)
- 5. W.L. Jolly: Modern Inorganic Chemsitry (McGraw-Hill)
- 6. R.L. Carlin: Magneto-chemsitry (Springer-Verlag)
- 7. R.L. Dutta and A. Syamal: Elements of Magnetochemsitry (Affiliate East-West).
- 8. K. Hussain Reddy Text book of Bioinorganic chemistry

CHE-	OC- 505B Physical Chemistry III L-5,1-1,F-0 4 Credits											
Pre-r	equisite:	Unders	standing	of grad	uate lev	el Physi	cal Che	mistry				
Cour	se Objec	tives:										
• Le	arn applic	cations	of Group	p Theor	y, symm	netry cri	teria and	d symme	etry rest	rictions.		
• Ap	• Applications of X-ray Diffraction and Electron Diffraction on solid state chemistry.											
• Familiarize with the applications of Microwave spectroscopy, infrared spectroscopy and Raman												
_	spectroscopy.											
Get knowledge on concept of Thermodynamics of polymer dissolution and Flory-Huggins												
	theory of polymer solutions.											
Cour	Course Outcomes: At the end of the course, the student will be able to											
CO1	To know	To know the determination of Character Co-ordinate of C ₂ V point group based on 3N										
	Coordinates and to learn the Mutual exclusion Principle.											
CO ₂												
	method of X-ray structural analysis of crystals.											
CO3	To study		•						-	oscopy,	PQR br	anches,
	selection											
CO4											nd	
	solubilit	y paran	neter, co	oncept o	f Flory-	Huggins	theory	of poly	mer solı	itions		
		Ma	apping (of cours	se outco	mes wit	h the p	rogram	outcon	nes		
	DO1										DO11	DO12
CO1	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	-	2	1	-	2	1	2	-
CO2	3	2	2	3	2	2	1	2	-	2	1	1
CO3	3	2	2	3	2	2	1	1	2	-	1	2
CO4	3	2	2	3	_	2	1	_	1	2	1	2

Physical Chemistry III L.5 T.1 P.0

CHE-AC-303B CORE-THEORY PHYSICAL CHEMISTRY III

UNIT-I Applications of Group Theory

15 Hrs

4 Credits

Construction of reducible and irreducible representations, Determination of Character Co-ordinate of C_2V point group based on 3N Coordinates. Standard reduction formula, Determination of normal modes of vibrations of SO_2 , NH_3 , $POCl_3$, $PtCl_4^{2-} \cdot H_2O_2$ molecules. Mutual exclusion Principle, Direct Product, Accidental Degeneracy and Fermi resonance Group Theory and Spectroscopy: IR Spectral activity of NH_3 molecule, selection rules, symmetry Criteria for optical activity, symmetry restrictions on dipole moments, symmetry and stereo isomerism. Prediction of IR and Raman Spectral activity of H_2O and CO_2 .

UNIT-II: X-ray Diffraction:

CHE-OC- 303R

15 Hrs

- (A) Solid State Chemistry Dislocation of Solids, Schottky and Frenkeldefects, insulaters, a,d semiconductors, Band theory of solids, solid state reactions.
- **(B)** Bragg conditions-Miller Indices- Laue method, Bragg method, Debye Scherrer method of X-ray structural analysis of crystals. Index reflections, identification of unit cells from systematic absences in diffraction pattern- structure of simple lattices and X-ray intensities- structure factor and its relation to intensity and electron density- Description of procedure for X-ray structure analysis (NaCl and KCl)
- **(C) Electron Diffraction:** Scattering intensity Vs scattering angle, Wierlequation, and its importance. Measurement techniques, Elucidation of structures of simple gas phase molecules, Low energy electron diffraction (LEED) for the study of surfaces.

Microwave spectroscopy: classification of molecules, rigid rotator model, effect of isotopic substitution on the transition frequencies, intensities- stark effect.

Infrared spectroscopy: Linear harmonic oscillator, zero point energy, anharmonity, Mores potential energy diagram, fundamental and overtone transitions, hot bands and combinations bands. Vibration-rotation spectroscopy, PQR branches, selection rules, factors affecting the band positions and intensities for IR region. **Raman spectroscopy:** Classical and quantum theories of Raman effect, pure rotational, pure vibrational Raman spectroscopy, selection rules, mutual exclusion principle, resonance Raman spectroscopy and coherent antistokes Raman spectroscopy. Vibrational- rotational Raman spectroscopy.

UNIT-IV: POLYMER SOLUTIONS

15 Hrs

Thermodynamics of polymer dissolution, effect of molecular weight on solubility, solubility of crystalline and amorphous polymer, heat of dissolution, regular solution theory, Hildebrand solubility parameter, Flory-Huggins theory of polymer solutions, conformational entropy, osmotic pressure and viscosity of polymer solutions. Molecular weight determination by light scattering, ultra-centrifugation and sedimentation equilibrium method. Liquid Crystals- synthesis and applications

Books Suggested

- 1. F.A. Cotton: Introduction to Group theory for chemists.
- 2. Geroge Davidson Elsevier: Introductory Group Theory for Chemists.
- 3. Gurdeep Raj, Ajay Bhagi&Vinod Jain: Group Theory and Symmetry in Chemistry
- 4. Instrumental methods of analysis M.H. Willard, Meritt Jr. and J.A. Dean
- 5. Principles of instrumental analysis Skoog and West
- 6. F. W. Billmeyer, Jr.: Text Book of Polymer Science. Wiley Interscience.
- 7. V. R. Gowariker, N. V. Viswanathan, Jayadev Sreedhar.: polymer Science. New Age international Publishers.

CHE	OC 304				ctical I: ions - P	ractical		·5,T-1,P	P-0	4	Credit	S
Pre-re	equisite	: Unders	standing	of Orga	anic Che	emistry	- Practic	eal.				
	Course Objectives:											
	• Estimation of phenol											
	Estimation of glucose											
	Estimation and percentage purity of aspirin Estimation and percentage purity of paracetamol											
	se Outcomes: At the end of the course, the student will be able											
CO1	To gain knowledge about the estimation/percent purity of different organic molecules.											
CO2	To get hands-on-experience with the synthesis and determination of concentrations and											
	purity	7.	-			•						
CO3	To ac	quire kr	nowledg	e in han	dling of	toxic cl	hemical	s in esti	mation p	process.		
CO4	To ga	in expe	rience in	the cal	culating	the per	centage	purity.				
		Ma	apping	of cours	se outco	mes wi	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	2	2	1	2	1	-	2	-
CO2	3	2	2	3	2	2	2	2	-	2	2	2
CO3	3	2	2	3	2	1	-	2	2	1	-	2
CO4	3	2	2	3	2	_	1	2	1	2	-	2

CHE: OC: 304: Practicals (Core & Gen.) Organic Estimations

1) Estimation of phenol

- 2) Estimation of glucose
- 3) Estimation of percentage purity of aspirin
- 4) Estimation of percentage purity of paracetamol.

CHE OC 305A	Chemotherapy and Drug Analysis	L-5,T-1,P-0	4 Credits
Pre-requisite: U	Inderstanding of Chemotherapy and Dr	ug Analysis	

Course Objectives: Gain knowledge on chemotherapy and analysis of drugs. Analysis of drugs chemically and biologically. **Course Outcomes:** At the end of the course, the student will be able To know about the classification and synthesis of drugs. **CO1** CO₂ To familiarize with the qualitative and quantitative analysis of drugs. CO₃ CO₄ Mapping of course outcomes with the program outcomes PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO₁ PO12 CO₁ 3 1 1 2 2 3 2 2 1 1 3 2 2 3 2 2 2 2 CO₂ 1 2 CO₃ CO₄

CHE OC 305A: (SKILL ORIENTED COURSE: THEORY): CHEMOTHEROPY AND DRUG ANALYSIS

UNIT-I: Chemotherapy

Definition, History, and Evolution of Chemotherapy; Discovery, Classification, Nomenclature, Mode of action and synthesis of the following classes of compounds with special references to specific drugs mentioned under each class

- a) Sulfa drugs- Sulfanilamide and Sulfamethoxazole.
- b) Antibacterials
- c) Lactum group of antibiotics Penicillin, Ampicillin and Amoxycillin.
- d) Cephalosporin-C and Ciprofloxacin.
- e) Anticancer drugs 5-Flurouracil, Methotrexate.
- f) Antifungals Griseofulvin
- g) Antimalarials Chloroquin

UNIT-II: Chemical and Biochemical analysis of Drugs

Qualitative and Quantitative Analysis of drugs: Uses of IR, UV, GLC and HPLC methods.

Drug Assay by Biochemical Analysis – ELISA (Cortisol, alcohol, opiates).

Radio Immuno Assay (RIA) – Enalapril, Insulin; Kidney, Lungs and Liver function tests; Use of isotopes in the Bioanalysis of drugs and in drug design programmes.

Book Suggested

- 1. Medicinal Chemistry and Pharmaceutical Chemistry Harikishan Singh and Kapur
- 2. Medicinal Chemistry and Biochemistry R.L.Nath
- 3. Introduction to Medicinal Chemistry Patrick
- 4. The Organic Chemistry of Drug Synthesis Vols. 1-6 Ledneicer Top drugs top synthetic routes John Saunders
- 5. Medicinal Chemistry Ashutoshkar
- 6. Synthetic Organic Chemistry and Drugs Gurideep R Chetwal
- 7. Biochemistry Harper, Conn & Stumpf, Lehninger
- 8. Biochemistry Western Jodd

- 9. Biochemistry Cann & Stumpf
- 10. Bergers Medicinal Chemistry Vols. 1-5 Manfred E. Wolf
- 11. Introduction to drug design Siverman
- 12. Biochemical approach to Medicinal Chemistry Thomas Nogrady
- 13. Prinicples of Medicinal chemistry William Foye
- 14. Text book of organic medicinal and pharmaceutical chemistry Delgrado and William A
- 15. Industrial Microbiology Casida

CHE O	OC 305B Instrumental Methods of Analysis L-3,T-1,P-2 4Cre									Credits			
Pre-requisite: Understanding of Instrumental Methods of Analysis Practical													
Cou	Course Objectives:												
•]	 Multistep preparations of biologically important organic molecules. 												
•]	Familiarize to identify the synthesized compounds by spectral methods.												
Cours	Course Outcomes: At the end of the course, the student will be able												
CO1	To acquire knowledge in handling of toxic chemicals in multistep preparation of												
	biologically important molecules in good percentage of yield.												
CO2	To gain experience in the proposal of synthetic routes to functionalized derivatives.												
CO3													
CO4													
		Ma	apping (of cours	e outco	mes wit	h the p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	1	1	3	-	2	3	2	1	-	1	1	
CO2	3	2	2	3	2	2	3	2	-	1	-	2	
CO3													
CO4													

CHE: OC: 305 (B): Practicals (Skill Oriented Course): Multistep preparations

- 1) Preparation of benzilic acid
- 2) Preparation of benzanilide
- 3) Preparation of o-chlorobenzoic acid
- 4) Preparation of symmetric tribromobenzene

CHE OC 306	Spectral Techniques	L-5,T-1,P-0	4 Credits
Pre-requisite: U	Jnderstanding of Spectral Techniques		

Course Objectives:

- Familiarize with the instrumentation of UV and visible spectroscopy, applications of identifying the structures of the molecules.
- Understand IR spectrometry and applications to ascertain the fundamental groups by observing absorption bands.
- Study on the applications of flame atomic absorption spectroscopy.
- Understand the working principle and fragmentation rules of different molecules in Mass spectroscopy.

Cours	Course Outcomes: At the end of the course, the student will able											
	1											
CO1	10 Kilo	Γο know the basic principles of spectroscopy.										
CO2	To fa	o familiarize with the analysis of various functional groups by using different										
	spectro	pectroscopic techniques.										
CO3	To Uno	To Understand the applications of AAS.										
CO4	To gain knowledge about Mass spectral fragmentation of organic compounds and common											
	functional groups. Mapping of course outcomes with the program outcomes											
		Ma	apping	of cours	se outco	mes wi	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	-	3		2	3	2		-	1	-
CO2	3	1	2	2	2	2	2	2	1	1	-	2
CO3	3	2	1	2	2	1	2	_	2	-	1	1
CO4	3	1	2	3	1	2	-	-	1	1	-	2

CHE: OC: 306(A): (OPEN ELECTIVE) SPECTRAL TECHNIQUES

UNIT – I: ULTRAVIOLET AND VISIBLE SPECTROSCOPY

15 Hrs

Various electronic transitions (185-800nm.), Beer-Lambert Law, effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, Fieser-Woodward rules for conjugated dienes and carbonyl compounds

UNIT - II: INFRARED SPECTROSCOPY

15 Hrs

Instrumentation and sample handling, characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ethers, phenols, amines, ketones, aldehydes, esters, amides, acids and anhydrides. Effect of hydrogen bonding.

UNIT – III:ATOMIC ABSORPTION SPECTROSCOPY: FLAME AAS: 15 Hrs

Principle, Instrumentation – Sources of radiation (HCL and EDL), Different types of burners, Interferences- Physical, Chemical, spectral and back ground correction, and methods of minimization

GF AAS: Principle and technique –Comparison between Flame AAS and furnace AAS, Applications of AAS, Comparison between Atomic Absorption & Flame Photometry.

Principle, instrumentation, different methods of ionization, EI, CI, FD and FAB, Mass spectramolecular ion, base peak, meta-stable peak, nitrogen rule and Mc Lafferty rearrangement. Mass spectral fragmentation of organic compounds and common functional groups. Normal and branched alkanes, alkenes, cycloalkanes, benzene and its derivatives, alcohols and phenols, ethers, aldehydes and ketones, carboxylic acids and their derivatives , amines and nitro compounds. Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.

Books Suggested:

- 1. Organic spectroscopy, W.Kemp 5th Ed, ELBS .2.
- 2. Spectroscopy of organic compounds, RM Silversteen and others 5th Ed, John Wiley 1991
- 3. Spectroscopy of organic compounds, PS Kalsi, Wiley, 1993
- 4. NMR in chemistry A Multi nuclear introduction, William Kemp, Mc Millan 1986
- 5. Spectroscopic methods in Organic Chemistry, DH Williams & I Flemmi TMH . 2005

306	OC	Chr	omatog	raphic	Technic	ques	L-5,T-1,P-0 4Credits					
	quisite:	Unders	tanding	of grad	uate lev	el Chroi	natograj	phic Ted	chniques	<u> </u>		
FanUndStudUnd	 Course Objectives: Familiarize with Classification of Chromatographic methods. Understand Demonstration experiment in TLC. Study on the applications of High-Performance Liquid Chromatography (HPLC). Understand the working principle of gas chromatography. 											
Cours	Course Outcomes: At the end of the course, the student will able to											
CO1	To know the stationary and mobile phases in chromatographic techniques.											
CO2	To familiarize applications of different chromatographic methods.											
CO3	To Understand the principle of chromatographic techniques.											
CO4	To gain	knowle	edge on	the nor	mal phas	se and re	everse p	hase.				
	I	Ma	apping o	of cours	se outco	mes wit	h the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2
CO1	3	-	-	3		2	3	2	-	-	1	-
CO2	3	2	2	3	2	2	3	2	-	1	-	2
CO3	3	2	=	2	2		2	-	-	-	1	-
CO4	3	2	2	3	-	2		-	-	1	-	2

1Cm 1:4a

Chromotographic Tochniques

CHE OC 306 : Chromatographic Techniques

Unit –I: Introduction - Classification of Chromatographic methods – Column chromatography-Adsorption phenomenon: Nature of adsorbents-Solvent systems-Differential migration-Separation of mixture of o-/p-nitro anilines (A demonstration experiment).

Unit –II: Thin-Layer Chromatography (TLC)-Coating materials and preparation of TLC plates-Solvents for development-Detection of compounds in TLC- R_f values in TLC-Applications of TLC in chemistry-Preparative TLC – Demonstration experiment in TLC.

Unit –III: High-Performance Liquid Chromatography (HPLC) - Application of HPLC- HPLC instrument-Stationary phases in HPLC-Normal and reversed phase HPLC: A comparison- Normal phase HPLC: Principle-Retention times in Normal and reversed phase HPLC- Reversed phase HPLC: Principle.

Unit –**IV:** Gas-Liquid Chromatography- Instruments for Gas-Liquid Chromatography- Gas-Chromatographic Columns and the Stationary Phase- Application of Gas-Liquid Chromatography-Gas-Solid Chromatography.

Reference Books:

- 1. Analytical chemistry: G L David Krupadanam, D. Vijaya prsad, K. Varaprasad Rao, KLN Reddy, C. Sudhakar.
- 2. Analytical chemistry: Skoog West Holler.
- 3. Modern Analytical Chemistry: David Harvey DePauw University.
- 4. J.G. Dick. Analytical Chemistry, Mc Grraw Hill, New Delhi, (1973).

(Mandatory Core)

CHE-PC-301	Physical Chemistry III	L-5,T-1,P-0	4 Credits
------------	------------------------	-------------	-----------

Pre-requisite: Understanding of graduate level Physical Chemistry **Course Objectives:** • Learn applications of Group Theory, symmetry criteria and symmetry restrictions. • Applications of X-ray Diffraction and Electron Diffraction on solid state chemistry. • Familiarize with the applications of Microwave spectroscopy, infrared spectroscopy and Raman spectroscopy. • Get knowledge on concept of Thermodynamics of polymer dissolution and Flory-Huggins theory of polymer solutions. **Course Outcomes:** At the end of the course, the student will be able to To know the determination of Character Co-ordinate of C₂V point group based on 3N Coordinates and to learn the Mutual exclusion Principle. To learn the Bragg conditions-Miller Indices- Laue method, Bragg method, Debye Scherrer CO₂ method of X-ray structural analysis of crystals. To study the rigid rotator model, stark effect, vibration-rotation spectroscopy, PQR branches, CO₃ selection rules and Vibrational- rotational Raman spectroscopy. To study the concepts on heat of dissolution, regular solution theory, Hildebrand CO₄ solubility parameter, concept of Flory-Huggins theory of polymer solutions Mapping of course outcomes with the program outcomes PO6 PO3 PO4 PO5 PO7 PO1 PO2 PO8 PO9 PO10 PO11 **PO12**

CO2	3	2	2	3	2	2	-	-	-	2	-	-
CO3	3	2	2	3	2	2	-	-	-		-	2
CO4	3	2	2	3	-	2	-	-	-	2	-	2

CHE-PC-301 CORE-THEORY PHYSICAL CHEMISTRY III

UNIT-I Applications of Group Theory

2

15 Hrs

Construction of reducible and irreducible representations, Determination of Character Co-ordinate of C_2V point group based on 3N Coordinates. Standard reduction formula, Determination of normal modes of vibrations of SO_2 , NH_3 , $POCl_3$, $PtCl_4^{2-} \cdot H_2O_2$ molecules. Mutual exclusion Principle, Direct Product, Accidental Degeneracy and Fermi resonance Group Theory and Spectroscopy: IR Spectral activity of NH_3 molecule, selection rules, symmetry Criteria for optical activity, symmetry restrictions on dipole moments, symmetry and stereo isomerism. Prediction of IR and Raman Spectral activity of H_2O and CO_2 .

UNIT-II: X-ray Diffraction:

CO1

15 Hrs

- (A) Solid State Chemistry Dislocation of Solids, Schottky and Frenkeldefects, insulaters, a,d semiconductors, Band theory of solids, solid state reactions.
- **(B)** Bragg conditions-Miller Indices- Laue method, Bragg method, Debye Scherrer method of X-ray structural analysis of crystals. Index reflections, identification of unit cells from systematic absences in diffraction pattern- structure of simple lattices and X-ray intensities- structure factor and its relation to intensity and electron density- Description of procedure for X-ray structure analysis (NaCl and KCl).
- **(C) Electron Diffraction:** Scattering intensity Vs scattering angle, Wierlequation, and its importance. Measurement techniques, Elucidation of structures of simple gas phase molecules, Low energy electron diffraction (LEED) for the study of surfaces.

UNIT-III: SPECTROSCOPHY

15 Hrs

Microwave spectroscopy: classification of molecules, rigid rotator model, effect of isotopic substitution on the transition frequencies, intensities- stark effect.

Infrared spectroscopy: Linear harmonic oscillator, zero point energy, anharmonity, Mores potential energy diagram, fundamental and overtone transitions, hot bands and combinations bands. Vibration-rotation spectroscopy, PQR branches, selection rules, factors affecting the band positions and intensities for IR region. **Raman spectroscopy:** Classical and quantum theories of Raman effect, pure rotational, pure vibrational Raman spectroscopy, selection rules, mutual exclusion principle, resonance Raman spectroscopy and coherent antistokes Raman spectroscopy. Vibrational- rotational Raman spectroscopy.

UNIT-IV: POLYMER SOLUTIONS

15 Hrs

Thermodynamics of polymer dissolution, effect of molecular weight on solubility, solubility of crystalline and amorphous polymer, heat of dissolution, regular solution theory, Hildebrand solubility parameter, Flory-Huggins theory of polymer solutions, conformational entropy, osmotic pressure and viscosity of polymer solutions. Molecular weight determination by light scattering, ultra-centrifugation and sedimentation equilibrium method. Liquid Crystals- synthesis and applications

Books Suggested

- 8. F.A. Cotton: Introduction to Group theory for chemists.
- 9. Geroge Davidson Elsevier: Introductory Group Theory for Chemists.
- 10. Gurdeep Raj, Ajay Bhagi&Vinod Jain: Group Theory and Symmetry in Chemistry
- 11. Instrumental methods of analysis M.H. Willard, Meritt Jr. and J.A. Dean
- 12. Principles of instrumental analysis Skoog and West
- 13. F. W. Billmeyer, Jr.: Text Book of Polymer Science. Wiley Interscience.
- 14. V. R. Gowariker, N. V. Viswanathan, Jayadev Sreedhar.: polymer Science. New Age international Publishers.

(Mandatory Core)

CHE-PC 302	Organic Spectroscopy and Applications	L-5,T-1,P-0	4Credits
Pre-requisite:	Understanding of Organic Spectroscopy	and Applications	

Course Objectives:

- Familiarize with the instrumentation of UV and visible spectroscopy, applications of identifying the structures of the molecules.
- Understand IR spectrometry and applications to ascertain the fundamental groups by observing absorption bands

- Study on the applications of NMR spectroscopy in ascertaining the stereochemical structures of the molecules.
- Understand the working principle and fragmentation rules of different molecules in Mass spectroscopy

spec	spectroscopy											
Cours	Course Outcomes: At the end of the course, the student will be able to											
CO1	To get experience to calculate λ max values for dienes, enones, polyenes, aromatic and heteroaromatic compounds.											
CO2	To fa	To familiarize with the absorption bands of the molecules with specific functional groups										
CO3	To interpret the data to different types of protons and carbons present in a molecule so as to ascertain the structure of the molecule based on the data provided											
CO4	To acquire knowledge about specific fragmentation rules of different molecules which are unique. Mapping of course outcomes with the program outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	POI	PO2	PO3	PO4	PO3	POG	PO/	108	PO9	POIU	POII	PO12
CO1	3	2	2	3	2	2	-	-	-	2	2	-
CO2	3	2	2	3	2	2	-	-	-	2	2	-
CO3	3	2	2	3	2	2	-	-	-	2	2	2
CO4	3	2	2	3	2	2	-	-	-	2	2	-

CHE-PC 302: CORE THEORY: ORGANIC SPECTROSCOPY AND APPLICATIONS

UNIT-I: ULTRAVIOLET AND VISIBLE SPECTROSCOPY: 15Hrs

Various electronic transitions (185-800 nm), effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, conjugated polyenes. Fisher-Woodward rules for conjugated dienes and carbonyl compounds, ultraviolet spectra of aromatic and heterocyclic compounds. Steric effect in biphenyls.

UNIT – II: INFRARED SPECTROSCOPY

15Hrs

Instrumentation and sample handling. Characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ether, phenols and amines. Detailed study of vibrational frequencies of carbonyl compounds (ketones, aldehydes, esters, amides, acids, anhydrides, lactones, lactams and conjugated carbonyl compounds). Effect of hydrogen bonding and solvent effect on vibrational frequencies, overtones, combination bands and fermi resonance, FT-IR

UNIT -III: NMR SPECTROSCOPY:

15Hrs

¹H NMR spectroscopy: Magnetic properties of nuclei, Principles of NMR. Instrumentation, CW and pulsed FT instrumentation, equivalent and nonequivalent protons, enantiotopic and diastereotopic protons, Chemical shifts, factors affecting the chemical shifts, electronegativity and anisotropy, shielding and deshielding effects, Signal integration, Spin-spin coupling: vicinal, germinal and long range, Coupling constants and factors affecting coupling constants.

Applications of ¹H NMR spectroscopy: Reaction mechanisms (cyclic bromonium ion, electrophilic and nucleophilic substitutions, carbocations and carbanions), E, Z isomers, conformation of cyclohexane and decalins, keto-enol tautomerism, hydrogen bonding, proton exchange processes (alcohols, amines and carboxylic acids), C-N rotation. Stereochemistry, hindered rotation, Karplus

curve variation of coupling constant with dihedral angle. Simplification of complex spectra, nuclear magnetic double resonance, contact shift reagents, nuclear Overhauser effect (NOE).

¹³C NMR spectroscopy: General considerations, chemical shift (aliphatic, olefinic, alkyne, aromatic, heteroaromatic and carbonyl carbon), coupling constants. Two dimensional NMR spectroscopy-COSY.

UNIT-IV: MASS SPECTROMETRY

15Hrs

Introduction, ion production, type of ionization, EI, CI, FD, and FAB-factors affecting fragmentation, ion analysis, ion abundance. Mass spectral fragmentation of organic compounds, common functional groups, molecular-ion peak, metastable peak, Mc. Lafferty rearrangement. Nitrogen rule, isotope labeling. High resolution mass spectrometry, Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.

Books suggested:

- 1. Organic spectroscopy, W. Kemp 5th Ed, ELBS
- 2. Spectroscopy of organic compounds, RM Silversteen and others, 5th Ed, John Wiley
- 3. Spectroscopy of organic compounds, P.S. Kalsi, Wiley, 1993.
- 4. NMR in chemistry-A multi nuclear introduction, William Kemp, Mc Millan, 1986.
- 5. Spectroscopic methods in Organic chemistry, DH Williams & I Flemmi

(Mandatory Core)

CHE-PC-303A	Organic Chemistry III	L-3,T-1,P-2	4Credits
Pre-requisite: U	nderstanding of Organic Chemistry	,	
• Familiarize w	ves: Course Objectives: ith the applications of different re	agents in organic synt	thesis, Mechanisms and
	hods of preparation and applications	_	_
• Understand to	opocity, prochirality, auxillary and	reagent-controlled i	nethods in asymmetric

• Applications of different oxidizing and reducing agents in organic synthesis with region and stereo controlled products.

Course Outcomes: At the end of the course, the student will be able to

To familiarize with the specific functions of the reagents particularly diazomethane, **CO1** N-bromosuccinimide, Ziegler Natta catalyst, 1,3-dithianes and Merrifield resin in the

	synthe	synthesis of a variety of complex molecules.										
CO2	To gain knowledge in the synthesis of different organometallic reagents and also stereo and regio specificity and selectivity of reactions with organometallic reagents											
CO3	To understand diastereoselectivity, stereoselectivity and substrate controlled auxillary controlled reactions											
CO4	To acquire knowledge about the reagents which causes oxidation in various compounds and also the reagents that causes selective and complete reductions to synthesize various compounds. Mapping of course outcomes with the program outcomes											
	DO1	ı				ı			ı		DO11	DO12
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	2	2	-	2	-	2	2	-
CO2	3	2	2	3	2	2	-	2	-	-	2	-
CO3	3	2	2	3	2	2	-		-	-	-	-
CO4	3	2	2	3	2	2	-	2	-	2	2	-

CHE-PC-303A Core-Theory Organic Chemistry III

UNIT I: REAGENTS IN ORGANIC SYNTHESIS

15 Hrs

Use of the following reagents in organic synthesis: Anhydrous AlCl₃, Boran trifluoride, N-Bromosuccinimide, Diazomethane, Dicyclohexylcarbodiimide, Lead tetraacetate, Zieglar-Natta catalysts, DDQ, Dithianes, Merrifield resin.

UNIT-II: ORGANOMETALLIC REAGENTS

15 Hrs

Synthesis and applications of Grignard reagents, Organolithium, Zinc, Copper, Mercury, Palladium and Rhodium compounds in Organic Synthesis, Homogeneous catalytic hydrogenation and hydroformylation reactions

UNIT III: ASYMMETRIC SYNTHESIS

15 Hrs

Topocity - Prochirality- Substrate selectivity - Diastereoselectivity and enantioselectivity-Substrate controlled methods-use of chiral substrates - examples

Auxiliary controlled methods-Use of chiral auxiliaries-Chiral enolates-alkylation of chiral imines – Stereoselective Diels-Alder reaction

Reagent controlled methods-Use of chiral reagents-Asymmetric oxidation-Sharpless epoxidation-Asymmetric reduction-Use of lithium aluminium hydride and borate reagents.

UNIT IV: METHODS OF ORGANIC SYNTHESIS

15 Hrs

- i). Oxidations: (a) Alcohols to carbonyls-Chromium (iv) oxidants-Dimethylsulfoxide oxidation, periodate xidation, Oppenauer oxidation, oxidation with manganese dioxide, oxidation with silver carbonate (b) Alkenes to epoxides-peroxide induced epoxidations. (c) Alkenes to diols-oxidation with potassium permanaganate, osmium tetraoxide, Prevost reaction (d) Ketones to esters-Bayer-Villiger oxidation (e) Oxidative bond cleavage-cleavage of alkenes by transition metals. (f) Oxidation of alkyl or alkenyl fragments-selenium dioxide and chromium trioxide oxidations.
- **ii).** Reductions: Reduction with lithium aluminium hydride, sodium borohydride, alkoxides, bismethoxy ethoxy aluminium hydride, Boran aluminium hydride and derivatives-catalytic, hydrogenation-dissolving metal reductions, Non-Metallic reducing agents including enzymatic and microbial reductions.

Suggested Books

- 1. Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, John Wiley.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J. Sundberg, Plenum.
- 3. Structure and Mechanism in Organic Chemistry, C.K. Inglod, Cornell University Press.
- 4. Organic Chemistry, R.T Morrison and R.N. Boyd, Prentice Hall.
- 5. Name reactions and reagents in organic synthesis, B.P. Muway and M.G Ellord, John Wiley.
- 6. Principles of Organic Synthesis, R.O.C Norman and J.M Coxon, Blackie Academic & Professional.
- 7. Reaction Mechanism in Organic Chemistry, P.S. Kalsi, New Age International.
- 8. Principles of organometallic chemistry, P. Powell, ELBS.
- 9. Organo transition metal chemistry-Applications to organic synthesis, S.G. Davis, Pergmon.
- 10. Stereochemistry to Organic Compounds, D. Nasipuri, New Age International.

Inorganic Spectroscopy and

11. Stereochemistry, P.S. Kalsi, Wiley Eastern.

CHE-PC- 304

CIIL-I	C- 304	Thermal Metho	1.0		L-3,1-1,1-0	4Credits					
Pre-rec	quisite: U	Inderstanding of Ba	sic Inorganic Sp	ectro	scopy and Therm	al Methods of Analysis					
Course	Course Objectives:										
	• Gain knowledge on thermal methods of analysis and principles and applications to inorganic materials										
	• Familiarize with basics of Mossbauer and NQR spectroscopy.										
	• Learn the properties like g-factor, nuclear spin, hyperfine coupling constants										
• Study	the ESR	instrumentation, va	rious application	is and	photoelectron sp	ectroscopy.					
Course	Outcom	es: At the end of th	e course, the stu	dent	vill be able						
CO1	To knov	w about TG and DT	A and applicatio	ons of	different scannin	g calorimetry.					
CO2	_	knowledge on Dop spectroscopy.	ppler shift and c	hemi	cal shift, basic p	rinciples and applications					
CO3		entation and applica		Kramo	er's degeneracy	, relaxation processes,					
CO4		w about photoelectr nd UV photoelectro		opma	ns theorem and	mpart the applications of					
		Mapping of cou	rse outcomes w	ith th	e program outc	omes					

L-5.T-1.P-0

4Credits

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1
										0	1	2
CO1	3	2	2	3	i	2	1	1	1	i	2	-
CO2	3	2	2	3	2	2	-	-	-	2	2	-
CO3	3	2	2	3	2	2	-	-	-	2	-	-
CO4	3	2	2	3	2		1	-	-	-	2	-

CHE-PC- 304: Inorganic Spectroscopy and Thermal Methods of Analysis

UNIT -I: THERMAL METHODS OF ANALYSIS

15 Hrs

Thermo gravimetry –Principle, Factors affecting the results, instrumentation. Application with special reference to CuSO₄5H₂O, CaC₂O₄ 2H₂O. Different thermal analysis – principle, instrumentation, difference between TG and DTA, applications with special reference to the clays and minerals. Different scanning calorimetry –principle, and applications to inorganic materials like chlorates and perchlorates, ammonium nitrate.

UNIT -II: MOSSBAUER SPECTROSCOPY and NQR

15 Hrs

Mossbauer spectroscopy: Basic principles, Recoil energy, Doppler shift, Chemical shift, Quadrapole effects, Magnetic effects. Instrumentation, spectral parameters and spectrum display. Aapplication of the technique to the studies of (1) bonding and structures of Fe^{2+} and Fe^{3+} compounds, (2) Sn^{2+} and Sn^{4+} compounds.

NQR spectroscopy: Basic principles of NQR spectroscopy, quadrupole nuclei, quadrupole moments, electric field gradient, coupling constant and applications.

UNIT -III: ELECTRON SPIN RESONANCE SPECTROSCOPY

15 Hrs

Basic Principles, Hyper fine splitting, Factors affecting the 'g' value. Isotropic and anisotropic hyperfine coupling constants, Hamiltonian and spin densities. Zero field splitting and Kramer's degeneracy, Relaxation process and line widths. Instrumentation and Applications. The EPR spectrum of bis(salicylidimine)-copper(II) complex, study of inorganic free radicals, biological applications of Electron Spin Resonance (Study of free radicals and Iron-sulfur proteins)

UNIT -IV: PHOTO ELECTRON SPECTROSCOPY

15 Hrs

Photoelectric effect, Koopmans's theorem, ionization energy.

X-ray photoelectron spectroscopy (ESCA): Principle, Binding energies, Chemical shift, Applications of XPES to Qualitative analysis, to surface studies and structural analysis. Ultraviolet photoelectron spectroscopy- Principle, application of UPES in studying the molecular orbitals of O_2 and N_2 molecules. Block diagram of photoelectron spectrophotometer. Sources of radiation, detectors. Auger spectra – Principle, Applications of Auger spectra to surface studies and use of Auger spectra as a finger print tool.

Books Suggested

- 15. F.A. Cotton and G. Wilkinson, Advanced In-organic chemistry VI Edition, 1999. John wiley & sons. Inc., New York.
- 16. J.E. Huheey, E.A. Keiter and R.L. Keiter: Inorganic Chemsitry, Principles of Structure and Reactivity (4th Ed.) (Addison-Wesley)
- 17. Gary Wulfsberg: Inorganic Chemistry (5th Ed. (Viva Books)
- 18. J.D. Lee: Concise Inorganic Chemistry (Blackwell)
- 19. W.L. Jolly: Modern Inorganic Chemsitry (McGraw-Hill)
- 20. R.L. Carlin: Magneto-chemsitry (Springer-Verlag)
- 21. R.L. Dutta and A. Syamal: Elements of Magnetochemsitry (Affiliate East-West).

8. K. Hussain Reddy – Text book of Bioinorganic chemistry

CHE I	CHE PC 304			C	ore pra	ctical I:		L-	5,T-1,P	-0	4 Credits		
]	Inorgar	ic spec	troscop	y and						
			t	hermal	metho	ds of an	alysis						
Pre-re	Pre-requisite: Understanding of Inorganic Chemistry - Practical.												
Cours	Course Objectives:												
• Stud	Study on chemical kinetics of different reactions												
• Flar	Flame photometry to determine different cations												
• Fan	niliarize	wit	h co	nducton	netric tit	rations	of mixtu	res					
• Cole	Colorometric estimation of different molecules.												
Cours	e Outco	me	s: A	t the end	d of the	course,	the stude	ent will	be able				
	CO1		То	study cl	nemical	kinetics	of hom	ogeneo	us soluti	ons			
(CO2			gain k otometry		ge on	the det	erminat	ion of	differe	nt catio	ons by	flame
	CO3		To	underst	and the	principl	e and wo	rking a	spects o	f condu	ctometr	ic titrati	ons
	CO4		To	acquire	knowle	dge on t	he imple	mentat	ion of c	olorome	etric esti	mations	
			Ma	apping	of cours	se outco	mes wit	h the p	rogram	outcon	nes		
	PO1	P	O2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		-		3	-	2	3	2	-	-	1	-
CO2	3		2	2	3	2	2	3	2	-	1		2
CO3	3		-	-	3	-	2		2	-	-	-	-
CO4	3	- 1	2	2	3	-	-	-	2	-	1	-	2

CHE: PC-304: Practicals (Core & Gen.)

1. Chemical Kinetics:

- a) Study of the kinetics of halogenations of acetone.
- b) Determination of activation energy of reaction between iodide and Persulphate
- c) Determination rate constant of oxidation of iodide ion by persulphate ion and study the effect of neutral salt (KCl).

2. Flame Photometry:

- a) Determination of Na
- b) Determination of K
- c) Determination of Cu

CHE PC 305A	Chemotherapy and Drug Analysis	L-5,T-1,P-0	4 Credits

Pre-re	Pre-requisite: Understanding of Chemotherapy and Drug Analysis											
Course	Course Objectives:											
• (Gain knowledge on chemotherapy and analysis of drugs.											
•	Analysis of drugs chemically and biologically.											
Course	Course Outcomes: At the end of the course, the student will be able											
CO1	To know about the classification and synthesis of drugs.											
CO2	To far	To familiarize with the qualitative and quantitative analysis of drugs.										
CO3												
CO4												
		Ma	apping o	of cours	se outco	mes wit	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3			3		2	3	2			1	
CO2	3	2	2	3	2	2	3	2		1		2
CO3												
CO4												

CHE PC 305A: (SKILL ORIENTED COURSE: THEORY): CHEMOTHEROPY AND DRUG ANALYSIS

UNIT-I: Chemotherapy

Definition, History, and Evolution of Chemotherapy; Discovery, Classification, Nomenclature, Mode of action and synthesis of the following classes of compounds with special references to specific drugs mentioned under each class

- a. Sulfa drugs- Sulfanilamide and Sulfamethoxazole.
- b. Antibacterials
- c. Lactum group of antibiotics Penicillin, Ampicillin and Amoxycillin.
- d. Cephalosporin-C and Ciprofloxacin.
- e. Anticancer drugs 5-Flurouracil, Methotrexate.
- f. Antifungals Griseofulvin
- g. Antimalarials Chloroquin

UNIT-II: Chemical and Biochemical analysis of Drugs

Qualitative and Quantitative Analysis of drugs: Uses of IR, UV, GLC and HPLC methods.

Drug Assay by Biochemical Analysis – ELISA (Cortisol, alcohol, opiates).

Radio Immuno Assay (RIA) – Enalapril, Insulin; Kidney, Lungs and Liver function tests; Use of isotopes in the Bioanalysis of drugs and in drug design programmes.

Book Suggested

- 1. Medicinal Chemistry and Pharmaceutical Chemistry Harikishan Singh and Kapur
- 2. Medicinal Chemistry and Biochemistry R.L.Nath
- 3. Introduction to Medicinal Chemistry Patrick

- 4. The Organic Chemistry of Drug Synthesis Vols. 1-6 Ledneicer Top drugs top synthetic routes John Saunders
- 5. Medicinal Chemistry Ashutoshkar
- 6. Synthetic Organic Chemistry and Drugs Gurideep R Chetwal
- 7. Biochemistry Harper, Conn & Stumpf, Lehninger
- 8. Biochemistry Western Jodd
- 9. Biochemistry Cann & Stumpf
- 10. Bergers Medicinal Chemistry Vols. 1-5 Manfred E. Wolf
- 11. Introduction to drug design Siverman
- 12. Biochemical approach to Medicinal Chemistry Thomas Nogrady
- 13. Prinicples of Medicinal chemistry William Foye
- 14. Text book of organic medicinal and pharmaceutical chemistry Delgrado and William A
- 15. Industrial Microbiology Casida

CHE P	C 305B	Inst	rument	al Meth	ods of	Analysis	L-	3,T-1,P	-2	40	Credits	
Pre-re	quisite:	Unders	standing	of Instr	umental	Method	ls of Ar	nalysis F	ractical			
Cor	urse Ob	jectives	:									
•	Familiar	ize witł	n conduc	ctometri	c titratio	ons of m	ixtures					
•	Coloron	etric es	timatio	n of diff	erent mo	olecules						
Cours	e Outco	mes: A	t the end	d of the	course,	the stude	ent will	be able				
CO1	To understand the principle and working aspects of conductometric titrations											
CO2	To acquire knowledge on the implementation of colorometric estimations.											
CO3												
CO4												
		Ma	apping	of cours	se outco	mes wit	h the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	-	-	-	-	-	2	-	2
CO ₂	3	2	2	3	3	2	-	-	-	2	2	2
CO3												
CO ₄		·										

CHE: PC-305 (B): Practicals (Skill Oriented Course)

1. Conductometry:

- a) Titration of mixture of halides
- b) Titration of mixture of HCl+HOAC
- c) Saponification of an ester

2. Colorimetry:

- a) Estimation of Manganese
- b) Estimation of Iron
- c) Estimation of Phosphate
- d) Titration of copper Vs EDTA

	CHE PC 306	Spectral Techniques	L-5,T-1,P-0	4 Credits
П				

Pre-requisite: Understanding of Spectral Techniques

Course Objectives:

- Familiarize with the instrumentation of UV and visible spectroscopy, applications of identifying the structures of the molecules.
- Understand IR spectrometry and applications to ascertain the fundamental groups by observing absorption bands.
- Study on the applications of flame atomic absorption spectroscopy.
- Understand the working principle and fragmentation rules of different molecules in Mass spectroscopy.

Course Outcomes: At the end of the course, the student will able

CO1	To know the basic principles of spectroscopy.										
CO2	To familiarize with the analysis of various functional groups by using different pectroscopic techniques.										
CO3	To Understand the applications of AAS.										

COA. To goin knowledge, about Mass spectral fragmentation of organic compounds and a

CO4 To gain knowledge about Mass spectral fragmentation of organic compounds and common functional groups.

	runctio	mai grou	ips.									
	Mapping of course outcomes with the program outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2
CO1	3	1	-	3	-	2	3	2	1	-	1	1
CO2	3	2	2	3	2	2	3	2	1	1	-	2
CO3	3	2	-	2	2	-	2	-	1	-	1	1
CO4	3	2	2	3	-	2	-	-	1	1	-	2

CHE: PC: 306(A): (OPEN ELECTIVE) SPECTRAL TECHNIQUES

UNIT - I: ULTRAVIOLET AND VISIBLE SPECTROSCOPY

15 Hrs

Various electronic transitions (185-800nm.), Beer-Lambert Law, effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, Fieser-Woodward rules for conjugated dienes and carbonyl compounds

UNIT - II: INFRARED SPECTROSCOPY

15 Hrs

Instrumentation and sample handling, characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ethers, phenols, amines, ketones, aldehydes, esters, amides, acids and anhydrides. Effect of hydrogen bonding.

UNIT – III:ATOMIC ABSORPTION SPECTROSCOPY: FLAME AAS: 15 Hrs

Principle, Instrumentation – Sources of radiation (HCL and EDL), Different types of burners, Interferences- Physical, Chemical, spectral and back ground correction, and methods of minimization

GF AAS: Principle and technique –Comparison between Flame AAS and furnace AAS, Applications of AAS, Comparison between Atomic Absorption & Flame Photometry.

UNIT -IV: MASS SPECTROMETRY

15 Hrs

Principle, instrumentation, different methods of ionization, EI, CI, FD and FAB, Mass spectra-

molecular ion, base peak, meta-stable peak, nitrogen rule and Mc Lafferty rearrangement. Mass spectral fragmentation of organic compounds and common functional groups. Normal and branched alkanes, alkenes, cycloalkanes, benzene and its derivatives, alcohols and phenols, ethers, aldehydes and ketones, carboxylic acids and their derivatives , amines and nitro compounds. Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.

- 11. Organic spectroscopy, W. Kemp 5th Ed, ELBS .2.
- 12. Spectroscopy of organic compounds, RM Silversteen and others 5th Ed, John Wiley 1991
- 13. Spectroscopy of organic compounds, PS Kalsi, Wiley, 1993
- 14. NMR in chemistry A Multi nuclear introduction, William Kemp, Mc Millan 1986
- 15. Spectroscopic methods in Organic Chemistry, DH Williams & I Flemmi TMH . 2005

	1 , , ,												
Pre-re	quisite:	Unders	tanding	of grad	uate lev	el Chror	natogra	phic Ted	chnique	S			
Cours	e Object	ives:											
• Fan	niliarize v	with Cl	assificat	tion of C	Chromat	ographi	e metho	ds.					
	lerstand l												
	Study on the applications of High-Performance Liquid Chromatography (HPLC).												
• Und	Understand the working principle of gas chromatography.												
Cours	Course Outcomes: At the end of the course, the student will able to												
CO1	001												
COI	To know the stationary and mobile phases in chromatographic techniques.												
CO2	To fami	To familiarize applications of different chromatographic methods.											
CO3	To Und	onatan d	the prin	oinle of	` ahmama	to omonh	ia taabu	iana					
	To Und	erstand	me prin	icipie oi	CIIIOIIIa	uograpii	ic tecin	nques.					
CO4	To gain	knowle	edge on	the norr	nal phas	se and re	verse p	hase.					
		N/I-	· · · · · · · · · · · · · · · · · · ·	· C		• <u>-</u>	1. 41		4				
		MI	apping	oi cours	se outco	mes wit	n tne p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	
												2	
CO1	3		-	3	-	2	3	2	-	-	1		
CO2	3	2	2	3	2	2	3	2	-	1	-	2	
CO3	3	2	-	2	2	-	2	-	1	-	1	-	
CO4	3	2	2	3	-	2	_	-	-	1	-	2	

L-5,T-1,P-0

4Credits

CHE PC 306: Chromatographic Techniques

Unit –**I:** Introduction - Classification of Chromatographic methods – Column chromatography-Adsorption phenomenon: Nature of adsorbents-Solvent systems-Differential migration-Separation of mixture of o-/p-nitro anilines (A demonstration experiment).

Unit –II: Thin-Layer Chromatography (TLC)-Coating materials and preparation of TLC plates-Solvents for development-Detection of compounds in TLC- R_f values in TLC-Applications of TLC in chemistry-Preparative TLC – Demonstration experiment in TLC.

Unit –**III:** High-Performance Liquid Chromatography (HPLC) - Application of HPLC- HPLC instrument-Stationary phases in HPLC-Normal and reversed phase HPLC: A comparison- Normal phase HPLC: Principle-Retention times in Normal and reversed phase HPLC- Reversed phase HPLC: Principle.

Unit –IV: Gas-Liquid Chromatography- Instruments for Gas-Liquid Chromatography- Gas-Chromatographic Columns and the Stationary Phase- Application of Gas-Liquid Chromatography-Gas-Solid Chromatography.

Reference Books:

- 1. Analytical chemistry: G L David Krupadanam, D. Vijaya prsad, K. Varaprasad Rao, KLN Reddy, C. Sudhakar.
- 2. Analytical chemistry: Skoog West Holler.

CHE PC 306 | Chromatographic Techniques

- 3. Modern Analytical Chemistry: David Harvey DePauw University.
- 4. J.G. Dick. Analytical Chemistry, Mc Grraw Hill, New Delhi, (1973).

CHE-	C-AC- 401 Quality Control and General L-5,T-1,P-0 4 Credits											
				Princ	ciples							
Pre-re	quisite:	Unders	standing	of Qual	ity Con	trol and	Genera	l Princip	oles			
	e Objec											
	y on qua		irance a	nd mana	agement							
• Obta	in pract oounds.	•			_		organi	c reage	nts in	analysis	of inc	organic
• Unde	erstand s	tandard	reducti	ion pote	ntial, n	nechanis	m of co	omplex	formati	on react	tions. E	nzyme
chara	cteristic	s and ap	plicatio	ons								
• Study	• Study on Equilibrium constants of oxidation and reduction reactions and the complexometric											
titrati	titration with EDTA.											
Cours	Course Outcomes: At the end of the course, the student will be able											
CO1	To diag	gnose p	roblems	in the	quality	improve	ement p	process	and Exp	olain eac	ch total	quality
	implem	entation	n phase									
CO2	To kno	w about	theoret	ical basi	s for the	e use of	organic	reagent	s in inoi	rganic ar	nalysis.	
CO3	To und	erstand	differer	it types	of kines	tic meth	ods and	l their e	valuatio	n and to	detern	nine the
	kinetics											
CO4	To und	erstand	the oxi	dation r	eactions	s with C	e (IV)	sulphate	e solutio	ons and	applica	tions of
	comple		c titratio									
		Ma	apping o	of cours	se outco	mes wit	h the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	-	2		-	-	2	2	-
CO2	3	2	2	3	-	2		-	-	2		2
CO3	3	3	3	3	-	2	-	-	1	1	1	1
CO4	3	3	3	3	-		-	-	-	-	-	1

CHE AC 401: CORE THEORY: QUALITY CONTROL AND GENERAL PRINCIPLES

UNIT-I: QUALITY CONTROL IN ANALYTICAL CHEMISTRY 15 Hrs

Definition of analytical terms: Accuracy, precision, limit of detection, sensitivity, selectivity and specificity, ruggedness, principles of Ruggedness test, validating the Method as a Standard Method. **Quality assurance and management systems**: Elements of quality assurance, Quality and quantity management system ISO 9000 and ISO 14000 series.

Good laboratory practices (GLP): Elements of Good Laboratory Practice, Laboratory accreditation, GLP status in India.

UNIT-II: ORGANIC REAGENTS IN INORGANIC ANALYSIS 15 Hrs

Theoretical basis for the use of organic reagents in inorganic analysis: Application of the following reagents in inorganic analysis: dimethylglyoxime, salicylaldehyde, cupferron, d-benzoin, 1,10 phenanthroline, 8-hydroxy quinoline, nitron, tannin, pyridine, 8-hydroxyquinoldine, dithizone, Acetylacetone, theonyl, trifluoroacetone, 8-hydroxy quinoline, tri-M-octylphosphine oxide.

UNIT – III: KINETIC METHODS OF TRACE ANALYASIS 15 Hrs

Rate laws, Analytical use of reaction rates, First and second order reactions, relative rate of reactions. Determination of reaction rates. Analytical utility of first and pseudo first order reactions. Types of kinetic methods, differential, integral, logarithmic, extrapolation method. Evaluation of kinetic methods – Scale of Operation, Catalyzed reactions, measurement method for catalyzed reaction. Micro determination of Inorganic species like Iodine and Hg in complex materials. Determination of organic species. Kinetics of enzyme, catalyzed reactions. Michael's constant factors affecting the rate of enzyme, Catalyzed reactions, Enzyme characteristics and applications of Kinetic methods of trace analysis.

UNIT-IV:REDOX AND COMPLEXOMETRIC TITRATIONS:

Redox Titrations: Standard reduction potential, equilibrium constants of oxidation-reduction reactions, change of electrode potential during the titration of reductant with an oxidant. Formal potential primary standard substance. Standard solutions. Preparation and storage. Oxidations with cerium (IV) sulphate solutions. Theory and use of (i) acid-base, (ii) Oxidation-reduction (iii) Metal ion indicators.; **Complexometric titrations:** Introduction, complexones, stability constants of EDTA complexes, conditional stability constants, titration curves, types of EDTA titration's, titration of mixtures.

15Hrs

Books Suggested

- 1. Vogel's Text book of Quantitative Chemical Analysis, Basselt, Denmy, Jaffery and Merdhan, ELBS, Orientlong- Manan, 5th Ed.1990.
- 2. Analytical Chemistry, Gary D. Christian, John Laliley and Senes, New York, 6th Ed., 2007.
- 3. Fundamentals of ANALYTICAL CHEMISTRY, Skoog, West, Holler; 7th Editin 2001
- 4. Fundamentals of Analytical Chemistry, D.A. Skoog & D.M. West, Holf-Saunderrs, 5th Ed., 1991.
- 5. Principles and Methods Chemical Analysis: H.F. Walton, Prentice Hall, New Delhi.
- 6. Chemical Analysis, H.A. Laitinan, Mc.Graw Hill Book Company.
- 7. Technical methods of analysis Griffin, Mc Graw Hill Book Co.
- 8. K.V.S.G Murali Krishna, An Introduction ISO 9000, ISO 1400 Series,
- 9. Environmental Management Quality Assurance and Good Laboratory Practices, Prof. Y. Anjaneyulu, In Now Publication, New York.
- 10. Quality Assurance in Analytical Chemistry G.Kateman and F.W Pijpers, John Wiley and Sons, New York

(Mandatory Core)

CHE-AC 402	: Instrumental Methods of Analysis	L-5,T-1,P-0	4Credits
Pre-requisite:	Understanding of Instrumental Methods	of Analysis	

Course Objectives:

- Gain sound knowledge in spectroscopic methods of ICP-AES, ICP-MS, x-ray fluorescence, spectroscopic techniques and their applications.
- Chromatographic techniques like High-Performance Liquid Chromatography, Capillary Electrophoresis and Supercritical Fluid Chromatography (SFC).
- Familiarise with instrumentation, resolution and ionization sources of GCMS and LCMS.

Cours	e Outco	omes: A	t the end	d of the	course,	the stud	lent will	be able	to			
CO1	To ur	nderstan	d the wo	orking p	orinciple	es, instru	umentati	on and	applicat	ions of	ICP-AF	ES and
	ICP-I	MS, ene	rgy disp	persive 2	X-ray fl	uoresce	nce (ED	XRF),	Wavele	ngth dis	persive	X-ray
	fluore	fluorescence (WDXRF).										
CO ₂	To u	To understand the basic principles, procedure and components of the High-Performance										
	Liqui	Liquid Chromatography (HPLC), Gel Permeation Chromatography (GPC): Capillary										
	Electrophoresis (CE), Supercritical Fluid Chromatography (SFC).											
CO3	To go	To get knowledge on instrumentation and applications of GCMS in drug analysis and										
	envir	environmental samples analysis.										
CO4	To in	nprove tl	ne know	ledge al	bout cou	ılometri	c techni	aues an	d their a	nalvsis	of catio	ns (As
		Fe (II))										
	\ //						th the p					
					•					1		•
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	-	2	-	-	-	1	-	1
CO2	3	3	3	3	3	2	_	_	_	1	1	1
CO3	3	3	3	3	3	2	-	2	_	1	1	3
CO4	3	3	2	2	-	2	-	-	-	1	1	3

CHE-402: CORE THEORY: INSTRUMENTAL METHODS OF ANALYSIS

UNIT -I SPECTROSCOPIC METHODS

15 Hrs

Emission Spectroscopy:

- (i) ICP-AES: Principles, instrumentation, AES detectors, applications in the analysis of trace and toxic metals in water, geological and industrial samples.
- (ii) ICP-MS: Principles, instrumentation, quadrupole mass spectrometers, applications

Fluorescence Spectroscopy:

- i) Molecular Fluorescence Spectroscopy: Principle, Theory of fluorescence, phosphorescence, relation between intensity of fluorescence and concentration, Correlation of fluorescence with molecular structure, Fluorescence quenching, Instrumentation and applications.
- **ii) X-ray Fluorescence Spectroscopy**: Principle, energy dispersive X-ray fluorescence (EDXRF), Wavelength dispersive X-ray fluorescence (WDXRF), applications.

UNIT - II: CHROMATOGRAPHIC METHODS

15 Hrs

High Performance Liquid Chromatography (HPLC): Principles, Stationary phases, Instrumentation, Solvent delivery system, sample introduction, gradient elution, columns and detectors. Partition Chromatography, adsorption chromatography, Gel permeation chromatography.

Capillary Electrophoresis: Principle, Electroosmotic flow, Instrumentation, Applications to separation of small ions, separation of Molecular Species, DNA sequencing

Supercritical-fluid chromatography: Supercritical-fluids, Instrumentation and Applications

UNIT -III: HYPHENATED TECHNIQUES

15 Hrs

Mass Spectroscopy: Principle, basic instrumentation, resolution, Ionization sources- Electron impact and Chemical ionization, Mass Analyzers- Quadrupole Mass analyzer and Time- of- Flight Analyzer.

Gas Chromatography- Mass spectrometry: Introduction, GC – MS interface, processing of GC –

MS data – ion chromatogram. Quantitative measurement – sample preparation, Selected ion monitoring – Application of GC-MS for Trace constituents. Drugs analysis, Environmental analysis and others.

Liquid chromatography- Mass spectrometry — Introduction — Instrumentation — liquid chromatography — Mass spectrometer Interface — Instrumental details — Processing LC-MS data — ion chromatograms, Sample preparation — selected ion monitoring. Application of LC-MS for Drug analysis, Environmental samples and others.

UNIT- IV: ELECTRO ANALYTICAL METHODS 15 Hrs

Anodic stripping voltametry: principle, instrumentation, Hanging mercury drop electrode, application in the analysis of Pb and Cd in environmental samples, principle of cathode stripping voltametry.

Coulometric analysis: principles of coulometric analysis with constant current, coulometric analysis with controlled potential, applications of coulometric methods for the analysis of cations-As (III), Fe (II) and I- and S₂- by using I₂ liberations and Ce⁴⁺ liberation in solutions

Ion Selective Electrodes: types of ion selective electrodes, basic properties, potentials and construction, calibration of ion selective electrodes, ion selective electrodes with fixed membrane sites, silver, lead, cadmium, sulfide, fluoride, cyanide and glass electrodes, applications in the analysis of air and water pollutants, principles of liquid membrane, gas sensing and enzyme based electrode

- 1. Analytical Chemistry, Gary D. Christian, John Laliley and Senes, New York, 6th Ed., 2007.
- 2. Analytical Chemistry Principles and Techniques, I.G. Harge, Prentice Hall.
- 3. Principles of Instrumental analysis, D.A. Skoog and J.L. Loacy, W.B. Saunders.
- 4. Handbook of Instrumental Techniques for Analytical Chemistry, F. Serlie, Prentice Hall.
- 5. Vogels Text book of Quantitative Chemical Analysis, Basett, Denny Jebbary, 5th Ed. ELBs 1990.
- 6. Instrumental Methods of Chemical Analysis, Willard Merrit, Dean, Stella Jr 6th Edition.
- 7. Separation methods, M.N Sastri, Himalaya Publishing Company, Mumbai

(Mandatory	Core)
------------	-------

CHE-AC-403A	Applied and Environmental Aspects	L-3,T-1,P-2	4Credits

Pre-re	Pre-requisite: Understanding of Environmental Aspects											
Cours	e Objec	ctives:										
		d know	ledge o	on prep	aration	of san	npling,	decomp	osition,	separa	tion an	d pre-
	centrati							_	_			
_	• Experience with fertilizer analysis, pesticide analysis minerals and ores.											
	Know about analysis of fuels, alloys and explosives											
	Expertise with water quanty monitoring											
Cours	Course Outcomes: At the end of the course, the student will be able to											
CO1	CO1 Have an idea about preparation of sampling, decomposition, separation and preconcentration											
	of metal ions etc.											
CO2	Gain experience on agrochemicals and fertilizers and their analysis.											
002												
CO ₃	Have a	ın idea o	n the an	alysis o	f fuels,	alloys aı	nd explo	osives				
CO4	Experi	ence wit	h enviro	nmenta	l polluti	ion mon	itoring t	echniqu	es.			
	Znpen	01100 1111	011 / 11 (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	г ропас		itoring (commqu	.05.			
		Ma	apping	of cour	se outco	mes wi	th the p	rogram	outcor	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	_	2	-	-	-	1	-	1
CO2	3	3	3	3	3	2	-	-	-	1	1	1
CO3	3	3	3	3	3	2	-	2	_	1	1	3
CO4	3	3	2	2	_	2	-	-	_	1	1	3

CHE: AC 403(A): (GENERIC ELECTIVE) APPLIED AND ENVIRONMENTAL ASPECTS

UNIT-I: SAMPLING AND SEPARATION METHODS

15

Hrs

Preparing the sample for analysis: Sampling, The effect of sampling uncertainties, Gross sample, determination of the size of the gross sample. Analytical sample. Preparation of laboratory sample from gross sample, Moisture in the sample, Karl-Fisher reagent for the determination of moisture content in samples.

Decomposition and dissolving the sample: Decomposition of sample by fluxes, wet digestion, dry ashing, combustion with oxygen, microwave decomposition.

Separation and pre-concentration: Extractive separation of metal ions as chelates (dithizone, oxine, APDC, NaDDTC), Solid-phase extraction

UNIT-II: ANALYSIS OF AGRO CHEMICALS and MINERALS

15

Hrs

Soil analysis: Soil moisture, pH, total nitrogen, Phosphorus, silica, boron and metals (Cd, Cu, Fe, Mn, and zinc) in soil.

Fertilizer analysis: Analysis of Ammonical fertilizers, Phosphate fertilizers, Nitrate fertilizers

Pesticide Analysis: Analysis of organo chlorine pesticides by gas chromatography, Determination of DDT residue in vegetable and food grains. Analysis of organo phosphorous pesticides (Malathion, parathion) by spectrophotometric and chromatographic methods.

Analysis of Minerals and Ores: Limestone, Ilmenite, Chalcopylites and Beryl. Analysis of Cement, Ceramics and glass.

UNIT-III: ANALYSIS OF COMPLEX MATERIALS

15 Hrs

Analysis of Fuels: Coal, proximate and ultimate analysis, heating valves and grading of coal. Liquid Fuels: Flash point, aniline point, octane number and carbon residue.

Analysis of Gaseous Fuels: Producer gas, Water gas, Calorific values

Analysis of alloys: German Silver, Brass, bronze, Solder, Steels containing elements such as Mo, Co, V, Cr, Si and Ni.

Aanalysis of Explosives: Introduction, Classification, Deflagrating or low explosives, Characteristics of explosives, Nitrocellulose, PETN or PENTHRIT, Di-nitrobenzene (DNB), Trinitrobenzene (TNB), Trinitrotoluene (TNT),

UNIT – IV: ENVIRONMENTAL POLLUTION MONITORING: 15 Hrs

Water Quality monitoring: Methods of water sample collection, Determination of Dissolved oxygen (D.O), Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand(COD)

Analytical methods for the determination of the following ions in water:

Anions: F-, PO₄³⁻, NO₃-, NO₂-Cations: Cr⁶⁺, As⁵⁺, Pb²⁺, Hg²⁺, Cd²⁺

Air Quality Monitoring: Air sampling methods, Chemical analysis of the following Air pollutants. i) Gaseous pollutants: Carbon monoxide (CO). sulphur dioxide (SO₂), nitrogen dioxide (NO₂), Aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (PAH). (ii) Particulate matter

- 1. Analytical Chemistry, Gary D. Christian, John Laliley and Senes, New York, 6th Ed., 2007.
- 2. Fundamentals of ANALYTICAL CHEMISTRY, Skoog, West, Holler; 7th Editin 2001.
- 3. Analytical Chemistry Principles and Techniques, I.G. Harge, Prentice Hall.
- 4. Principles of Instrumental analysis, D.A. Skoog and J.L. Loacy, W.B. Saunders.
- 5. Fundamentals of Air Pollution by A.C. Strem and others, Academic Press, 1975.
- 6. Standard methods for the examination of water and waste water published by American public health association, 15th Ed.1981.
- 7. Methods of Soil Analysis, C.A. Black, Part I and II.
- 8. Handbook of Analytical Control of Iron and Steel Production, Harrison John Weily 1979
- 9. Standard methods of Chemical Analysis, Welcher.
- 10. Technical Methods of Analysis, Griffin, Mc Graw Hill.
- 11. Environmental Chemistry, Anil Kumar De, Wiley Eastern Ltd.

(Compulsory Foundation)

CHE-A	AC-403E	3	Bi			organic		5,T-1,P	-0	40	Credits	
				ophysic								
Pre-r	equisite:	Unders	standing	of Bioi	norgani	e, Bioorg	anic, B	Biophysi	cal Che	mistry		
Cours	se Objec	tives:										
•	Highligh	nten me	tal comp	olexes as	s oxygei	n carriers	and el	ectron to	ransfer i	n biolog	gy	
•	 Metal ion transport and storage in biological systems and importance of trace metals in biology 											
•	• Learn physiological functions of carbohydrates, lipids, enzymes classification, stereospecificity											
•	• The basic concepts of biophysical chemistry in biochemical reactions, exergonic and endergonic reactions.											
Cours	Course Outcomes: At the end of the course, the student will be able to											
CO1	Gain kı	nowledg	ge on me	etallo pr	oteins in	electror	transf	er proce	sses.			
CO2	Know t	the appl	ications	of trace	metal i	ons and i	netal id	ons as cl	nelating	agents i	n medic	ine.
CO3			evelop h onmenta		ereosele	ctive syr	thesis	of orga	nic com	pounds	and drug	gs by
CO4	Unders	tand the	rmodyn	amics o	f biopol	ymer rea	ctions	and to c	orrelate	free ene	ergy and	
	biopoly		rameters									
		Ma	apping o	of cours	se outco	mes wit	n the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	-	2	-	-	-	1	-	1
CO2	3	3	3	3	3	2	-	-	-	1	1	1
CO3	3	3	3	3	3	2	-	2	-	1	1	3
CO4	3	3	2	2	-	2	-		-	1	1	3

CHE AC-403(B): (GENERIC ELECTIVE): BIOINORGANIC, BIOORGANIC, BIOPHYSICAL CHEMISTRY

UNIT-I: BIO-INORGANIC CHEMISTRY-I

15 Hrs

Metal complexes as oxygen carriers –Heme proteins –Hemoglobin and myoglobin –Non heme proteins –hemerythrin and hemocyanin – model synthetic complexes of iron, cobalt and copper.Co-enzymes Vitamin B_{12} , carboxy peptidase and superoxidedismutase.

Electron Transfer in Biology: Structure and functions of metalloproteins in electron transfer processes –catalase –peroxidose –cytochromes and iron –sulphur proteins –synthetic models.

UNIT – II: BIOINORGANIC CHEMISTRY- II: Metal ion transport and storage in biological systems, Metal ions in Biology, Molecular mechanism of ion transport across membranes: ionophores, photosynthesis.

Hydrolytic metalloenzymes: Carbonic anyhdrase, carboxy peptidase, calcium in control processes, calcium and muscle contraction, calcium and secretion, calcium in blood clotting mechanisms. Therapeutic uses of enzymes.

Importance of trace metals in biology: Metal ions as chelating agents in medicine, trace metal ions and metal and non-metal deficiency. Biological nitrogen fixation, in-vivo and in-vitro nitrogen fixation.

UNIT-III: BIOORGANIC CHEMISTRY

Carbohydrates: Structure and biological functions of mucopolysaccharides, glycoproteins, and glycolipids- Role of sugars in biological recognition- Blood group substances

Lipids: Essential fatty acids-structure and function of triglycerols, Glycerophospholipids,

cholesterol, bile acids prostaglandins- composition and functioning of lipoproteins

Enzymes: Nomenclature and classification, properties, factors affecting enzyme catalysis, enzyme inhibition- reversible and irreversible inhibition. Uses of enzymes in food drink industry and clinical laboratories.

UNIT-IV: BIOPHYSICAL CHEMISTRY:

Standard free energy change in biochemical reactions, exergonic and endergonic reactions, hydrolysis of ATP, thermodynamics of biopolymer solutions, chain configuration of bio polymers, and calculation of average dimensions. Membrane equilibrium, ion transport through cell membrane.dialosis and its function. Structure and functions of proteins, enzymes, DNA and RNA in living systems, forces involved in bio polymer interactions, electrostatic forces, hydrophobic forces, molecular expansion, and dispersion forces.

- 1. M.N. Hughes, The Inorganic chemistry of Biological Processes, John wiley and Sons, New York 2nd Edition, 1981.
- 2. A Text book of Biochemistry, A.V.S.S. Rama Rao
- 3. Physical chemistry by Atkenes
- 4. Physical chemistry by Albertz.
- 5. Bio physical chemistry by Van Holde
- 6. Bio Physics by Narayanam
- 7. Organic Chemistry, Vol. 2, I. L. Finar, ELBS.
- 8. Chemistry of Natural Products, P.S. Kalsi, Kalyani Publishers.
- 9. Chemistry of Organic Natural Products, O. P. Agarwal, Vols., 1 & 2, Geol Pubs.
- 10. Natural products Chemistry K.B.G. Torssell, John Wiley, 1983.
- 11. Burger's Medicinal Chemistry, M.E. Wolff, John Wiley
- 12. Medicinal Chemistry, A. Kar, New Age International

CHE A	AC 404		Core pra	actical I	:		L-	5,T-1,P	-0	4	Credits	6	
		An	alytical	Chemis	stry- Pr	actical							
Pre-re	quisite:	Unders	standing	of Anal	lytical C	Chemistr	y- Pract	ical.					
Cours	e Objec	tives:											
• To]	learn abo	out the s	separatio	on metho	ods and	flame p	hotomet	ric anal	ysis of p	pesticide	e residue	es	
• Det	erminati	on of tr	ansition	metal id	ons by p	olarogra	aphy						
• Prin	iciple, in	strumei	ntation,	determi	nation o	f metal	ions By	AAS.					
• Inte	rpretatio	n of NI	MR cher	nical sh	ifts and	hydroge	en bondi	ing.					
Cours	Course Outcomes: At the end of the course, the student will be able to												
CO ₁ U	CO1 Understand the common laboratory techniques including separation techniques												
CO ₂ I	CO2 Polarography, atomic absorption spectroscopy in both emission and absorption mode.												
CO ₃	Gain kno	wledge	on imp	lementa	tion of g	gas chro	matogra	phy and	HPLC	for sepa	aration o	of	
r	nixtures	•											
CO ₄ F	Familiari	ze with	interpre	etation o	of data to	structu	res by N	NMR.					
		Ma	apping o	of cours	se outco	mes wit	h the p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	2	3	-	2	-	-	-	1	-	1	
CO2	3	3	3	3	3	2	-	-	-	1	1	1	
CO3	3	3	3	3	3	2	-	2	-	1	1	3	
CO4	3	3	2	2	_	2	-	-	-	1	1	3	

CHE AC 404: CORE PRACTICALS: <u>PRACTICAL – I-</u>

Instrumental methods of analysis- II

- 1. Flame Photometry: Determination of Na and K, Ca and Li in Water and Soil.
- 2. TLC/Paper chromatographic separation.
- 3. Determination of Pesticide residues by gas chromatographic method
- 4. Polarography: a) Determination of E ½ of Zn and Cd; b) Determination of amounts of Zn and Cd
- 5. Atomic Absorption Spectroscopy: Determination of transition metal ions (Cd, Cr, Cu, Pb, Zn etc.,) by AAS.
- 6. Separation of Metal ion by Solvent Extraction /Ion exchange.

II <u>DEMONSTRATION EXPERIMENTS</u>

- 1. IR Interpretation of IR spectrum of alcohols, ketones, aldehydes and other standard materials
- 2. AAS: Demonstration of AAS Determination of Zn, Cd, Pb, Mn, Fe and Ni in effluents using AAS.
- 3. Spectrofluorimetry estimation of quinine and fluoroscene
- 4. Ion selective electrodes estimation of F-, S²⁻ and CN⁻ in effluents using ion selective electrode meter.
- 5. Polarography and Anode stripping voltametry
 - a). Polarography and Anode stripping voltametry behavior of Cd, Zn, Pb in a mixture.
 - b). Determination of Pb and Cd in samples using Anode stripping voltametr
- 6. Gas chromatography- Determination of pesticides
- 7. HPLC- Determination of pesticides
- 8. NMR
- (a). Demonstration of NMR spectrometer and study of hydrogen bonding in a given alcohol or phenol.
- (b). Interpretation of NMR chemical shifts of ethyl benzene, ethyl alcohol
- 9. TGA, DTA, DSC Demonstration of TG, DTA and DSC and study of decomposition of calcium oxalate, calcium carbonate, copper sulfate, oxalic acid.
- 10. pH metry
 - (a). Determination of alkalinity in a colored effluent using pH metric end point.

(b). Determination of purity of commercial HCl, H₂SO₄, H₃PO₄ and CH₃COOH using pH metric end point.

CHE A	C 405A	1	P	roject V	Work		L-	5,T-1,P	-0	40	Credits		
Pre-rec	quisite:	Project	Work										
Course	Object	tives:											
	•		problei	n									
	Ability to athering	•	out inde	ependen	t chemis	stry rese	arch wi	th comp	etency	in resear	ch desig	gn, data	
	nterpret resenta		nd com	munica	tion of	researc	h result	s throu	gh scie	ntific p	ublicatio	ons and	
• P	reparat	ion of d	issertati	on									
Preparation of dissertation Course Outcomes: At the end of the course, the student will be able to													
CO1	Perform	experi	ments, c	collectio	n and e	valuatio	n of data	a.					
	Interpre behavio		of resul	ts while	adheri	ng to so	cientific	princip	oles of 1	responsi	ble and	ethical	
	Analysi disserta	_	compi	ling the	data a	nd resu	lts in a	chrono	ological	order i	in the f	form of	
CO4	Prepara	tion of	dissertat	tion.									
		Ma	apping	of cours	se outco	mes wit	th the p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	3	3	ı	ı	2	ı	-	2	3	
CO2	3	3	3	3	-	2	_	2	-	2	_	3	
CO3	3	3	1	3	-	3	1	2	1	3	-	3	
CO4	3	-	3	-	3	2	-		-	2	-	3	

CHE AC 404: PRACTIAL II/ PROJECT WORK

CHE A	C 406A		Dr	ug Che	mistry		L-	3,T-1,P	-2	40	Credits		
Pre-re	quisite:	Unders	tanding	of Drug	g Chemi	stry	'		•				
Cou	ırse Ob	jectives	: :										
• [Γo learn	about t	he natur	al produ	acts as l	eads for	new dr	ugs					
•]	Determi	nation c	of cardio	vascula	r drugs								
• [Γο study	Autaco	oids										
•]	Interpret	ation of	f Antipy	retics									
Course	Course Outcomes: At the end of the course, the student will be able to												
CO1	· · · · · · · · · · · · · · · · · · ·												
CO2	Know I	nterpret	tation of	cardiov	ascular	drugs.							
CO3	Know t	he Anal	yzing al	out pro	stagland	dins.							
CO4				, Class	ification	, Nome	enclatur	e, Stru	cture a	nd Syn	thesis o	of anti-	
	inflamn												
		Ma	apping o	of cours	se outco	mes wit	h the p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	3	3	-		2		-	2	3	
CO2	3	3	3	3	_	2	-	2	_	2	_	3	
CO3	3	3	-	3	-	3	-	2	-	3	-	3	
CO4	3	-	3	-	3	2	-		-	2	-	3	

CHE: AC: 406 (A): (OPEN ELECTIVE): DRUG CHEMISTRY

UNIT - I: NATURAL PRODUCTS AS LEADS FOR NEW DRUGS

Occurrence, Structure and therapeutic uses of Drugs acting on Central Nervous System

Morphine alkaloids (morphine, codeine, thebaine, heroin, pethidine)

Cannabinoids (9-cannabinol, Tetrahydrocannabinol)

Neuromuscular Blocking Agents (Curare, Decamethonium)

Vinca Alkaloids (Vincristin and Vinblastin), Taxol and Taxotere, podophyllotoxin, Etoposide, Teniposide.

UNIT - II: CARDIOVASCULAR DRUGS

Definition, Classification, Nomenclature, Structure and Synthesis.

Cardiac glycosides (ex: Digoxin, Digitoxin);

Antihypertensive drugs (ex: Methyl dopa, Clonidene hydrochloride);

Antiarrhythmic agents (ex: Quinidine sulfate);

Antisympathetic drugs (ex: Propranolol hydrochloride, Verapamil hydrochloride);

Vasopressor drugs (ex: Prenylamine, Buphenine).

UNIT - III: AUTACOIDS

Definition, Occurrence, Isolation, Nomenclature, Classification, Synthesis, Biosynthesis and Stereochemical structures of Prostaglandins. Structural elucidation of PGE₁, PGE₂; Synthesis and biosynthesis of PGE₂, PGF_{2 α}. Structure and Biosynthesis of Thromboxane A2 and Prostacyclin (synthesis not expected).

UNIT - IV: ANTI-INFLAMMATORY DRUGS

Definition, Classification, Nomenclature, Structure and Synthesis of Paracetamol, Aspirin (Antipyretic), Salol, Cinchophen, Antipyrene, Phenylbutazone, Indomethacin, Tolmetin, Ibuprofen, Diclofenac and Naproxen.

Books suggested:

1. Medicinal Chemistry by Ashitosh Kar

- 2 Medicinal Chemistry by D. Sriram, P. Yogeeswari
- 3 Medicinal Chemistry by David A. Williams, Thomas L. Lemke
- 4 Medicinal Chemistry by V. Alagarsamy
- 5 Biochemistry by U. Satyanarayana
- 6 Natural Products Chemistry and Applications by Sujata V. Bhat, B.A. Nagasampagi, Meenakshi

S.

- 7 Medicinal Chemistry by V.K. Ahluwalia, Madhu Chopra
- 8 Medicinal Chemistry by Balkishen Razdar
- 9 Advanced Practical Medicinal Chemistry by Ashutosh Kar
- 10 Chemistry of Organic Natural Products by O. P. Agarwal, Vols., 1 & 2, Geol Pubs.
- 11 Chemistry of Natural Products by S. V. Bhat, B.A. Nagasampagi, M. Sivakumar
- 12 Natural Products Chemistry by K.B.G. Torssell, John Wiley, 1983.

CHE AC 406	Electroanalytical Techniques	L-5,T-1,P-0	4 Credits
Pre-requisite: U	Inderstanding of Electroanalytical Technology	niques	

Course Objectives: To learn about the classification of electroanalytical methods Determination of types of currents Principle, instrumentation, reversible and irreversible cyclic voltammograms.. Interpretation of Ion selective electrodes Course Outcomes: At the end of the course, the student will able to Know how to interpret potentiometry and conductometry Know the Interpretation of results while adhering to DC Polarography. CO3 Know the Analysing and compiling the data and results in polarography . CO4 Familiarize Types of ion sensitive electrodes. Mapping of course outcomes with the program outcomes

PO7

_

PO8

2

2

2

_

PO9

-

_

PO10

2

3

2

PO11

2

-

PO12

3

3

3

3

CHE: AC: 406(B): (OPEN ELECTIVE): ELECTRO ANALYTICAL TECHNIQUES

PO5

3

-

3

PO4

3

3

3

Unit I: Types and Classification of Electro analytical Methods.

PO₃

3

3

3

PO₁

3

3

3

3

CO₁

CO₂

CO₃

CO₄

PO₂

3

3

3

i) **Potentiometry-** Types of electrodes, Hydrogen gas, Calomel, Quin hydrone and glasselectrodes. Determination of pH. Potentiometric titrations.

PO₆

2

3

ii) Conductometry – Definition of terms – conductivity, specific conductivity, cell constant. Mobility of ions, Conductometric titrations.

Unit II: D.C Polarography: Dropping mercury electrode- Instrumentation-polarogram. Types of Currents: Residual, Migration, Limiting. Two and Three electrode assemblies. Ilkovic equation(derivation not necessary) and its consequences. Types of limiting Currents: Adsorption, Diffusion, Kinetic. Applications of polarography in qualitative and quantitative analysis. Analysis of mixtures. Application to inorganic and organic compounds. Determination of stability constants of complexes.

Unit III: (i) A.C. polarography (ii) Square-wave polarography (iii) Pulse polarography (iv) Differential pulse polarography(V) Cyclic Voltammetry: Principle, instrumentation, reversible and irreversible cyclic voltammograms.

Unit IV: Ion selective electrodes: Ion-sensitive electrodes –types of ion sensitive electrodes –metal based cation and anion sensitive electrodes, solid membrane electrodes. Liquid ion-exchange electrodes, gas sensing membrane electrodes.

- 1. H.W. Willard, LL. Merrit and J.A. Dean: Instrumental Methods of Analysis. Affiliated East-West).
- 2. G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denny. Vogel's Text Book of Quantitative Chemical Analysis (ELBS).
- 3. D.A. Skoog and D.M. West: Principles of Instrumental Analysis (Holt, Rinehart and Wilson).
- 4. J.G. Dick: Analytical Chemistry (Mc Graw Hill).

CHE-IC- 401	Co-ordination Compounds, Organometallic Chemistry &	L-5,T-1,P-0	4Credits
	Chemistry of Non-transition Elements		
_	Understanding of Co-ordination Componertransition elements	unds, Organometall	ic Chemistry &
• Understand the olefin hydrog synthesis with	ves: nometallic chemistry of different complete mechanistic aspects of several well enation, olefin oxygenation, Olefin an aim to gain a good knowledge on different compounds.	-known industrial hydroformylation	catalytic processes like and Fischer –Tropsch

• Acquire knowledge of metal cluster compounds, various types of reactions of metal cluster compounds, isoelectronic and isolobal relationship and electron counting scheme for HNCC'S.

• Study on synthesis, properties and structures of nontransition elements

Study	on syn	iuicsis, p	порегис	s and st	ructures	of Hom	ansmo	ii Cicilic	111.5					
Cours	e Outco	omes :A	t the end	d of the	course,	the stud	ent will	be able						
CO1	To Ga	in an ex	tensive	knowle	dge abo	ut dinitr	ogen co	mplexes	of Ru(II), Os(I	I),Co(I)	,		
	Mo(0)	and dio	xygen c	omplex	es of I	r(I) and	Rh(I) a	nd on cy	clohept	atriene a	and trop	ylium		
	compl	complexes of oxidative, reductive elimination reactions												
CO2	To un	To understand mechanism, stereochemical aspects and regeneration of catalyst in olefin												
		hydrogenation (Wilkinson's catalyst), olefin oxygenation (Wacker process or Smidt												
	_	reaction), Olefin hydroformylation and Fischer –Tropsch process.												
CO3		To study the examples of metal complexes having metal-metal single or multiple bonds and												
		nalyse the spectroscopic evidences for the presence of metal-metal bond. To understand the synthesis and structures of boranes, carboranes, borazines, silicates												
CO4										orazines	, silicate	es		
	carbid	les, pero												
		Ma	apping (of cours	se outco	mes wit	th the p	rogram	outcon	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1		
										0	1	2		
CO1	3	3	3	3	2	-	-	-	-	2	-	1		
CO2	3	2	2	2	-	2	-	-	-	-	1	1		
CO3	3	3	3	3	2	2	-	-	-	1	-	1		
CO4	3	3	3	3	_		_	_	_	1	1	1		

CHE IC 401: CORE THEORY: Co-ordination Compounds, Organometallic Chemistry and Chemistry of Non-transition Elements

UNIT -I: ORGANOMETALLIC CHEMISTRY OF TRANSITION ELEMENTS:

- 1.Dinitrogen complexes of Ru(II), Os (II), Co(I) and Mo(0)
- 2. Dioxygen complexes of Ir (I) and Rh (I)
- 3. Cycloheptatriene and Tropylium complexes –Oxidative addition and Reductive Elimination. Insertion and Elimination reaction –Nucleophilic and Electrophilic attack of coordinated ligands.

UNIT -II: APPLICATIONS OF ORGANOMETALLIC COMPOUNDS 15 Hrs

Catalytic applications –Fischer –Tropsch synthesis, Olefin hydrogenation (Wilkinson catalyst). Olefin oxygenation (Wacker process or Smidt reaction) Olefin hydroformylation (Ziegler-NattaCatalysis).

Synthetic applications of Organo-Lithium, -Magnesium and Aluminium compounds. Biological applications of organometallic compounds in medicine, agriculture and horticulture.

UNIT -III: METAL-TO METAL BONDS AND METAL ATOM CLUSTERS 15 Hrs

Introduction, metal carbonyl clusters —low —nuclearity (M and M) clusters, isoelectronic and isolobal relationships, High nuclearity, carbonyl clusters (HNCC'S), Hetero stomes in metal atom clusters, electron counting scheme for HNCC'S, HNCC'S of the Fe, Ru and Os group HNCC'S of the Cu, Rh and Ir group, HNCC'S of the Ni, Pd, and Pt group. Compounds with M-M multiple bonds, Major structural types, quadruple bonds, relation of clusters to multiple bonds and one dimensional solids.

UNIT –IV: CHEMISTRY OF NON-TRANSITION ELEMENTS 15 Hrs

General characteristics of the non-transition elements, special features of individual elements: Synthesis, properties and structure of their Halides and oxides, polymorphism of carbon, Phosphorus and Sulphur. Synthesis, properties and structure of boranes, carboranes. borazines, silicates, carbides, Sulphur-nitrogen compounds, peroxo compounds of boron, carbon and sulphur, oxyacids of nitrogen, phosphorus, sulphur and halogens, inter halogens pseudo halides.

- 1. F.A. Cotton and G. Wilkinson, Advanced In-organic chemistry VI Edition, 1999. John wiley & sons. Inc., New York.
- 2. James E. Huheey, Inorganic chemistry- Principles of structure and reactivity, IV Edition 1993. Harper Collins College Publishers, New York.
- 3. J.D. Lee, Concise Inorganic chemistry, V Edition 1996, ELBS, Chapman and Hall, London.
- 4. Concise Inorganic chemistry by J.D. Lee V Edition ELBS, Chapman and Hall, London.
- 5. Organometallic Chemistry by R.C. Mehrotra and Singh.

|--|

CHE-IC 402	Instrumental Methods of Analysis	L-5,T-1,P-0	4Credits
Pre-requisite:	Understanding of Organic Spectroscopy	and Applications	

Course Objectives:

- Gain sound knowledge in spectroscopic methods of ICP-AES, ICP-MS, x-ray fluorescence, spectroscopic techniques and their applications
- Chromatographic techniques like High-Performance Liquid Chromatography, Capillary Electrophoresis and Supercritical Fluid Chromatography (SFC).
- Familiarise with instrumentation, resolution and ionization sources of GCMS and LCMS.

Course Outcomes: At the end of the course, the student will be able to

- To understand the working principles, instrumentation and applications of ICP-AES and ICP-MS, energy dispersive X-ray fluorescence (EDXRF), Wavelength dispersive X-ray fluorescence (WDXRF).
- To understand the basic principles, procedure and components of the High-Performance Liquid Chromatography (HPLC), Gel Permeation Chromatography (GPC): Capillary Electrophoresis (CE), Supercritical Fluid Chromatography (SFC).
- CO3 To get knowledge on instrumentation and applications of GCMS in drug analysis and environmental samples analysis.
- To improve the knowledge about coulometric techniques and their analysis of cations (As (III), Fe (II)) and anions (I- and S2-)by using I2 liberations and Ce4+ liberation in solutions.

		N	Aappin	g of co	urse outo	comes v	vith the	progra	am outc	omes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	-	2	-	-	-	1	-	1
CO2	3	3	3	3	3	2	-	-	-	1	1	1
CO3	3	3	3	3	3	2	-	2	-	1	1	3
CO4	3	3	2	2	-	2	-	-	-	1	1	3

CHE-IC 402: CORE THEORY: INSTRUMENTAL METHODS OF ANALYSIS

UNIT -I SPECTROSCOPIC METHODS

15 Hrs

Emission Spectroscopy:

- (i) ICP-AES: Principles, instrumentation, AES detectors, applications in the analysis of trace and toxic metals in water, geological and industrial samples.
- (ii) ICP-MS: Principles, instrumentation, quadrupole mass spectrometers, applications

Fluorescence Spectroscopy:

- i) Molecular Fluorescence Spectroscopy: Principle, Theory of fluorescence, phosphorescence, relation between intensity of fluorescence and concentration, Correlation of fluorescence with molecular structure, Fluorescence quenching, Instrumentation and applications.
- **ii) X-ray Fluorescence Spectroscopy**: Principle, energy dispersive X-ray fluorescence (EDXRF), Wavelength dispersive X-ray fluorescence (WDXRF), applications.

UNIT - II: CHROMATOGRAPHIC METHODS

15 Hrs

High Performance Liquid Chromatography (HPLC): Principles, Stationary phases, Instrumentation, Solvent delivery system, sample introduction, gradient elution, columns and detectors. Partition Chromatography, adsorption chromatography, Gel permeation chromatography.

Capillary Electrophoresis: Principle, Electroosmotic flow, Instrumentation, Applications to separation of small ions, separation of Molecular Species, DNA sequencing

Supercritical-fluid chromatography: Supercritical-fluids, Instrumentation and Applications

UNIT -III: HYPHENATED TECHNIQUES

15 Hrs

Mass Spectroscopy: Principle, basic instrumentation, resolution, Ionization sources- Electron impact and Chemical ionization, Mass Analyzers- Quadrupole Mass analyzer and Time- of- Flight Analyzer.

Gas Chromatography- Mass spectrometry: Introduction, GC – MS interface, processing of GC – MS data – ion chromatogram. Quantitative measurement – sample preparation, Selected ion monitoring – Application of GC-MS for Trace constituents. Drugs analysis, Environmental analysis and others.

Liquid chromatography- Mass spectrometry — Introduction — Instrumentation — liquid chromatography — Mass spectrometer Interface — Instrumental details — Processing LC-MS data — ion chromatograms, Sample preparation — selected ion monitoring. Application of LC-MS for Drug analysis, Environmental samples and others.

UNIT- IV: ELECTRO ANALYTICAL METHODS 15 Hrs

Anodic stripping voltammetry: principle, instrumentation, Hanging mercury drop electrode, application in the analysis of Pb and Cd in environmental samples, principle of cathode stripping voltammetry.

Coulometric analysis: principles of coulometric analysis with constant current, coulometric analysis with controlled potential, applications of coulometric methods for the analysis of cations-As (III), Fe (II) and I- and S_2 - by using I_2 liberations and Ce^{4+} liberation in solutions

Ion Selective Electrodes: types of ion selective electrodes, basic properties, potentials and construction, calibration of ion selective electrodes, ion selective electrodes with fixed membrane sites, silver, lead, cadmium, sulfide, fluoride, cyanide and glass electrodes, applications in the analysis of air and water pollutants, principles of liquid membrane, gas sensing and enzyme based electrode

- 1. Analytical Chemistry, Gary D. Christian, John Laliley and Senes, New York, 6th Ed., 2007.
- 2. Analytical Chemistry Principles and Techniques, I.G. Harge, Prentice Hall.
- 3. Principles of Instrumental analysis, D.A. Skoog and J.L. Loacy, W.B. Saunders.
- 4. Handbook of Instrumental Techniques for Analytical Chemistry, F. Serlie, Prentice Hall.
- 5. Vogels Text book of Quantitative Chemical Analysis, Basett, Denny Jebbary, 5th Ed. ELBs 1990.
- 6. Instrumental Methods of Chemical Analysis, Willard Merrit, Dean, Stella Jr 6th Edition.
- 7. Separation methods, M.N Sastri, Himalaya Publishing Company, Mumbai.

(Mandatory Core)

CHE-I	C-403A	Ins	strumen	ital Mei	thods of	f Analys	sis I	L-3,T-1,	P-2	4	Credits			
Pre-re	quisite:	Unders	standing	of Instr	umental	l method	ds of ana	alysis	-					
Cours	e Objec	tives:												
• Gai	n sound	knowl	edge in	spectro	scopic	methods	s of IC	P-AES,	ICP-M	S, x-ray	fluores	scence,		
_	ctroscop		-		1 1									
	omatogr				_			•	Chron	natograp	hy, Ca	pillary		
	etrophor					•		` ′						
	niliarise									MS and	l LCMS			
	Busic principles of electro unary treat techniques and their approaches.													
Cours	Course Outcomes: At the end of the course, the student will be able to													
CO1 To understand the working principles, instrumentation and applications of ICP-AES and ICP-MS,														
	energy dispersive X-fluorescence (EDXRF), Wavelength dispersive X-ray fluorescence (WDXRF).													
CO ₂	To understand the basic principles, procedure and components of the High-Performance Liquid													
	Chromatography (HPLC), Gel Permeation Chromatography (GPC): Capillary Electrophoresis (CE), Supercritical Fluid Chromatography (SFC).													
~~~								20160:						
CO3				trumenta	ition and	applicat	tions of (	JCMS 111	drug ar	ialysis ar	nd enviro	nmental		
CO4	samples			lga abou	t coulom	notrio too	hniques	and thai	r onolyce	is of onti	one (Ae	(III), Fe		
CO4			(I and S								ons (As	(111), 176		
	(11)) and		apping of											
					1				1		T= - · ·			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	2	3	-	2	-	-	-	1		1		
CO2	3	3	3	3	3	2	ı	-	1	1	1	1		
CO3	3	3	3	3	3	2	ı	2	-	1	1	3		
CO4	3	3	2	2	-	2	-	-	-	1	1	3		

# CHE-IC 403A: CORE THEORY: INSTRUMENTAL METHODS OF ANALYSIS

# UNIT -I SPECTROSCOPIC METHODS

**15 Hrs** 

# **Emission Spectroscopy:**

- (i) ICP-AES: Principles, instrumentation, AES detectors, applications in the analysis of trace and toxic metals in water, geological and industrial samples.
- (ii) ICP-MS: Principles, instrumentation, quadrupole mass spectrometers, applications Fluorescence Spectroscopy:
- i) Molecular Fluorescence Spectroscopy: Principle, Theory of fluorescence, phosphorescence, relation between intensity of fluorescence and concentration, Correlation of fluorescence with molecular structure, Fluorescence quenching, Instrumentation and applications.
- **ii) X-ray Fluorescence Spectroscopy**: Principle, energy dispersive X-ray fluorescence (EDXRF), Wavelength dispersive X-ray fluorescence (WDXRF), applications.

# UNIT - II: CHROMATOGRAPHIC METHODS

**15 Hrs** 

High Performance Liquid Chromatography (HPLC): Principles, Stationary phases, Instrumentation, Solvent delivery system, sample introduction, gradient elution, columns and detectors. Partition Chromatography, adsorption chromatography, Gel permeation chromatography. Capillary Electrophoresis: Principle, Electroosmotic flow, Instrumentation, Applications to

separation of small ions, separation of Molecular Species, DNA sequencing

Supercritical-fluid chromatography: Supercritical-fluids, Instrumentation and Applications

# UNIT -III: HYPHENATED TECHNIQUES

**15 Hrs** 

Mass Spectroscopy: Principle, basic instrumentation, resolution, Ionization sources- Electron

impact and Chemical ionization, Mass Analyzers- Quadrupole Mass analyzer and Time- of- Flight Analyzer.

**Gas Chromatography- Mass spectrometry:** Introduction, GC – MS interface, processing of GC – MS data – ion chromatogram. Quantitative measurement – sample preparation, Selected ion monitoring – Application of GC-MS for Trace constituents. Drugs analysis, Environmental analysis and others.

**Liquid chromatography- Mass spectrometry** — Introduction — Instrumentation — liquid chromatography — Mass spectrometer Interface — Instrumental details — Processing LC-MS data — ion chromatograms, Sample preparation — selected ion monitoring. Application of LC-MS for Drug analysis, Environmental samples and others.

# UNIT- IV: ELECTRO ANALYTICAL METHODS 15 Hrs

**Anodic stripping voltammetry**: principle, instrumentation, Hanging mercury drop electrode, application in the analysis of Pb and Cd in environmental samples, principle of cathode stripping voltammetry.

**Coulometric analysis**: principles of coulometric analysis with constant current, coulometric analysis with controlled potential, applications of coulometric methods for the analysis of cations-As (III), Fe (II) and I- and S₂- by using I₂ liberations and Ce⁴⁺ liberation in solutions

**Ion Selective Electrodes**: types of ion selective electrodes, basic properties, potentials and construction, calibration of ion selective electrodes, ion selective electrodes with fixed membrane sites, silver, lead, cadmium, sulfide, fluoride, cyanide and glass electrodes, applications in the analysis of air and water pollutants, principles of liquid membrane, gas sensing and enzyme based electrode

- 1) Analytical Chemistry, Gary D. Christian, John Laliley and Senes, New York, 6th Ed., 2007.
- 2) Analytical Chemistry Principles and Techniques, I.G. Harge, Prentice Hall.
- 3) Principles of Instrumental analysis, D.A. Skoog and J.L. Loacy, W.B. Saunders.
- 4) Handbook of Instrumental Techniques for Analytical Chemistry, F. Serlie, Prentice Hall.
- 5) Vogels Text book of Quantitative Chemical Analysis, Basett, Denny Jebbary, 5th Ed. ELBs 1990.
- 6) Instrumental Methods of Chemical Analysis, Willard Merrit, Dean, Stella Jr 6th Edition.
- 7) Separation methods, M.N Sastri, Himalaya Publishing Company, Mumbai.

(Compulsory Foundation)

CHE-I	C-403B			·	Bioorg	,	L-	5,T-1,P	<b>P-0</b>	4	Credits	}
					Chemis							
Pre-r	equisite:	Unders	standing	of Bioi	norgani	c, Bioor	ganic, B	Biophysi	cal Che	mistry		
Cours	se Objec	tives:										
• Hig	ghlighter	metal o	complex	es as ox	ygen ca	rriers ar	nd electr	on trans	sfer in b	iology.		
• M	etal ion t	ransport	t and sto	rage in	biologic	cal syste	ms and	importa	nce of to	race met	tals in bi	iology.
• Lea	arn physi	ologica	l functio	ons of ca	ırbohydı	rates, lip	oids, enz	zymes cl	assifica	tion, ste	reospeci	ificity.
• Th	e basic c	oncepts	of biop	hysical	chemist	ry in bio	ochemic	al reacti	ions, ex	ergonic	and end	ergonic
rea	ctions.											
Cour	se Outco	mes: A	t the end	d of the	course,	the stud	ent will	be able	to			
CO1	Gain ki	nowledg	ge on me	etallo pr	oteins ir	n electro	n transt	er proce	esses.			
CO ₂	Know	the appl	ications	of trace	metal i	ons and	metal id	ons as cl	nelating	agents i	n medic	ine.
CO3			_		ereosele	ctive sy	nthesis	of organ	nic comp	ounds a	and drug	s by
			onmenta									
CO4	Unders	tand the	rmodyn	amics o	f biopol	lymer re	actions	and to c	orrelate	free ene	ergy and	
	biopoly	mer pai	rameters	<b>.</b>								
		Ma	apping (	of cours	se outco	mes wit	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	3	_	2	_	2	_	1	1	1
CO ₂	3	3	3	3	_	2	_	2	_	_	1	3
CO3	3	3	3	2	2		_	3	_	1	1	3
CO4	3	2	2	3	2	2	_		-	2	-	1
			L		l	1		<u> </u>	<u> </u>	<u> </u>	<u> </u>	

# CHE AC-403(B): (GENERIC ELECTIVE): BIOINORGANIC, BIOORGANIC, BIOPHYSICAL CHEMISTRY

# UNIT-I: BIO-INORGANIC CHEMISTRY-I

**15 Hrs** 

Metal complexes as oxygen carriers –Heme proteins –Hemoglobin and myoglobin –Non heme proteins –hemerythrin and hemocyanin – model synthetic complexes of iron, cobalt and copper.Co-enzymes Vitamin  $B_{12}$ , carboxy peptidase and superoxidedismutase.

**Electron Transfer in Biology:** Structure and functions of metalloproteins in electron transfer processes –catalase –peroxidose –cytochromes and iron –sulphur proteins –synthetic models.

**UNIT – II: BIOINORGANIC CHEMISTRY- II:** Metal ion transport and storage in biological systems, Metal ions in Biology, Molecular mechanism of ion transport across membranes: ionophores, photosynthesis.

**Hydrolytic metalloenzymes:** Carbonic anyhdrase, carboxy peptidase, calcium in control processes, calcium and muscle contraction, calcium and secretion, calcium in blood clotting mechanisms. Therapeutic uses of enzymes.

**Importance of trace metals in biology:** Metal ions as chelating agents in medicine, trace metal ions and metal and non-metal deficiency. Biological nitrogen fixation, in-vivo and in-vitro nitrogen fixation.

# **UNIT-III: BIOORGANIC CHEMISTRY**

Carbohydrates: Structure and biological functions of mucopolysaccharides, glycoproteins, and

glycolipids- Role of sugars in biological recognition-Blood group substances

**Lipids:** Essential fatty acids-structure and function of triglycerols, Glycerophospholipids, cholesterol, bile acids prostaglandins- composition and functioning of lipoproteins

**Enzymes:** Nomenclature and classification, properties, factors affecting enzyme catalysis, enzyme inhibition- reversible and irreversible inhibition. Uses of enzymes in food drink industry and clinical laboratories.

# **UNIT-IV: BIOPHYSICAL CHEMISTRY:**

Standard free energy change in biochemical reactions, exergonic and endergonic reactions, hydrolysis of ATP, thermodynamics of biopolymer solutions, chain configuration of bio polymers, and calculation of average dimensions. Membrane equilibrium, ion transport through cell membrane. dialosis and its function. Structure and functions of proteins, enzymes, DNA and RNA in living systems, forces involved in bio polymer interactions, electrostatic forces, hydrophobic forces, molecular expansion, and dispersion forces.

- 1. M.N. Hughes, The Inorganic chemistry of Biological Processes, John wiley and Sons, New York 2nd Edition, 1981.
- 2. A Text book of Biochemistry, A.V.S.S. Rama Rao
- 3. Physical chemistry by Atkenes
- 4. Physical chemistry by Albertz.
- 5. Bio physical chemistry by Van Holde
- 6. Bio Physics by Narayanam
- 7. Organic Chemistry, Vol. 2, I. L. Finar, ELBS.
- 8. Chemistry of Natural Products, P.S. Kalsi, Kalyani Publishers.
- 9. Chemistry of Organic Natural Products, O. P. Agarwal, Vols., 1 & 2, Geol Pubs.
- 10. Natural products Chemistry K.B.G. Torssell, John Wiley, 1983.
- 11. Burger's Medicinal Chemistry, M.E. Wolff, John Wiley
- 12. Medicinal Chemistry, A. Kar, New Age International

CHE I	C 403		C	ore pra	ctical I:		L-	5,T-1,P	<b>P-0</b>	4	Credits	3	
		In	organic	Chemi	istry - P	<b>Practical</b>	l						
Pre-re	quisite	Unders	standing	of Inor	ganic C	hemistry	/ - Pract	ical.	·				
Cours	e Objec	tives:											
• To 1	earn ab	out the s	separation	on meth	ods and	flame p	hotome	tric anal	lysis of 1	pesticide	e residue	es.	
						olarogr							
• Prin	ciple, ii	nstrume	ntation,	determi	nation c	of metal	ions By	AAS.					
• Inte	rpretation	on of NI	MR che	mical sh	ifts and	hydroge	en bond	ing.					
Cours	urse Outcomes: At the end of the course, the student will be able												
CO1	7 1 0 1												
CO2	Polarography, atomic absorption spectroscopy in both emission and absorption mode.												
CO3	To ga	in knov	vledge o	n imple	ementati	on of g	as chror	natogra	phy and	HPLC	for sepa	ration	
	of mi	xtures.											
CO4	To Fa	miliariz	e with i	nterpret	ation of	data to	structur	es by N	MR.				
		Ma	apping	of cours	se outco	mes wi	th the p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	3	3	-	-	2	-	-	2	3	
CO2	3	3	3	3	-	2	-	2	-	2	-	3	
CO3	3	3	_	3	-	3	-	2		3	-	3	
CO4	3	-	3	_	3	2	_	-	-	2	-	3	

# CHE IC 403: CORE PRACTICALS: PRACTICAL – I-

# Instrumental methods of analysis- II

- 1) Flame Photometry: Determination of Na and K, Ca and Li in Water and Soil.
- 2) TLC/Paper chromatographic separation.
- 3) Determination of Pesticide residues by gas chromatographic method
- 4) Polarography:a) Determination of E ½ of Zn and Cd; b) Determination of amounts of Zn and Cd
- 5) Atomic Absorption Spectroscopy: Determination of transition metal ions (Cd, Cr, Cu, Pb, Zn etc.) by AAS.
- 6) Separation of Metal ion by Solvent Extraction /Ion exchange.

# II <u>DEMONSTRATION EXPERIMENTS</u>

- 1. IR Interpretation of IR spectrum of alcohols, ketones, aldehydes and other standard materials
- 2. AAS: Demonstration of AAS Determination of Zn, Cd, Pb, Mn, Fe and Ni in effluents using AAS.
- 3. Spectrofluorimetry estimation of quinine and fluoroscene
- 4. Ion selective electrodes estimation of F⁻, S²⁻ and CN⁻ in effluents using ion selective electrode meter.
- 5. Polarography and Anode stripping voltametry
- 6. Polarography and Anode stripping voltametry behavior of Cd, Zn, Pb in a mixture.
- 7. Determination of Pb and Cd in samples using Anode stripping voltametr
- 8. Gas chromatography- Determination of pesticides
- 9. HPLC- Determination of pesticides
- 10. NMR
- 11. (a)Demonstration of NMR spectrometer and study of hydrogen bonding in a given alcohol or phenol.
  - (b)Interpretation of NMR chemical shifts of ethyl benzene, ethyl alcohol.
- 12. TGA, DTA, DSC Demonstration of TG, DTA and DSC and study of decomposition of calcium oxalate, calcium carbonate, copper sulfate, oxalic acid.

- 13. pH metry
- a. (a)Determination of alkalinity in a colored effluent using pH metric end point.
- b. (b)Determination of purity of commercial HCl, H₂SO₄, H₃PO₄ and CH₃COOH using pH metric end point

(	CHE IC 404	Project Work	L-5,T-1,P-0	4 Credits
	D 114 T			

Pre-requisite: Inorganic Chemistry Project Work

# **Course Objectives:**

- Identification of problem
- Ability to carry out independent chemistry research with competency in research design, data

_	athering											
	-		nd com	municat	ion of	research	results	throug	h scien	tific pu	blicatio	ns and
r	resenta	tions.										
Preparation of dissertation												
Course Outcomes: At the end of the course, the student will be able												
CO1 Ability to perform experiments, collection and evaluation of data												
CO2	Interpretation of results while adhering to scientific principles of responsible and ethical behaviour.											
CO3	Analysing and compiling the data and results in a chronological order in the form of dissertation.											
CO4	Prepa	ration of	f dissert	ation.								
		Ma	apping	of cours	se outco	mes wit	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	3	-	2	-	2	-	1	1	1
CO2	3	3	3	3	-	2	-	2	-	-	1	3
CO3	3	3	3	2	2	-	-	3	-	1	1	3
CO4	3	2	2	3	2	2	-	-	-	2	-	1

# CHE IC 404: PRACTIAL II/ PROJECT WORK

CHE IC 406A	Drug Chemistry	L-3,T-1,P-2	4Credits
Pre-requisite: U	Inderstanding of Drug Chemistry		

# **Course Objectives:**

- To learn about the natural products as leads for new drugs
- Determination of cardiovascular drugs
- To study Autacoids
- Interpretation of Antipyretics

Cours	<b>Course Outcomes:</b> At the end of the course, the student will be able to												
CO1	Know	about na	tural pro	oducts.									
CO2	Know 1	Interpret	ation of	cardiov	ascular	drugs.							
CO3	Know the Analyzing about prostaglandins.												
CO4	Know the Definition, Classification, Nomenclature, Structure and Synthesis of anti-												
	inflammatory drugs.												
		Ma	apping o	of cours	se outco	mes wit	th the p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	3	3	-	-	2	-	-	2	3	
CO2	3 3 3 3 - 2 - 2 - 3												
CO3	3 3 3 - 3 - 2 - 3 - 3												
CO4	3	-	3	-	3	2	-	-	-	2	-	3	

CHE: AC: 406 (A): (OPEN ELECTIVE): DRUG CHEMISTRY

# UNIT - I: NATURAL PRODUCTS AS LEADS FOR NEW DRUGS

Occurrence, Structure and therapeutic uses of Drugs acting on Central Nervous System

Morphine alkaloids (morphine, codeine, thebaine, heroin, pethidine)

Cannabinoids (9-cannabinol, Tetrahydrocannabinol)

Neuromuscular Blocking Agents (Curare, Decamethonium)

Vinca Alkaloids (Vincristin and Vinblastin), Taxol and Taxotere, podophyllotoxin, Etoposide, Teniposide.

#### UNIT - II: CARDIOVASCULAR DRUGS

Definition, Classification, Nomenclature, Structure and Synthesis.

Cardiac glycosides (ex: Digoxin, Digitoxin);

Antihypertensive drugs (ex: Methyl dopa, Clonidene hydrochloride);

Antiarrhythmic agents (ex: Quinidine sulfate);

Antisympathetic drugs (ex: Propranolol hydrochloride, Verapamil hydrochloride);

Vasopressor drugs (ex: Prenylamine, Buphenine).

# **UNIT - III: AUTACOIDS**

Definition, Occurrence, Isolation, Nomenclature, Classification, Synthesis, Biosynthesis and Stereochemical structures of Prostaglandins. Structural elucidation of  $PGE_1$ ,  $PGE_2$ ; Synthesis and biosynthesis of  $PGE_2$ ,  $PGF_{2\alpha}$ .

Structure and Biosynthesis of Thromboxane A2 and Prostacyclin (synthesis not expected).

# **UNIT – IV: ANTI-INFLAMMATORY DRUGS**

Definition, Classification, Nomenclature, Structure and Synthesis of Paracetamol, Aspirin (Antipyretic), Salol, Cinchophen, Antipyrene, Phenylbutazone, Indomethacin, Tolmetin, Ibuprofen, Diclofenac and Naproxen.

- 1. Medicinal Chemistry by Ashitosh Kar
- 2. Medicinal Chemistry by D. Sriram, P. Yogeeswari
- 3. Medicinal Chemistry by David A. Williams, Thomas L. Lemke
- 4. Medicinal Chemistry by V. Alagarsamy
- 5. Biochemistry by U. Satyanarayana

- 6. Natural Products Chemistry and Applications by Sujata V. Bhat, B.A. Nagasampagi, S. Meenakshi
- 7. Medicinal Chemistry by V.K. Ahluwalia, Madhu Chopra
- 8. Medicinal Chemistry by Balkishen Razdar
- 9. Advanced Practical Medicinal Chemistry by Ashutosh Kar
- 10. Chemistry of Organic Natural Products by O. P. Agarwal, Vols., 1 & 2, Geol Pubs.
- 11. Chemistry of Natural Products by S. V. Bhat, B.A. Nagasampagi, M. Sivakumar
- 12. Natural Products Chemistry by K.B.G. Torssell, John Wiley, 1983.

CHE	IC 406 B	Electroanalytical Techniques	L-5,T-1,P-0	4 Credits									
Pre-r	equisite: U	Inderstanding of Electroanalytical Techn	niques										
	Course Objectives:												
•	<ul> <li>To learn about the classification of electroanalytical methods</li> </ul>												
•	Determination of types of currents												
•													
•	Interpretat	tion of Ion selective electrodes											
Cours	se Outcom	es: At the end of the course, the student	will able to										
CO1	Ability to	interpret potentiometry and conductom	etry										
CO2	Interpreta	ation of results while adhering to DC Po	larography.										
CO3	Analysing and compiling the data and results in polarography.												
CO4	Familiarize Types of ion sensitive electrodes.												

		N	<b>Iappin</b>	g of co	urse ou	tcomes v	vith the	prograi	n outco	omes					
	PO1   PO2   PO3   PO4   PO5   PO6   PO7   PO8   PO9   PO10   PO11   PO12														
CO1	3	3	3	3	3	-	-	2	-	-	2	3			
CO ₂	3	3	3	3	1	2	-	2	1	2	1	3			
CO3	203 3 3 - 3 - 3 - 3 - 3														
CO4	CO4 3 - 3 - 3 2 2 - 3														

# CHE: IC: 406(B): (OPEN ELECTIVE): ELECTRO ANALYTICAL TECHNIQUES

**Unit I:** Types and Classification of Electro analytical Methods.

- i) **Potentiometry-** Types of electrodes, Hydrogen gas, Calomel, Quin hydrone and glasselectrodes. Determination of pH. Potentiometric titrations.
- **ii)** Conductometry Definition of terms conductivity, specific conductivity, cell constant. Mobility of ions, Conductometric titrations.

**Unit II:** D.C Polarography:. Dropping mercury electrode- Instrumentation-polarogram. Types of Currents: Residual, Migration, Limiting. Two and Three electrode assemblies. Ilkovic equation(derivation not necessary) and its consequences. Types of limiting Currents: Adsorption, Diffusion, Kinetic. Applications of polarography in qualitative and quantitative analysis. Analysis of mixtures. Application to inorganic and organic compounds. Determination of stability constants of complexes.

**Unit III:** (i) A.C. polarography (ii) Square-wave polarography (iii) Pulse polarography (iv) Differential pulse polarography(V) Cyclic Voltammetry: Principle, instrumentation, reversible and irreversible cyclic voltammograms.

Unit IV: Ion selective electrodes: Ion-sensitive electrodes —types of ion sensitive electrodes —metal based cation and anion sensitive electrodes, solid membrane electrodes. Liquid ion-exchange electrodes, gas sensing membrane electrodes.

# **Books Suggested**

- 1. H.W. Willard, LL. Merrit and J.A. Dean: Instrumental Methods of Analysis. Affiliated East-West).
- 2. G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denny. Vogel's Text Book of Quantitative Chemical Analysis (ELBS).
- 3. D.A. Skoog and D.M. West: Principles of Instrumental Analysis (Holt, Rinehart and Wilson).
- 4. J.G. Dick: Analytical Chemistry (Mc Graw Hill).

# (Mandatory Core)

CHE-OC- 401	Organic synthesis I	L-5,T-1,P-0	4Credits							
Pre-requisite: Understanding of Organic synthesis										

# **Course Objectives:**

- Acquire knowledge in the applications of Boron, Phosphorus, Sulfur and Silicon reagents in organic synthesis and their special behavior.
- Study photochemical reactions of olefins, carbonyl compounds, aromatic compounds, rearrangements and stereochemistry of the products.
- Understand the concept of pericyclic reactions, determination of allowed and forbidden transitions and prediction of stereochemistry of the products.
- Study different polymer reactions, Stereospecific polymers, Thermoplastics, Fibers, Elastomers and Ion exchange resins.

**Course Outcomes**: At the end of the course, the student will be able to

CO1	Familia	arize wit	h the ur	ique rea	activity	of Boro	n, Phosp	ohorus, S	Sulfur a	nd Silice	on reage	ents		
CO2	Learn	about pl	notolytic	c reaction	ons of c	arbonyl	compo	unds, co	njugate	d carbo	nyl deri	ivatives,		
		olefins, conjugated dienes CO ₃ :To gain knowledge in the determination of allowed or												
	forbidden of chemical reactions viz., cycloaddition and													
CO ₃	Learn the methods of preparation, properties, and industrial applications of various addition													
	and condensation													
CO4	Familiarize with the unique reactivity of Boron, Phosphorus, Sulfur and Silicon reagents													
	•	Ma	apping	of cours	se outco	mes wi	th the p	rogram	outcon	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	3	3	-	3	-	2	-	2	-	1		
CO2	3	3	3	3	3	2	-	1	-	2	-	3		
CO3	3	3	3	3	3	2	-	1	-	-	1	3		
CO4	3	3	3	2	-	2	_	-	2	2	1	2		

CHE OC-401: CORE THEORY: ORGANIC SYNTHESIS-I

# UNIT-I: Chemistry of Organo Boran, Phophorus, Sulfur and Silicon reagents 15Hrs

Electronic structure and bonding in Boron, Phosphorus, Sulphur and Silicon compounds-Their reactivity and applications in Organic Synthesis.

**Boron Reagents**-Hydroboration-Organoboranes in the formation of C-C bonds, alcohols, amines, halogen and carbonyl compounds-Free radical reactions of organoboranes.

**Phosphorus Reagents**- Formation of carbon-carbon double bonds-Functional group transformations – deoxygenation reactions-reactivity as electrophiles- conversitoon of alcohols to alkyl halides, Witting reaction and nucleophiles - Corey-Winters reaction, Michaelis-Arbusov reaction-Perkow reaction and Mitsnobu reaction.

**Sulphur Reagents-** Sulphur ylides, stabilized and non-stabilized – Preparation and reactivity Pummerer reaction – sulphonyl carbanions-Julia reaction

**Silicon reagents-**Peterson's olefination, influence of trialkyl silyl reagents in electrophilic reactions, aryl silanes, alkenyl silanes, alkynyl silanes, allyl silanes.

#### **UNIT-II: PHOTOCHEMISTRY**

15Hr

Photochemical energy, photochemical excitations, Franck-Condon principle, electronic transitions, Jablonski diagram, singlet and triplet states, energy transfer in photochemical reactions - photosensitization reactions and quantum yield.

Photochemistry of carbonyl compounds - Norrish Type-I and Norrish Type-II reactions, Photo Reduction and Paterno-Buchi reaction. Photochemistry of  $\alpha,\beta$ -unsaturated ketones, enones, dienones and p-benzoquinones.

Photochemistry of unsaturated systems (olefins), cis-trans isomerization and dimerization reactions, Photochemistry of conjugated dienes - 1,3-butadiene, aromatic compounds, Photoaddition (1,2- & 1,4- additions) and Photosubstitution reactions of benzene derivatives. Photo-Fries rearrangement and Barton reaction.

# UNIT III: PERICYCLIC REACTIONS

**15 Hrs** 

Molecular orbital symmetry, Frontier orbitals of ethylene, 1,3 butadiene, 1,3,5-hexatriene and allyl and pentadienyl system. Classification of pericyclic reactions. Woodward-Hoffmann correlation diagrams. FMO and PMO (Mobius Huckel) approach. Electrocyclic reactions-Conrotatory and disrotatory. 4n, 4n+2 and allyl systems. Cycloadditions-antarafacial and suprafacial additions, 4n

and 4n+2 systems, 2+2 addition of ketene, 1,3 dipolar cycloadditions and cheleotropic reactions. Sigmatropic rearrangements - Suprafacial and antarafacial shifts of H, Sigmatropic shifts involving carbon moieties, 3,3 and 5,5 Sigmatropic rearrangements. Claisen, Cope and Oxy-Cope rearrangements. Ene reaction

# **UNIT IV: SYNTHETHETIC POLYMERS**

15 Hrs

Polymer Reactions-Addition and condensation polymerization processes- Bulk, Solution, Suspension and Emulsion polymerization.

Stereospecific Polymers-Preparation and significance- classification of polymers based on physical properties-Thermoplastics-Thermosetting plastics-Fibers and elastomers- General applications. Preparation of Polymers-Preparation of Polymers based on different types of monomers Industrial

applications-olefin polymers-Diene polymers-nylons-Glyptal resins-Urea-formaldehyde, phenol-formaldehyde and melamine resins- Epoxy resins - Ion exchange resins.

# **Book References:**

- 1. Modern Synthetic Reactions, H.O. House, W.A Benjamin.
- 2. Some Modern Methods of Organic Synthesis, W. Carruthers, Cambridge University Press.
- 3. Advanced Organic Chemistry, F.A. Carey and R.J Sundberg, Plenum.
- 4. Principles of Organic Synthesis, R.O.C. Norman and J.M Coxon, Blackie
- 5. Advanced Organic Chemistry Part A & B, F.A Carey and R. J Sunderg, Plenum Press.
- 6. Structure and Mechanism in Organic Chemistry C.K. Inglod, Cornell University Press.
- 7. Reaction Mechanism in Organic Chemistry, P.S. Kalsi, New Age International.
- 8. Modern Synthetic Reactions, H.O. House, W.A. Benjamin.
- 9. Chemistry of Organic Natural Products, O.P. Agrawal, Vols., 1 & 2, Goel Pubs.
- 10. Natural Products Chemistry K.B.G. Torssell, John Wiley, 1983.
- 11. Principles of biochemistry, A.L. Lehninger worth publishers
- 12. A Text book of Biochemistry, A.V.S.S. Rama Rao

(Mandatory Core)

CHE-C	C 402	,	Or	ganic S	Synthesis	s II		L-5,T-1	1,P-0	4	Credit	S
Pre-re	equisite	e: Und	erstandi	ing of C	rganic S	ynthesi	S					
Cou	ırse O	bjectiv	es:									
				1		•		•	nd contro			•
	_				nplex nat		_	• -			11	
			-		-	-		-	of antima	larials an	d antibi	otics
•	Understand structure and synthesis of proteins and nucleic acids											
Cours	Course Outcomes: At the end of the course, the student will be able to											
CO1	Familiarize with functionalization and interconversion of functional groups and the concept of organic synthesis by retrosynthetic approach.											
CO2	Gain l	knowle	dge in tl	he form	ulation o	f synth	etic rou	tes for r	naturally	occurring	g drugs.	
CO3	l l					_	_		alkaloids intibiotic		malarial	s and to
CO4	Acqui	re kno	wledge	about	the class	ssificati	on, pro	perties	, structu	re & co	nforma	tion and
	biological functions of peptides/proteins.											
		N	<b>Aappin</b>	g of cou	ırse outo	comes v	vith the	e progr	am outc	omes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	-	1	-	-	1	-	3
CO2	3	3	3	3	2	1	-	-	-	1	-	2

CO3	3	3	3	3	2	-	-	2	-	1	1	3
CO4	3	3	3	3	2	2	-	2	-	-	2	3

# CHE OC-402: CORE THEORY: ORGANIC SYNTHESIS-II

# **UNIT-I: DESIGNING OF ORGANIC SYNTHESIS**

**15 Hrs** 

**Disconnection Approach**-Classification of organic reactions. Functionalisation and interconversion of functional groups, formation of carbon-carbon single and double bonds, general strategy, disconnection and synthon approach, retrosynthetic analysis, key intermediates and starting materials in designing a synthesis, linear and convergent synthesis, reconnections. The importance of the order of events in organic synthesis, one group C-X and two group C-X disconnections, chemoselectivity, reversal of polarity, cyclisation reactions, amine synthesis.

**Protecting Groups**-Principles of protection of alcohol, amine, carbonyl and carboxyl groups.

**One Group C-C Disconnections**-Alcohols and carbonyl compounds, regioselectivity. Alkene synthesis, use of acetylenic compounds in organic synthesis.

**Two Group C-C Disconnections**-Diels-Alder reaction, 1,3-difunctionalised compounds, unsaturated carbonyl compounds, control in carbonyl condensations, 1,5-difunctionalised compounds, Michael addition and Robinson annulation.

# **UNIT II: MULTI STEP SYNTHESIS**

15 hrs

Multi step synthesis of some complex naturally occurring compounds involving through retrosynthetic analysis and control of stereochemistry, Longifolene, Taxol, Juvabione, Fediricamycine A.

# UNIT III: ANTIMALARIALS AND ANTIBOTICS

15 hrs

Antimalarials: Synthesis and activity of Quinoline group – Quinine, Plasmoquine and Chloroquine – Acridine group – Quinacrine – Guanidine group – Paludrine.

Antibiotics: Synthesis and activity of Penicillin, Chloramphenicol and Streptomycin – Broad spectrum antibiotics – Tetracyclines, Novobiocin.

Chemotherapy: Structure – activity relationships.

# **UNIT-IV: BIOMOLECULES**

**15 Hrs** 

Peptides and Proteins-Methods of peptide synthesis, sequence determination, structure of oxytocin, proteins-classification, structure, conformation and properties. Nucleic acids- Nucleosides, Nucleotides, DNA and RNA, structure and conformations, replication, translation of genetic material, genetic code, gene expression, gene mutation, protein synthesis.

# **Book References:**

- 1) Modern Synthetic Reactions, H.O. House, W.A Benjamin.
- 2) Some Modern Methods of Organic Synthesis, W. Carruthers, Cambridge University Press.
- 3) Advanced Organic Chemistry, F.A. Carey and R.J Sundberg, Plenum.
- 4) Principles of Organic Synthesis, R.O.C. Norman and J.M Coxon, Blackie
- 5) Advanced Organic Chemistry Part A & B, F.A Carey and R. J Sunderg, Plenum Press.
- 6) Structure and Mechanism in Organic Chemistry C.K. Inglod, Cornell University Press.
- 7) Reaction Mechanism in Organic Chemistry, P.S. Kalsi, New Age International.
- 8) Modern Synthetic Reactions, H.O. House, W.A. Benjamin.
- 9) Chemistry of Organic Natural Products, O.P. Agrawal, Vols., 1 & 2, Goel Pubs.
- 10) Natural Products Chemistry K.B.G. Torssell, John Wiley, 1983.
- 11) Principles of biochemistry, A.L. Lehninger worth publishers
- 12) A Text book of Biochemistry, A.V.S.S. Rama Rao

(Mandatory Core)

CHE-C	CHE-OC-403A   Heterocycles and Natural Products   L-3,T-1,P-2   4 Credits  Pre-requisite: Understanding of Heterocycles and Natural Products												
Pre-re	quisite:	Unders	tanding	of Hete	rocycles	s and Na	atural Pı	oducts	•				
	e Objec												
	niliarize								hetero	cycles.	Synthes	is and	
	ctivity of												
	derstand	•	esis and	l reacti	vity of	benzo	fused f	ive me	mbered	and s	six mei	nbered	
	terocycles												
	cum mic wrongs on survey or continuous, symmetric and crossymmetric or score and normalistic												
• Familiarize with on structural elucidation, synthesis and biosynthesis of flavonoids and													
	isoflavonoids												
Cours	Course Outcomes: At the end of the course, the student will be able to												
CO1	O1 Familiarize with the synthetic routes of five membered heterocycles with two heteroatoms												
	and to justify the site of												
CO2	Acquire	e knowl	edge on	the syn	thetic m	ethodolo	ogies of	benzofi	used and	d six me	mbered		
	heteroc	ycles ar	d the ef	fect of									
CO3	Familia	rize wit	h the str	ructural	elucidat	tion and	synthes	is of nat	turally c	occurring	g steroic	ls and	
	hormon	ies											
CO4	Know a	about is	olation,	structura	al deterr	nination	and sy	nthesis o	of flavoi	noids an	ıd		
	isoflavo												
		Ma	apping o	of cours	se outco	mes wit	h the p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	3	2	2	-	2	-	2	-	3	
CO2	3	3	3	3	2	2	-	2	ı	2	1	3	
CO3	3	3	3	3	2	-	-	2	ı		1	3	
CO4	3	3	3	3	2	-	-	2	-	-	1	3	

# <u>CHE : OC-403(A) : (GENERIC ELECTIVE): HETEROCYCLES AND NATURAL PRODUCTS</u>

#### UNIT-I: NOMENCLATURE AND FIVE MEMBERED HETEROCYCLES 15 HRS

Systematic nomenclature (Hantzsch-Widman nomenclature) for fused and bridged heterocycles, Five membered heterocycles with two heteroatoms: Synthesis and reactions of pyrazole, imidazole, isoxazole, oxazole, isothiazole and thiazole

# UNIT-II: BENZOFUSED FIVE MEMBERED AND SIX MEMBERED HETEROCYCLES 15 HRS

Benzofused five membered heterocycles: Synthesis and reactions of Benzopyrazoles, Benzimidazoles and Benzoxazoles

Six Membered heterocycles with two or more heteroatoms: Synthesis and reactions of diazines (pyridazine, pyrimidine & pyrazine) and triazines (1,2,3-, 1,2,4- 1,3,5- triazines)

# **UNIT-III: STEROIDS AND HORMONES**

**15 HRS** 

Occurrence, nomenclature, basic skeleton, Diel's hydrocarbon and stereochemistry. Isolation, structure determination and synthesis of Cholesterol (total synthesis not expected), Bile acids, Androsterone, Testosterone, Estrone, Progesterone. Biosynthesis of steroids.

Occurrence, nomenclature and general methods of structure determination. Isolation and synthesis of Apigenin, Luteolin, Kaempferol, Quercetin, Butein, Daidzein, Biosynthesis of flavonoids and isoflavonoids: Acetate Pathway and Shikimic acid Pathway. Biological importance of flavonoids and isoflavonoids.

#### **Reference Books:**

- 1. Heterocyclic chemistry Vol. 1-3, R.R. Gupta, M.Kumar and V. Gupta, Springer Verlag.
- 2. The Chemistry of Heterocycles, T. Eicher and S. Hauptmann, Thieme.
- 3. Heterocyclic Chemistry, J.A. Joule, K. Mills and G.F. Smith, Chapman and Hall.
- 4. Heterocyclic Chemistry, T.L. Gilchrist, Longman Scientific Technical.
- 5. Contemporary Heterocyclic Chemistry, G.R. Newkome and W.W. Paudler, Wiley-Inter Science.
- 6. An Introduction to the Heterocyclic Compounds, R.M. Acheson, Jonn Wiley.
- 7. Comprehensive Heterocyclic Chemistry, A.R. Katritzky and C.W. Rees, eds. Pergamon Press.
- 8. Organic Chemistry, Vol. 2, I. L. Finar, ELBS.
- 9. Introduction to Flavonoids TA Geissman.

(Compulsory Foundation)

СНЕ-(	OC-403E	C-403B Bioinorganic, Bioorganic, L-5,T-1,P-0 4 Credits Biophysical Chemistry  quisite: Understanding of Bioinorganic, Bioorganic, Biophysical Chemistry												
Pre-r	equisite:	Unders					ganic, E	Biophysi	cal Che	mistry				
Cours	se Objec	tives:												
• Hig	ghlighten	metal c	complex	es as ox	ygen ca	rriers an	d electr	on trans	sfer in b	iology.				
• M	etal ion t	ranspor	t and sto	rage in	biologic	al syste	ns and	importa	nce of t	race met	tals in b	iology.		
• Lea	arn physiological functions of carbohydrates, lipids, enzymes classification, stereospecificity.													
• The	e basic concepts of biophysical chemistry in biochemical reactions, exergonic and endergonic													
rea	ctions.													
Cours	se Outcomes: At the end of the course, the student will be able to													
CO1	Gain kr	iowledg	ge on me	etallo pr	oteins in	n electro	n transf	er proce	esses.					
CO2	Know t	he appl	ications	of trace	metal i	ons and	metal io	ons as cl	nelating	agents i	n medic	ine.		
CO3			-		ereosele	ctive sy	nthesis	of organ	nic comp	ounds a	ınd drug	s by		
			onmenta											
CO4			•		f biopol	ymer rea	actions	and to c	orrelate	free ene	ergy and	l		
	biopoly		rameters											
		Ma	apping o	of cours	se outco	mes wit	h the p	rogram	outcon	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	3	2	3	3	3	2	-	2	-	3		
CO2	3	3	3	3	3	2	3	-	-	-	3	3		
CO3	3	3	3	3	3	3	-	2	-	2	-	3		
CO4	3	3	3	3	3	3	2	2	_	3	3	3		

# CHE AC-403(B): (GENERIC ELECTIVE): BIOINORGANIC, BIOORGANIC, BIOPHYSICAL CHEMISTRY

#### UNIT-I: BIO-INORGANIC CHEMISTRY-I

**15 Hrs** 

Metal complexes as oxygen carriers –Heme proteins –Hemoglobin and myoglobin –Non heme proteins –hemerythrin and hemocyanin – model synthetic complexes of iron, cobalt and copper. Co-enzymes Vitamin  $B_{12}$  carboxy peptidase and superoxidedismutase.

**Electron Transfer in Biology:** Structure and functions of metalloproteins in electron transfer processes –catalase –peroxidose –cytochromes and iron –sulphur proteins –synthetic models.

**UNIT – II: BIOINORGANIC CHEMISTRY- II:** Metal ion transport and storage in biological systems, Metal ions in Biology, Molecular mechanism of ion transport across membranes: ionophores, photosynthesis.

**Hydrolytic metalloenzymes:** Carbonic anyhdrase, carboxy peptidase, calcium in control processes, calcium and muscle contraction, calcium and secretion, calcium in blood clotting mechanisms. Therapeutic uses of enzymes.

**Importance of trace metals in biology:** Metal ions as chelating agents in medicine, trace metal ions and metal and non-metal deficiency. Biological nitrogen fixation, in-vivo and in-vitro nitrogen fixation.

# **UNIT-III: BIOORGANIC CHEMISTRY**

Carbohydrates: Structure and biological functions of mucopolysaccharides, glycoproteins, and

glycolipids- Role of sugars in biological recognition-Blood group substances

**Lipids:** Essential fatty acids-structure and function of triglycerols, Glycerophospholipids, cholesterol, bile acids prostaglandins- composition and functioning of lipoproteins

**Enzymes:** Nomenclature and classification, properties, factors affecting enzyme catalysis, enzyme inhibition- reversible and irreversible inhibition. Uses of enzymes in food drink industry and clinical laboratories.

# **UNIT-IV: BIOPHYSICAL CHEMISTRY:**

Standard free energy change in biochemical reactions, exergonic and endergonic reactions, hydrolysis of ATP, thermodynamics of biopolymer solutions, chain configuration of bio polymers, and calculation of average dimensions. Membrane equilibrium, ion transport through cell membrane. dialosis and its function. Structure and functions of proteins, enzymes, DNA and RNA in living systems, forces involved in bio polymer interactions, electrostatic forces, hydrophobic forces, molecular expansion, and dispersion forces.

# **Books Suggested**

- 1. M.N. Hughes, The Inorganic chemistry of Biological Processes, John wiley and Sons, New York 2nd Edition, 1981.
- 2. A Text book of Biochemistry, A.V.S.S. Rama Rao
- 3. Physical chemistry by Atkenes
- 4. Physical chemistry by Albertz.
- 5. Bio physical chemistry by Van Holde
- 6. Bio Physics by Narayanam
- 7. Organic Chemistry, Vol. 2, I. L. Finar, ELBS.
- 8. Chemistry of Natural Products, P.S. Kalsi, Kalyani Publishers.
- 9. Chemistry of Organic Natural Products, O. P. Agarwal, Vols., 1 & 2, Geol Pubs.
- 10. Natural products Chemistry K.B.G. Torssell, John Wiley, 1983.
- 11. Burger's Medicinal Chemistry, M.E. Wolff, John Wiley
- 12. Medicinal Chemistry, A. Kar, New Age International

CHE (	OC 404											
		Spe	ectral Id	lentifica	ation of	Organi	c					
				Compo	ounds							
Pre-re	quisite:	Unders	standing	of Spec	ctral ide	ntificatio	n of or	ganic co	mpound	ds		
Cours	e Objec	tives:										
• Spe	Spectral identification of organic compounds by UV by calculating $\lambda$ max values											
• Ider	ntificatio	n of ab	sorption	bands b	oy IR an	nd ascerta	ain to th	ne functi	ional gro	oups		
• Una	mbiguo	us assig	gnment o	of struct	ures by	interpret	ing NN	IR value	es	-		
• Pred	dict the c	haracte	eristic cl	eavage 1	processe	es by Ma	ss.					
Cours	rrse Outcomes: At the end of the course, the student will be able to											
CO1	Calcula	te λ ma	x values	S.								
CO2	Ascerta	in func	tional gi	oups.								
CO3	Interpre	t the sp	ectral d	ata to th	e structi	ure and s	tereoch	emistry	of the r	nolecule	es.	
CO4	Analys	e the fr	agmenta	ition pat	tern of t	he molec	ules.					
		Ma	apping	of cours	se outco	mes wit	h the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3		-	2	-		2	3
CO2	3	3	3	3	-	2	-	2	_	2	_	3
CO3	3	3	-	3	-	3	-	2	-	3	_	3
CO4	3	-	3	-	3	2	-	-	_	2	_	3

#### **CHE OC 403: PRACTICAL-I**

Spectral identification of organic compounds by UV, IR, NMR (¹H & ¹³C) & Mass spectroscopy.

# **DEMONSTRATION EXPERIMENTS**

- 1 IR Interpretation of IR spectrum of alcohols, ketones, aldehydes and other standard materials
- 2 AAS: Demonstration of AAS Determination of Zn, Cd, Pb, Mn, Fe and Ni in effluents using AAS.
- 3 Spectrofluorimetry estimation of quinine and fluoroscene
- 4 Ion selective electrodes estimation of F-, S²⁻ and CN⁻ in effluents using ion selective electrode meter.
- 5 Polarography and Anode stripping voltametry
- (a) Polarography and Anode stripping voltametry behavior of Cd, Zn, Pb in a mixture.
- (b) Determination of Pb and Cd in samples using Anode stripping voltametr
- 6 Gas chromatography- Determination of pesticides
- 7 HPLC- Determination of pesticides
- 8 NMR
  - a). Demonstration of NMR spectrometer and study of hydrogen bonding in a given alcohol or phenol.
  - b). Interpretation of NMR chemical shifts of ethyl benzene, ethyl alcohol
- 9 TGA, DTA, DSC Demonstration of TG, DTA and DSC and study of decomposition of calcium oxalate, calcium carbonate, copper sulfate, oxalic acid.
- 10 pH metry
- a) Determination of alkalinity in a colored effluent using pH metric end point.
- b) Determination of purity of commercial HCl, H₂SO₄, H₃PO₄ and CH₃COOH using pH metric end point

CHE O	C 405		Practic	al II: Pi	roject W	ork	L-	5,T-1,P	-0	4	Credits	}	
Pre-re	quisite:	Organ	ic Chen	nistry P	roject <b>V</b>	Work							
Course	e Objec	tives:											
• ]	Identific	cation of	fproblei	n by lite	erature s	urvey							
• 1	Ability 1	to carry	out inde	ependen	tly with	compet	ency in	research	n design	and syn	thesis		
• ]	Interpre	tation of	f spectra	ıl data to	the stru	ictures (	of the m	olecules	S				
• (	Commu	nication	of rese	arch res	ults thro	ugh pre	sentatio	ns and p	reparati	on of di	ssertatio	on	
Course	e Outco	Outcomes: At the end of the course, the student will be able to											
CO1	Identi proble	•	roblem,	to colle	ct the lit	terature	and und	lerstand	ing para	meters t	o desigi	n the	
CO2		-		to synth	nesize th	e molec	cules wit	th desire	ed sterec	chemist	ry adop	ting	
001		rn techn		· · · · ·	.1 1 .	1							
CO3					the data			S.					
CO ₄	Prese	ntation o	of the da	ita in the	e form o	f dissert	tation.						
		Ma	apping	of cours	se outco	mes wit	th the p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	2	3	-	2	2	2	-	2	2	3	
CO2	3	3	3	3	3	2	2	2	-	2	2	3	
CO3	3	3	3	3	3	3	3	2	1	2	1	3	
CO4	3	3	3	3	3	2	3	2	-	-	2	3	

# CHE OC 404: PRACTIAL II/ PROJECT WORK

CHE OC 406A	Drug Chemistry	L-3,T-1,P-2	4Credits
Pre-requisite: U	Understanding of Drug Chemistry		

# **Course Objectives:**

- To learn about the natural products as leads for new drugs
- Determination of cardiovascular drugs
- To study Autacoids
- Interpretation of Antipyretics

Course Outcomes: At the end of the course, the student will be able to

**CO1** Know about natural products.

**CO2** Know Interpretation of cardiovascular drugs.

**CO3** Know the Analyzing about prostaglandins.

CO4 Know the Definition, Classification, Nomenclature, Structure and Synthesis of antiinflammatory drugs.

	mmamm	natory c	nugs.										
	Mapping of course outcomes with the program outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	3	3	1	-	2	1	-	2	3	
CO2	3	3	3	3	-	2	-	2	1	2	-	3	
CO3	3	3		3	-	3	-	2	ı	3	-	3	
CO4	3	1	3	1	3	2	-	-	1	2	-	3	

CHE: OC: 406 (A): (OPEN ELECTIVE): DRUG CHEMISTRY

### UNIT - I: NATURAL PRODUCTS AS LEADS FOR NEW DRUGS

Occurrence, Structure and therapeutic uses of Drugs acting on Central Nervous System

Morphine alkaloids (morphine, codeine, thebaine, heroin, pethidine)

Cannabinoids (9-cannabinol, Tetrahydrocannabinol)

Neuromuscular Blocking Agents (Curare, Decamethonium)

Vinca Alkaloids (Vincristin and Vinblastin), Taxol and Taxotere, podophyllotoxin, Etoposide, Teniposide.

# UNIT - II: CARDIOVASCULAR DRUGS

Definition, Classification, Nomenclature, Structure and Synthesis.

Cardiac glycosides (ex: Digoxin, Digitoxin);

Antihypertensive drugs (ex: Methyl dopa, Clonidene hydrochloride);

Antiarrhythmic agents (ex: Quinidine sulfate);

Antisympathetic drugs (ex: Propranolol hydrochloride, Verapamil hydrochloride);

Vasopressor drugs (ex: Prenylamine, Buphenine).

# **UNIT - III: AUTACOIDS**

Definition, Occurrence, Isolation, Nomenclature, Classification, Synthesis, Biosynthesis and Stereochemical structures of Prostaglandins. Structural elucidation of PGE₁, PGE₂; Synthesis and biosynthesis of PGE₂, PGF_{2 $\alpha$}.

Structure and Biosynthesis of Thromboxane A2 and Prostacyclin (synthesis not expected).

### **UNIT – IV: ANTI-INFLAMMATORY DRUGS**

Definition, Classification, Nomenclature, Structure and Synthesis of Paracetamol, Aspirin (Antipyretic), Salol, Cinchophen, Antipyrene, Phenylbutazone, Indomethacin, Tolmetin, Ibuprofen, Diclofenac and Naproxen.

# **Books suggested:**

- 13. Medicinal Chemistry by Ashitosh Kar
- 14. Medicinal Chemistry by D. Sriram, P. Yogeeswari
- 15. Medicinal Chemistry by David A. Williams, Thomas L. Lemke
- 16. Medicinal Chemistry by V. Alagarsamy
- 17. Biochemistry by U. Satyanarayana
- 18. Natural Products Chemistry and Applications by Sujata V. Bhat, B.A. Nagasampagi, S. Meenakshi
- 19. Medicinal Chemistry by V.K. Ahluwalia, Madhu Chopra
- 20. Medicinal Chemistry by Balkishen Razdar
- 21. Advanced Practical Medicinal Chemistry by Ashutosh Kar
- 22. Chemistry of Organic Natural Products by O. P. Agarwal, Vols., 1 & 2, Geol Pubs.
- 23. Chemistry of Natural Products by S. V. Bhat, B.A. Nagasampagi, M. Sivakumar
- 24. Natural Products Chemistry by K.B.G. Torssell, John Wiley, 1983.

	<b>CHE OC 406</b>	Electroanalytical Techniques	L-5,T-1,P-0	4 Credits
--	-------------------	------------------------------	-------------	-----------

# **Pre-requisite**: Understanding of Electroanalytical Techniques

# **Course Objectives:**

- To learn about the classification of electroanalytical methods
- Determination of types of currents
- Principle, instrumentation, reversible and irreversible cyclic voltammograms...
- Interpretation of Ion selective electrodes

Course Outcomes: At the end of the course, the student will able to

CO1	Abilit	y to inte	erpret p	otentio	metry a	nd condu	ctometr	y				
CO2	Interp	Interpretation of results while adhering to DC Polarography.										
CO3	Analy	sing an	d comp	iling th	e data a	nd result	s in pol	arograph	y.			
CO4	Famil	iarize T	ypes of	ion ser	nsitive e	electrodes	S.					
		N	<b>Aappin</b>	g of co	urse ou	tcomes v	with the	prograi	n outco	omes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	-	-	2	-	-	2	3
CO ₂	3	3	3	3	1	2	-	2	1	2	-	3
CO ₃	3	3	-	3	-	3	-	2	-	3	-	3
CO4	3	-	3	-	3	2	_	-	-	2	-	3

CHE: OC: 406(B): (OPEN ELECTIVE): ELECTRO ANALYTICAL TECHNIQUES

**Unit I:** Types and Classification of Electro analytical Methods.

- i) **Potentiometry-** Types of electrodes, Hydrogen gas, Calomel, Quin hydrone and glasselectrodes. Determination of pH. Potentiometric titrations.
- **ii) Conductometry** Definition of terms conductivity, specific conductivity, cell constant. Mobility of ions, Conductometric titrations.

**Unit II:** D.C Polarography: Dropping mercury electrode- Instrumentation-polarogram. Types of Currents: Residual, Migration, Limiting. Two and Three electrode assemblies. Ilkovic equation (derivation not necessary) and its consequences. Types of limiting Currents: Adsorption, Diffusion, Kinetic. Applications of polarography in qualitative and quantitative analysis. Analysis of mixtures. Application to inorganic and organic compounds. Determination of stability constants of complexes.

**Unit III:** (i) A.C. polarography (ii) Square-wave polarography (iii) Pulse polarography (iv) Differential pulse polarography(V) Cyclic Voltammetry: Principle, instrumentation, reversible and irreversible cyclic voltammograms.

**Unit IV: Ion selective electrodes:** Ion-sensitive electrodes –types of ion sensitive electrodes –metal based cation and anion sensitive electrodes, solid membrane electrodes. Liquid ion-exchange electrodes, gas sensing membrane electrodes.

#### **Books Suggested**

- 1. H.W. Willard, LL. Merrit and J.A. Dean: Instrumental Methods of Analysis. Affiliated East-West).
- 2. G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denny. Vogel's Text Book of Quantitative Chemical Analysis (ELBS).
- 3. D.A. Skoog and D.M. West: Principles of Instrumental Analysis (Holt, Rinehart and Wilson).
- 4. J.G. Dick: Analytical Chemistry (Mc Graw Hill).

### (Mandatory Core)

CHE-PC- 401	Electrochemistry	L-5,T-1,P-0	4Credits
Pre-requisite: U	Inderstanding of Electrochemistry		

Cours	se Objectives:												
• Study	y industrial electrochemistry, corrosion and methods of prevention												
• Learn	n about electrochemical batteries and cells and their performance												
• Study	y on elec	on electro kinetics and electro capillary phenomena and electrokinetic effect											
	liarize p					• •							
	e Outco								to				
CO1	Know th	he techni	ques of	depositio	n of met	als, thro	wing pov	ver simu	ltaneous	discharg	e of cati	ons and	
	method	s of corre	osion pro	tection									
CO2	Learn a	bout elec	trochem	ical Batt	eries, fue	el cells a	nd nicke	l-cadmiu	m batter	ies.			
CO3	Underst potentia		trical do	ıble laye	r system	s, sedim	entation	potential	, null po	ints of m	etals and	l zeta	
CO4	Calcula	te electro	ochemica	ıl parame	eters; fan	niliarize	mixed lig	gand sys	tems and	l reversib	ole syster	ns.	
	•	Ma	apping o	of cours	se outco	mes wit	th the p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	3	3	2	-	2	-	-	1	2	
CO2	3	3	3	3	2	-	-	2	-	2	-	3	
CO3	3	3	3	3	3	-	-	2	-	-	-	2	
CO4	3	3	3	3	-	2	-	-	-	-	-	3	

CHE PC-401: CORE THEORY: ELECTROCHEMISTRY

# **UNIT-I: Industrial Electrochemistry**

**15 Hrs** 

Deposition of metals, Factors influencing physical nature of electrodeposited metals – current density, concentration of electrolyte, temperature, colloidal matter, electrolyte and basis metal. Throwing power, simultaneous discharge of cations. Separation of metals by electrolysis. Electrochemical passivity. Passivity and current density. Chemical passivity. Theories of passivity. Mechanical passivity. The corrosion of metals. Hydrogen evolution type of corrosion, corrosion in presence of depolarizer. Differential oxygenation corrosion. Methods of corrosion protection.

# **UNIT- II: Electrochemical Devices:**

15 Hr

Batteries- their performance – characteristics – considerations in the selection and applications, Chemistry of primary batteries – Zinc – Carbon, Mercuric oxide, silver oxide and lithium cells – Solid electrolyte cells.

 $\label{lem:chemistry} Chemistry \ of secondary \ batteries - Lead \ acid \ , \ Nickel \ cadmium \ batteries, \ Water \ activated \ batteries, \ Fuel \ cells - Their \ thermodynamics-performance$ 

# UNIT-III: Electrokinetic's and Electro capillary phenomena:

**15 Hrs** 

Electrical double layer, Helmholtz – Perrin, Gouy – Chapman and Stern theories of electrical double layer. Lipmann equation.

**Electrokinetic effect:** Electro osmosis, Electrophoresis, streaming potential , sedimentation potential and their relation to zeta potential. Determination of zeta potential from electrophoresis measurements. Tiselius apparatus. Electro capillary curves, Null points of metals and their experimental determination.

# **UNIT-IV**: Advances in Polarography:

15 Hrs

# (A) Polarography of Metal Complexes

Reversible, Diffusion-controlled systems, Determination of Formulae and Stability, Constants of Complexed Metal Ions, Determination of Stability Constants and Coordination Numbers of metal complexes, Calculation of Individual Complex, Stability Constants, Mixed Ligand Systems- the

# Method of Schaap and Mcmasters

# (B) Polarography of organic compounds

Structural Effects, Nature of Electroactive group, Steric Effects, substituent Effects.

# **Books suggested:**

- 1. S. Glasstone. An introduction to Electrochemistry. Affiliated East-West Press Pvt. Ltd.
- 2. P.T.K. Kissinger, W.R. Heinemann. Laboratory Techniques in Electro analytical Chemistry, Marsal Debber, Inc.
- 3. Willard, Merit. Instrumental methods of analysis, Welowarth Publiching Co.,
- 4. L. Antropov. Theoretical Electrochemistry. Mir Publications.
- 5. Silbey, Alberty, Bawendi. Physical chemistry. Jhon-Wiley & sons. 4th edition-2006.
- 6. V.S. Bagotsky. Fundamental of Electrochemistry. Jhon Wiley & Sons. 2nd editions-2006.
- 7. Introduction to polarography and allied Technique by Dr.K. Zutshi

(Mandatory Core)

	(Wandatory Cor	.0)	
<b>CHE-PC 402</b>	Thermodynamics, Polymers and	L-5,T-1,P-0	4Credits
	Solid-state Chemistry		
<b>Pre-requisite:</b>	Understanding of Thermodynamics, Pol	lymers and Solid-sta	ate Chemistry
Course Ohio			

#### **Course Objectives:**

- To learn thermodynamic Properties of fluids, phase equilibria and flash calculations.
- Thermodynamic properties of liquids, activity and activity coefficients.
- Polymer structures, morphology and properties.
- To get knowledge on concept of solid state chemistry and super conductance.

Cours	<b>Se Outcomes:</b> At the end of the course, the student will be able to											
CO1	Derive Gibbs Duhem equation and to calculate fugacity and chemical potential.											
CO2		Calculate excess free energy and entropy, to draw Hildebrand curves and to correlate excess functions and activity coefficients										
CO3			ology, T in poly		Tg point	s and to	calcul	ate trans	sition ten	nperature	es and to	identify
CO4	Identi	Identify magnetic properties of solids, magnetic materials, superconductors and BCS theory										
		N	<b>Iappin</b>	g of cou	ırse outo	comes v	vith the	progra	am outco	omes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	-	-	-	-	1	-	3
CO2	3	3	3	2	2	-	-	-	-	-	1	3
CO3	3	3	2	2	2	-	-	-	-	2	-	2
CO4	3	3	3	2	2	-	-	-	-	2	-	1

CHE PC-402: CORE THEORY: THERMODYNAMICS, POLYMERS AND SOLID STATE CHEMISTRY

# **UNIT-I:** Thermodynamic properties of fluids:

**15 Hrs** 

Thermodynamic relationship residual properties – systems of variable composition- ideal and non-ideal behaviour – fugacity-fugacity coefficient in solutions- Phase equilibrium of low to moderate pressures- dew point-bubble point and flash calculations.

# UNIT – II: Thermodynamic properties of 'Liquid Mixtures 15 Hrs

Activity and activity coefficients-excess free energy-excess enthalpy-excess volume-excess entropy-relation between excess functions and activity coefficients —Application of Gibbs-Deuhem equation-regular solutions —van Laar theory and Scachard-Hildebrand theory.

# **UNIT-III: Polymers- structure and properties**

15 Hrs

Morphology and order in crystalline polymers, configuration of Polymer chains, crystal structures and polymers, Stain induced morphology, morphology of chrystalline polymers, crystallisation and melting- polymer structure and physical properties, crystalline melting point,  $T_{\rm m}$ -melting point of homogeneous series, effect of chain flexibility and other steric factors- entropy and heat of fusion, the glass transition temperature, Tg, relationship between Tm and Tg effects of molecular weight, diluents, chemical structure, chain topology, branching and cross linking.

# **UNIT-IV: Solid State Chemistry**

**15 Hrs** 

Magnetic properties of solids- Classification of magnetic materials, Magnetic Susceptibility, Langevin diamagnetism, Weiss theory of para magnetism. Electronic properties of metals, insulators and semiconductors: Electronic Structure of solids, Band theory, band Structure of metals, insulators and semiconductors. Electrons, holes and Excitons. The temperature dependence of conductivity of extrinsic semiconductors. Photo conductivity and photovoltaic effect –P-n-Junctions. Super conductivity: Occurence of superconductivity. Destruction of Superconductivity by magnetic fields-Meisner effect. Types of superconductors. Theories of super conductivity BCS theory.

# **Books suggested:**

- 1. J.M. Pransnitz. Molecular Thermodynamics of Fluid Phase Equilibrium. Prentice. Hall
- 2. Kuriocose and Rajram. Thermodynamics
- 3. Smith and Van Ners. Chemical Thermodynamics.
- 4. R.C. Srivastava, Subi. K. Saha. Thermodynamics-A care course. Prentice-Hall of India Pvt, Ltd,. 3rd edition-2007.
- 5. Silbey, Alberty, Bawendi. Physical chemistry. Jhon-Wiley & sons. 4th edition-2006.
- 6. F. W. Billmeyer, Jr.: Text Book of Polymer Science. Wiley Interscience.
- 7. V. R. Gowariker, N. V. Viswanathan, Jayadev Sreedhar.: polymer Science. New Age international Publishers.
- 8. Solid State chemistry by M.G. Arora.
- 9. Solid State Chemistry by Wiley.

(Mandatory Core)

CHE-P	C-403A		Cl	nemical	Kinetio	es	I	-3,T-1,	P-2	40	Credits	
Pre-re	quisite:	Unders	tanding	of Cher	nical ki	netics						
Cours	<ul> <li>Course Objectives:</li> <li>Differentiate homogeneous and heterogeneous catalysis enzyme catalysis and applications</li> </ul>											
											lication	s
• Lea	n photo chemistry, chemical excitations and rate of photochemical reactions											
• To 1	amiliarize electrochemical relaxation methods, photochemical and isotope effects											
• Rad	ical pho	tochem	ical reac	ctions, th	neory an	ıd applic	cations					
Cours	e Outco	mes: A	t the end	d of the	course,	the stud	ent will	be able	to			
CO1	Draw sl	crabal pH	I diagran	n and to	separate	unimole	cular and	l bimole	cular rea	ctions		
CO2	Study la	ws of pl	otochem	nistry, to	derive s	tern-volr	ner equa	tion				
CO3	Identify	chromo	potentio	metry po	oints and	to inves	tigate kir	netic curi	rents and	lisotopic	effects	
CO4	Learn p	hotocher	nical thro	esholds,	chemiluı	minescer	ice					
	1	Ma	apping o	of cours	se outco	mes wit	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	-	-	-	-	1	2	1
CO2	3	3	3	3		2	-	-	-	1	-	2
CO3	3	3	3	3	2	2	-	-	-	-	-	2
CO4	3	3	3	3	2	-	-	-	-	-	2	2

#### **CHE PC-403A: (GENERIC ELECTIVE): CHEMICAL KINETICS**

# UNIT – I: Catalysis 15 Hrs

**Homogeneous catalysis:** Steady state and equilibrium treatments of acid-base catalysis. Skrabal P^H diagrams, Protolytic and Prototropic mechanism. Acidity functions, Zucker, Hammett, Bunnett and Yates hypothesis in the elucidation of the mechanism. Enzyme catalysis – influence of concentration, P^H and temperature. **Heterogeneous Catalysis:** Mechanism of interface reactions, application of transition state theories to unimolecular and bimolecular surface reactions

#### **UNIT – II: Photochemistry:**

**15 Hrs** 

Interaction of electromagnetic radiation with matter, laws of photochemistry, Quantum yield, types of excitations, Fate of excited molecule, transfer of excitation energy, kinetics of unimolecular and bimolecular photophysical process, Stern-Volmer equation, Kinetics of photochemical reaction rate constants and life times of reactive energy states, determination of rate constants of reactions, effect of light intensity on the rate of photochemical reactions.

# UNIT-III: Electrochemical relaxation methods, Photochemical methods, Isoptopic effect 15 Hrs

**Electrochemical relaxation methods:**Introduction, advantages of Electrochemical transient (or) relaxation techniques, application of these methods, various types of perturbation of a system, pulse polarography, chronopotentiametry, investigation of kinetic currents by chronopotentiametry.

**Photochemical methods**: Introduction , phenomena of ISC, fluorescence and phosphorescence, experimental arrangement of fluorescence measurements. Example of quenching reactions.

**Isotopic Effects**: Equilibrium isotope effects, equilibria in solution, primary kinetic isotopic effects semiclassical treatments, Quantum-mechanical Tunneling,Reactions of the Type H+H₂,Transfer of H⁺,H and H⁻ reactions of Huonium,Isotope effect with Havier atoms.

#### Unit-IV: Photo Chemical and Radiation Chemical Reactions 15 Hrs

Photochemical reactions photochemical primary process, reactions of electronically excited states of

species, photo chemical thresholds, laws of photochemical equivalence, rotating-sector technique, multi photon excitation, photosensitization, radiation chemical primary process, chemiluminiscence.

# **Books suggested:**

- 1. K.K. Rohatgi Mukerjee. Fundamentals of Photochemistry.
- 2. C. Kalidas. Principles of fast reactions techniques and Applications.
- 3. V. Yegnaramam, C.A. Basha And G. Prabhakar Rao: Applications of Electrochemistry.
- 4. Keith J.Laidler: Chemical Kinetics.
- 5. J. Dalton: A New System of Chemical Philosophy.
- 6. Chemical Kinetics: Keith J. Laider.

(Compulsory Foundation)

CHE-I	PC-403B	}		_	Bioorga	,	L-	5,T-1,P	<b>P-0</b>	4	Credits	}	
					Chemist								
Pre-r	equisite:	Unders	standing	of Bioi	norganio	c, Bioor	ganic, E	Biophysi	cal Che	mistry			
Cours	se Objec	tives:											
• Hig	ghlighten	metal c	complex	es as ox	ygen ca	rriers ar	nd electr	on trans	sfer in b	iology.			
• M	etal ion t	ransport	t and sto	rage in	biologic	cal syste	ms and	importa	nce of t	race met	tals in bi	iology.	
• Lea	arn physi	ologica	l functio	ons of ca	ırbohydı	rates, lip	oids, enz	ymes cl	assifica	tion, ste	reospeci	ificity.	
• Th	e basic c	oncepts	of biop	hysical	chemist	ry in bio	chemic	al reacti	ions, ex	ergonic	and end	ergonic	
rea	ctions.												
Cour	se Outco	mes: A	t the end	d of the	course.	the stud	ent will	be able	to				
CO1	Gain knowledge on metallo proteins in electron transfer processes.												
CO ₂	Know	he appl	ications	of trace	metal i	ons and	metal io	ons as cl	nelating	agents i	n medic	ine.	
CO3	Achiev	e and de	evelop h	ighly st	ereosele	ective sy	nthesis	of organ	nic comp	ounds a	ınd drug	s by	
			onmenta										
CO4	Unders	tand the	rmodyn	amics o	f biopol	lymer re	actions	and to c	orrelate	free ene	ergy and	[	
	biopoly	mer pai	rameters	<b>.</b>									
		Ma	apping o	of cours	se outco	mes wit	th the p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	2	3		2	_	2	_	1	1	1	
	3	3	3	3	_	2		2	-	1	1	3	
CO2			_		-		-		-	1			
CO ₃	3	3	3	2	2	2	-	3	-	1	1	3	
CO4	3	2	2	3	2	2	-		-	2	-	1	

# CHE PC-403(B): (GENERIC ELECTIVE): BIOINORGANIC, BIOORGANIC, BIOPHYSICAL CHEMISTRY

#### UNIT-I: BIO-INORGANIC CHEMISTRY-I

**15 Hrs** 

Metal complexes as oxygen carriers –Heme proteins –Hemoglobin and myoglobin –Non heme proteins –hemerythrin and hemocyanin – model synthetic complexes of iron, cobalt and copper.Co-enzymes Vitamin  $B_{12}$ , carboxy peptidase and superoxidedismutase.

**Electron Transfer in Biology:** Structure and functions of metalloproteins in electron transfer processes –catalase –peroxidose –cytochromes and iron –sulphur proteins –synthetic models.

**UNIT – II: BIOINORGANIC CHEMISTRY- II:** Metal ion transport and storage in biological systems, Metal ions in Biology, Molecular mechanism of ion transport across membranes: ionophores, photosynthesis.

**Hydrolytic metalloenzymes:** Carbonic anyhdrase, carboxy peptidase, calcium in control processes, calcium and muscle contraction, calcium and secretion, calcium in blood clotting mechanisms. Therapeutic uses of enzymes.

**Importance of trace metals in biology:** Metal ions as chelating agents in medicine, trace metal ions and metal and non-metal deficiency. Biological nitrogen fixation, in-vivo and in-vitro nitrogen fixation.

# **UNIT-III: BIOORGANIC CHEMISTRY**

Carbohydrates: Structure and biological functions of mucopolysaccharides, glycoproteins, and

glycolipids- Role of sugars in biological recognition-Blood group substances

**Lipids:** Essential fatty acids-structure and function of triglycerols, Glycerophospholipids, cholesterol, bile acids prostaglandins- composition and functioning of lipoproteins

**Enzymes:** Nomenclature and classification, properties, factors affecting enzyme catalysis, enzyme inhibition- reversible and irreversible inhibition. Uses of enzymes in food drink industry and clinical laboratories.

# **UNIT-IV: BIOPHYSICAL CHEMISTRY:**

Standard free energy change in biochemical reactions, exergonic and endergonic reactions, hydrolysis of ATP, thermodynamics of biopolymer solutions, chain configuration of bio polymers, and calculation of average dimensions. Membrane equilibrium, ion transport through cell membrane. dialosis and its function. Structure and functions of proteins, enzymes, DNA and RNA in living systems, forces involved in bio polymer interactions, electrostatic forces, hydrophobic forces, molecular expansion, and dispersion forces.

# **Books Suggested**

- 1. M.N. Hughes, The Inorganic chemistry of Biological Processes, John wiley and Sons, New York 2nd Edition, 1981.
- 2. A Text book of Biochemistry, A.V.S.S. Rama Rao
- 3. Physical chemistry by Atkenes
- 4. Physical chemistry by Albertz.
- 5. Bio physical chemistry by Van Holde
- 6. Bio Physics by Narayanam
- 7. Organic Chemistry, Vol. 2, I. L. Finar, ELBS.
- 8. Chemistry of Natural Products, P.S. Kalsi, Kalyani Publishers.
- 9. Chemistry of Organic Natural Products, O. P. Agarwal, Vols., 1 & 2, Geol Pubs.
- 10. Natural products Chemistry K.B.G. Torssell, John Wiley, 1983.
- 11. Burger's Medicinal Chemistry, M.E. Wolff, John Wiley
- 12. Medicinal Chemistry, A. Kar, New Age International

Pre-re	equisite	: Under	standing	of Inor	ganic C	hemistr	y - Prac	tical.					
Cours	se Obje	ctives:											
•	Learn p	otention	netric ti	trations	of mixt	ure of a	cids						
•	Determination of electrode potential by polarography												
•	Gain kr	owledg	e on inte	erpretati	on of da	ata from	IR, AA	S, HPL	C and C	ъС			
•	Determ	ination o	of alkan	ility and	l purity	by pH n	netry						
Cours	se Outc	omes: A	t the en	d of the	course,	the stud	dent wil	l be able	<b>e</b>				
CO ₁	To per	form titı	ration of	mixtur	e of hal	ides and	to drav	v potenti	iometry	curves			
CO2	1 ,												
CO3	To Co	rrelation	of data	obtaine	d from	IR, AAS	S, HPLO	C and G	C				
CO4	To De	terminat	ion of a	lkanility	and pu	rity by 1	pH metr	y					
		M	apping	of cour	se outc	omes wi	ith the <b>j</b>	progran	n outco	mes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	1	2	3	-	-	2	-	2	-	3	
CO2	3	3	3	2	3	2	-	-	-	2	3	3	
CO3	3	2	3	3	2	3	-	2	-		2	3	
CO4	3	3	3	2	3	3	-	2	-	2	_	3	

L-5,T-1,P-0

4 Credits

# CHE PC 403: CORE PRACTICALS: <u>PRACTICAL – I-</u>

1. Potentiometry: a) Titration of mixture of acids

**CHE PC 404** 

- b) Titration of mixture of halides
- c) Titration of ferrous ammonium sulphate with potassium dichromate
- d) Redox titrations
- e) Solubility of Sparingly soluble salt.
- f) Formula and instability constant of a complex

**Core practical I:** 

**Inorganic Chemistry - Practical** 

- g) Dissociation constant of acetic acid
- 2. Polarography: a) Determination of E1/2 of Zn and Cd
  - b) Determination of Zn and Cd in mixture
  - c) Amperometric titration.

# II <u>DEMONSTRATION EXPERIMENTS</u>

- 1. IR Interpretation of IR spectrum of alcohols, ketones, aldehydes and other standard materials
- 2. AAS: Demonstration of AAS Determination of Zn, Cd, Pb, Mn, Fe and Ni in effluents using AAS.
- 3. Spectrofluorimetry estimation of quinine and fluoroscene
- 4. Ion selective electrodes estimation of F⁻, S²⁻ and CN⁻ in effluents using ion selective electrode meter.
- 5. Polarography and Anode stripping voltametry
- 6. Polarography and Anode stripping voltametry behavior of Cd, Zn, Pb in a mixture.
- 7. Determination of Pb and Cd in samples using Anode stripping voltametr
- 8. Gas chromatography- Determination of pesticides
- 9. HPLC- Determination of pesticides
- 10. NMR
- 11. (a)Demonstration of NMR spectrometer and study of hydrogen bonding in a given alcohol or phenol.
- 12. (b)Interpretation of NMR chemical shifts of ethyl benzene, ethyl alcohol.

13. TGA, DTA, DSC – Demonstration of TG, DTA and DSC and study of decomposition of calcium oxalate, calcium carbonate, copper sulfate, oxalic acid.

# 14. pH metry

- a. Determination of alkalinity in a colored effluent using pH metric end point.
- b. Determination of purity of commercial HCl, H₂SO₄, H₃PO₄ and CH₃COOH using pH metric end point

CHE PC 404	Project Work	L-5,T-1,P-0	4 Credits
Pre-requisite: F	Physical Chemistry Project Work		

#### **Course Objectives:** • Identification of problem by literature survey • Carry out the problem independently • Interpretation of data • Communication of research results through presentations and preparation of dissertation **Course Outcomes:** At the end of the course, the student will be able To identify research problems and to collect research literature CO₁ CO₂ To propose hypothesis of a research problem To perform research experiments CO₃ To analyse the data and conclude the research outcomes **CO4** Mapping of course outcomes with the program outcomes PO1 PO5 PO6 PO7 PO9 PO2 PO4 PO8 PO10 PO11 PO12 CO₁ 3 3 3 3 2 2 3 2 3

2

3

3

3

2

2

2

3

2

2

2

2

3

3

3

# CHE PC 404: PRACTIAL II/ PROJECT WORK

3

2

3

CHE PC 406A	Drug Chemistry	L-3,T-1,P-2	4Credits
Pre-requisite: U	Inderstanding of Drug Chemistry		

# **Course Objectives:**

CO₂

CO₃

**CO4** 

3

3

3

3

3

3

3

3

3

3

2

3

- To learn about the natural products as leads for new drugs
- Determination of cardiovascular drugs

•	To study	y Autaco	oids											
•	Interpretation of Antipyretics													
Cours	e Outco	mes: A	t the end	d of the	course,	the stud	ent will	be able	to					
CO1	Know	about na	tural pr	oducts.										
CO2	Know 1	Interpret	ation of	cardiov	ascular	drugs.								
CO3	Know	the Anal	yzing al	out pro	stagland	dins.								
CO4	Know	the De	finition	, Class	ification	, Nom	enclatur	e, Stru	cture a	nd Syn	thesis o	of anti-		
	inflamı	natory d												
		Ma	apping o	of cours	se outco	mes wit	th the p	rogram	outcon	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	3	3	3	-	-	2	-	-	2	3		
CO2	3	3	3	3	-	2	-	2	ı	2	-	3		
CO3	3	3		3	-	3	-	2	-	3	-	3		
CO4	3	-	3	-	3	2	-	-	-	2	-	3		

CHE: PC: 406 (A): (OPEN ELECTIVE): DRUG CHEMISTRY

# UNIT - I: NATURAL PRODUCTS AS LEADS FOR NEW DRUGS

Occurrence, Structure and therapeutic uses of Drugs acting on Central Nervous System

Morphine alkaloids (morphine, codeine, thebaine, heroin, pethidine)

Cannabinoids (9-cannabinol, Tetrahydrocannabinol)

Neuromuscular Blocking Agents (Curare, Decamethonium)

Vinca Alkaloids (Vincristin and Vinblastin), Taxol and Taxotere, podophyllotoxin, Etoposide, Teniposide.

#### UNIT - II: CARDIOVASCULAR DRUGS

Definition, Classification, Nomenclature, Structure and Synthesis.

Cardiac glycosides (ex: Digoxin, Digitoxin);

Antihypertensive drugs (ex: Methyl dopa, Clonidene hydrochloride);

Antiarrhythmic agents (ex: Quinidine sulfate);

Antisympathetic drugs (ex: Propranolol hydrochloride, Verapamil hydrochloride);

Vasopressor drugs (ex: Prenylamine, Buphenine).

#### **UNIT – III: AUTACOIDS**

Definition, Occurrence, Isolation, Nomenclature, Classification, Synthesis, Biosynthesis and Stereochemical structures of Prostaglandins. Structural elucidation of PGE₁, PGE₂; Synthesis and biosynthesis of PGE₂, PGF_{2 $\alpha$}.

Structure and Biosynthesis of Thromboxane A2 and Prostacyclin (synthesis not expected).

#### **UNIT – IV: ANTI-INFLAMMATORY DRUGS**

Definition, Classification, Nomenclature, Structure and Synthesis of Paracetamol, Aspirin (Antipyretic), Salol, Cinchophen, Antipyrene, Phenylbutazone, Indomethacin, Tolmetin, Ibuprofen, Diclofenac and Naproxen.

# **Books suggested:**

1. Medicinal Chemistry by Ashitosh Kar

- 2. Medicinal Chemistry by D. Sriram, P. Yogeeswari
- 3. Medicinal Chemistry by David A. Williams, Thomas L. Lemke
- 4. Medicinal Chemistry by V. Alagarsamy
- 5. Biochemistry by U. Satyanarayana

- 6. Natural Products Chemistry and Applications by Sujata V. Bhat, B.A. Nagasampagi, S. Meenakshi
- 7. Medicinal Chemistry by V.K. Ahluwalia, Madhu Chopra
- 8. Medicinal Chemistry by Balkishen Razdar
- 9. Advanced Practical Medicinal Chemistry by Ashutosh Kar
- 10. Chemistry of Organic Natural Products by O. P. Agarwal, Vols., 1 & 2, Geol Pubs.
- 11. Chemistry of Natural Products by S. V. Bhat, B.A. Nagasampagi, M. Sivakumar
- 12. Natural Products Chemistry by K.B.G. Torssell, John Wiley, 1983.

CHE I	PC 406	Electroanalytical Techniques	L-5,T-1,P-0	4 Credits
Pre-re	equisite: U	Inderstanding of Electroanalytical Technology	niques	
(	Course O	bjectives:		
• ′	To learn a	bout the classification of electroanalytic	al methods	
• ]	Determina	ation of types of currents		
• ]	Principle,	instrumentation, reversible and irreversible	ible cyclic voltamm	nograms
• ]	Interpreta	tion of Ion selective electrodes		
Course	e Outcom	nes: At the end of the course, the student	t will able to	
CO1	Ability to	interpret potentiometry and conductor	netry	
CO2	Interpreta	ation of results while adhering to DC Po	larography.	
LL				

CO3	Analy	Analysing and compiling the data and results in polarography.													
CO4	Famil	iarize T	ypes of	ion ser	isitive e	electrodes	S.								
	Mapping of course outcomes with the program outcomes														
	PO1	PO1   PO2   PO3   PO4   PO5   PO6   PO7   PO8   PO9   PO10   PO11   PO12													
CO1	3	3	3	3	3	-	-	2	-	-	2	3			
CO2	3	3	3	3	-	2	-	2	-	2	-	3			
CO3	3	3	-	3	1	3	-	2	-	3	-	3			
CO ₄	3	_	3	-	3	2	-	-	-	2	_	3			

CHE: PC: 406(B): (OPEN ELECTIVE): ELECTRO ANALYTICAL TECHNIQUES

**Unit I:** Types and Classification of Electro analytical Methods.

- i) **Potentiometry-** Types of electrodes, Hydrogen gas, Calomel, Quin hydrone and glasselectrodes. Determination of pH. Potentiometric titrations.
- **ii)** Conductometry Definition of terms conductivity, specific conductivity, cell constant. Mobility of ions, Conductometric titrations.

**Unit II:** D.C Polarography:. Dropping mercury electrode- Instrumentation-polarogram. Types of Currents: Residual, Migration, Limiting. Two and Three electrode assemblies. Ilkovic equation(derivation not necessary) and its consequences. Types of limiting Currents: Adsorption, Diffusion, Kinetic. Applications of polarography in qualitative and quantitative analysis. Analysis of mixtures. Application to inorganic and organic compounds. Determination of stability constants of complexes.

**Unit III:** (i) A.C. polarography (ii) Square-wave polarography (iii) Pulse polarography (iv) Differential pulse polarography(V) Cyclic Voltammetry: Principle, instrumentation, reversible and irreversible cyclic voltammograms.

**Unit IV: Ion selective electrodes:** Ion-sensitive electrodes —types of ion sensitive electrodes —metal based cation and anion sensitive electrodes, solid membrane electrodes. Liquid ion-exchange electrodes, gas sensing membrane electrodes.

#### **Books Suggested**

- 1. H.W. Willard, LL. Merrit and J.A. Dean: Instrumental Methods of Analysis. Affiliated East-West).
- 2. G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denny. Vogel's Text Book of Quantitative Chemical Analysis (ELBS).
- 3. D.A. Skoog and D.M. West: Principles of Instrumental Analysis (Holt, Rinehart and Wilson).
- 4. J.G. Dick: Analytical Chemistry (Mc Graw Hill).

solar energy.

# (Mandatory Core)

CHE-EC- 4	01	Energy, Environment and Soil	L-5,T-1,P-0	4Credits
Pre-requisi	te: U	Inderstanding of Energy, Environment	and Soil	
Course Ob	ecti	ves:		
• Familiarize	e wit	th fossil fuels, solar energy, geothermal	energy	
Hydropow greenhouse		nd photo-electrochemistry, hydrological ect.	cycle, water pollut	ants, eutrophication and
• Detection	of co	emposition of soil, biodegradation, goals	s of green chemistry	y, biocatalysis
• Soil pollut	ion,	solid waste management and disposable	methods.	
Course Out	com	nes: At the end of the course, the studen	t will be able to	
		out nuclear fission and fusion, uses of snydropower and water heating, hydropo		

CO2		ohysical vater and d rains.			-				-					
CO3	-	cquire knowledge on composition of inorganic and organic contaminants in soil, soil orrosion and industrial applications of green chemistry.												
CO4	Get kno	owledge	on vari	ous met	hods of	solid wa	aste coll	ection a	nd its d	isposal.				
	Mapping of course outcomes with the program outcomes													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1		
										0	1	2		
CO1	3	3	3	3	3	2	1	2	2	2	-	3		
CO2	3	3	3	3	3	-	-	2	2	-	-	3		
CO3	3	3	3	3	2	2	-		2	2	-	3		
CO4	3	3	3	3	3	2	-	2	2	-		3		

CHE EC-401: CORE THEORY: ENERGY, ENVIRONMENT AND SOILS

#### **UNIT-I: Sources of Energy**

**15 Hrs** 

Fossil fuels- Nuclear fission and fusion- Solar energy-use of solar energy in space heating and water heating- production of electricity using solar energy- solar trough collectors- power tower- solar pond- solar energy for driving vehicles- power from indirect solar energy — Hydropower- wind power- Biomass energy- production of ethanol from biomass- production of methane from biomass-photosynthesis- photo electro chemistry- Geothermal energy.

#### **UNIT-II: Water Resources and Air**

**15 Hrs** 

Hydrological cycle- physical and chemical properties of water-complexation in natural and waste water,-Anomalous properties-water pollutants-Types-Sources- Heavy metals- metalloids- organic – Inorganic –Biological and Radio active-Types of reactions in various water bodies including marine environment- Eutrophication- Ground water- Potable water standards. Treatment for portable water. **Air:** Chemical reactions in the atmosphere – Aerosols types- Production and distribution – Aerosols and Radiation – structure and composition of atmosphere- temperature inversion – Global warning-Ozone depletion – Green house effect, "CFC"s- Acid rain.

# **UNIT-III: Soil and Green Chemistry**

**15 Hrs** 

**Soil:** Composition of soil- lithosphere- inorganic and organic contaminants in the soil-Biodegradation- Nondegrdable waste and its effect on the environment- Bioremediation –of surface soils- Fate and transport of contaminants on soil system— Bioindicators- Soil parameters- soil destruction- Erosion- Soil conservation – Nitrogen pathways and NPK in soil .

**Green Chemistry:** Goals of Green chemistry- Significance and basic components of Green chemistry research - industrial applications of Green chemistry-products from natural materials-Green fuels and E-Green propellants- Zeolites- Biocatalysts.

# **UNIT IV: Soil pollution:**

**15 Hrs** 

Introduction – soil pollution by industrial wastes. soil pollution by urban wastes, Radioactive pollutants and Agricultural waste- chemical and metallic pollutants-Biological agents – mining - Detrimental effects of soil pollutants – Effects of industrial pollutants- Effects of sewage and domestic wastes- Effects of heavy metals- Effects of radioactive pollutants- Effects of modern agrotechnology – Diseases caused by soil pollution – solid waste management – sources and classification -public Health Aspects – methods of collection- Disposal methods – potential methods of disposal.

# **Books Suggested:**

- 1. Daniel D. Chiras (1994), Environmental Science, 4th Ed.
- 2. Environmental Chemistry by W. Moore and J.Moore
- 3. Environmental chemistry by J.O.M. Bockariss
- 4. Environm, ental by BK SHArma
- 5. Environmental chemistry by SS Dara
- 6. Environmental chemistry by Mahajan
- 7. Environmental chemistry by a.K.De

# (Mandatory Core)

CHE-E	C 402	V	Vater P	ollutior	Monito	ring ar	ıd	L-5,T-1	l <b>,P-0</b>		4Credit	S
				Envi	ronment	Laws						
Pre-re	quisite	: Und	erstandi	ng of V	Vater pol	lution n	nonitor	ing and	environr	nent law	s.	
Cou	ırse Ob	jective	es:									
•	Basic co	oncept	s of diff	erent w	ater poll	utants						
•	Different principles of water treatment.											
•	Biotechnology and its applications in environmental protection											
•	Enviror	nmenta	l manag	gement	and envi	ronmen	tal laws	S				
Cours	<ul> <li>Environmental management and environmental laws</li> <li>Course Outcomes: At the end of the course, the student will be able to</li> </ul>											
CO1	Acquir	e knov	vledge o	on disea	ise causii	ng agen	ts in wa	ater.				
CO2	Learn	about t	he remo	oval of	suspende	d and d	issolve	d solids	present	in waste	water.	
CO3	Unders	stand d	ifferent	uses of	micro-o	rganisn	ns in en	vironm	ental pro	tection.		
CO4	Know	differe	nt worl	d life ac	ets such a	s forest	conve	rsion ac	t, water c	control p	ollution	act and
	air pre	ventio	n and co	ntrol a	et.							
		N	<b>Aappin</b>	g of cou	ırse outo	comes v	vith the	e progra	am outc	omes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	-	ı	2	-	-	-	3

CO2	3	3	3	2	2	-	-	2	2	-	-	3
CO3	3	3	3	3	2	2	-	2	2	-	-	3
CO4	3	3	3	3	-	2	-	2	3	-	2	3

# CHE EC-402: CORE THEORY: WATER POLLUTION MONITORING AND ENVIRONMENT LAWS

# **UNIT-I:** Water pollution

#### **15 Hrs**

Basic aspects of water-general principles of water (physical and chemical)-criteria of water quality. Types of water pollutants: sewage and domestic wastes-industrial wastes-agriculture discharges- toxic metals-oxygen demanding wastes-disease causing agents-oils- detergents and phosphates. Sampling: Basics of Sampling, sampling procedure, statistics, sampling and physical state, crushing and grinding, hazards waste of sampling, pre-concentration methods

#### **UNIT-II: Waste water treatment:**

#### **15 Hrs**

Basic process of water treatment- primary treatment pretreatment – sedimentation – Flotation-secondary (Biological) Treatment – Active sludge process – Trickling filters – sludge Treatment and disposal – Advanced waste water Treatment – Removal of suspended solids – Removal of dissolved solids – Nitrogen removal – phosphorous removal – Advanced Biological systems – chemical oxidation .

# UNIT III: Biotechnology and its application in Environmental protection 15 Hrs

Introduction- Bio-informatics- Bio-Technology and pollution control,-Bioremediation-Biological de-odourisation- Biological purification of contaminated air-microorganisms and energy of mankind-use of microorganisms role in petroleum augmentation and recovery.

UNIT IV: Environmental Management and Important Environmental Laws: 15 Hrs Environmental Management: Introduction-objectives-components-environmental impact assessment (EIA)-historical background-elements of EIA process-participants in EIA processes-contents of EIS-design of EIA.

**Important Environmental Laws:** the world life act-the forest conservation act-the water and control pollution act-air prevention& control act—the environment act-environmental quality management standard-ISO 14000 series.

# **Books Suggested**

- 1. Environmental Chemistry by W. Moore and J.Moore
- 2. Environmental chemistry by J.O.M. Bokriss
- 3. Environmental by BK Sharma
- 4. Environmental chemistry by SS Dara
- 5. Environmental chemistry by Mahajan
- 6. Environmental chemistry by a.K.De
- 7. Lodge (1994) Methods of air sampling and analysis. Publications, Jaipur
- 8. Kudesia, V.P. (1985) Water Pollution, Pragati Prakashan
- 9. Elements of biotechnology by PK Gupta and Rastogi

(Mandatory Core)

CHE-I	EC-403A	<b>A</b>	ir Pollu			1ethods		L-3,T-1,	P-2	4	Credits	1	
		,	Noise a	nd Thei	mal Po	llution							
Pre-r	equisite:	Unders	standing	of Air I	Pollution	n, Contr	ol Meth	ods-Noi	se and	Thermal	Pollution	on	
Cours	se Objec	tives:											
	dy on pr	-						_			•		
	• Familiarize with different control methods and adsorption of solids and liquids, gas analysis.												
	know about ponation caused by venicle emissions and different industries.												
	• Get an idea on noise and thermal pollutions and their effect on human health.												
Cours	Course Outcomes: At the end of the course, the student will be able to												
CO1	O1 Acquire knowledge on air pollutants, air pollution sampling measurements and analysis												
	caused due to sulphur dioxide, carbon monoxide, nitrogen dioxide, oxidants, ozone, hydro												
	carbons and particulate matter.												
CO2	Learn a	ıbout di	fferent	control	method	s and a	dsorptio	n of so	lids and	liquids	, gas ar	alysis	
	eluents	viz., nit	rogen o	xides, c	arbon m	onoxide	and hy	drocarb	ons.				
CO3		-			•	le emiss	sion, dif	ferent in	dustries	s, cemer	it plants	, steel	
			leum re										
CO4	Know a	about no	oise and	thermal	power 1	project p	ollution	ns and th	neir effe	ct on hu	man he	alth.	
		Ma	apping o	of cours	e outco	mes wit	th the p	rogram	outcon	nes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	3	2	-	-	2	-	-	-	3	
CO2	3	3	3	2	2	-	-	2	2	-	-	3	
CO3	3	3	3	3	2	2	-	2	2	-	-	3	
CO4	3	3	3	3	-	2	_	2	3	_	2	3	

# CHE: EC-403 (A): (GENERIC ELECTIVE): AIR POLLUTION, CONTROL METHODS-NOISE AND THERMAL POLLUTION

UNIT-I: Air Pollution 15 Hrs

Classification and properties of air pollutants-emission sources-major emissions from global sources-importance of anthropogenic sources-behavior and fate of air pollutants photochemical smog and its effects on health-vegetation-material damage in India.

Air pollution sampling and measurement-ambient air sampling-collection of gaseous air pollutants-collection of particulate pollutants-stack sampling-analysis of air pollutants-sulphur dioxide-carbon monoxide-nitrogen dioxide-oxidants-ozone-hydro carbons and particulate matter

#### UNIT- II: Control methods

Sources-correction methods-particulate emission control-gravitational settling chambers-cyclone separators-fabric filters-electrostatic precipitator-wet scrubbers-control of gaseous emissions by adsorption of solids and liquids-control methods of sulphur dioxide emission, flue gasesanalysis-control method, nitrogen oxides, carbon monoxide and hydrocarbon-mobile sources.

#### UNIT-III: Vehicular Air Pollution:

Genesis of vehicular emissions standard- natural pollution-gasification of vehicles-point sources of air pollution – mechanism of air pollution from automobiles -automobile pollution- Indian scenario population and pollution loads of vehicles-automobile air pollution control-exhaust gas controlling treatment devices-thermal reactor-catalytic converter from automobiles-fuel tank carbonator. Air pollution from Portland cement plants-steel mills and petroleum refineries.

# **UNIT-IV: Noise and Thermal Polution**

15 Hrs

**15 Hrs** 

**15 Hrs** 

**Noise pollution:** sources-measurement of noise and indices-effect of meteorological parameters on noise propagation-noise exposure levels and standards –measurement of noise-impact of noise

#### on human health

**Thermal pollution**: Introduction-definition-sources-harmful effects-toxic compounds in traces-prevention and control of thermal pollution —thermal power projects in India.

# **Books Suggested:**

- 1. Environmental Chemistry by W. Moore and J.Moore
- 2. Environmental chemistry by J.O.M. Bockeriss
- 4. Environmental chemistry by Sharmar and Kaur, Krishna Publishers
- 6. Environmental chemistry by a.K.De
- 8. Henry C perkins (1974) Air Pollution, McGraw-Hill
- 9. Kudesia, V.P. (1985) Water Pollution, Pragati Prakashan.
- 10. Environmental Engineering by CS Rao
- 11. Environmental by BK Sharma
- 12. Environmental chemistry by SS Dara

(Compulsory Foundation)

CHE-I	HE-EC-403B Bioinorganic, Bioorganic, Biophysical Chemistry							5,T-1,P	2-0	4	Credits	5
Pre-r	Pre-requisite: Understanding of Bioinorganic, Bioorganic, Biophysical Chemistry											
Cours	se Objec	tives:										
• Hig	Highlighten metal complexes as oxygen carriers and electron transfer in biology.											
• M	<ul> <li>Metal ion transport and storage in biological systems and importance of trace metals in biology.</li> </ul>											
• Lea	• Learn physiological functions of carbohydrates, lipids, enzymes classification, stereospecificity.											
• The	e basic c	oncepts	of biop	hysical	chemist	ry in bio	chemic	al reacti	ions, ex	ergonic	and end	ergonic
	ctions.	1	1	-		-			,	J		C
Cour	se Outco	mes. A	t the end	d of the	course	the stud	ent will	he able	to			
CO1	Gain kı	nowledg	ge on me	etallo pr	oteins in	electro	n transf	er proce	esses.			
CO2	Know t	he appl	ications	of trace	metal i	ons and	metal id	ons as cl	nelating	agents i	n medic	ine.
CO3	Achiev	e and de	evelop h	ighly st	ereosele	ctive sy	nthesis	of organ	nic comp	ounds a	and drug	gs by
			onmenta									
CO4			•		f biopol	ymer re	actions	and to c	orrelate	free ene	ergy and	l
	biopoly		rameters									
		Ma	apping o	of cours	se outco	mes wit	h the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	3	3	3	2	-	2	-	3
CO2	3	3	3	3	3	2	3	-	-	-	3	3
CO3	3	3	3	3	3	3		2	-	2	-	3
CO4	3	3	3	3	3	3	2	2	-	3	3	3

# CHE EC-403(B): (GENERIC ELECTIVE): BIOINORGANIC, BIOORGANIC, BIOPHYSICAL CHEMISTRY

#### UNIT-I: BIO-INORGANIC CHEMISTRY-I

**15 Hrs** 

Metal complexes as oxygen carriers –Heme proteins –Hemoglobin and myoglobin –Non heme proteins –hemerythrin and hemocyanin – model synthetic complexes of iron, cobalt and copper. Co-enzymes Vitamin  $B_{12}$ , carboxy peptidase and superoxidedismutase.

**Electron Transfer in Biology:** Structure and functions of metalloproteins in electron transfer processes –catalase –peroxidose –cytochromes and iron –sulphur proteins –synthetic models.

**UNIT – II: BIOINORGANIC CHEMISTRY- II:** Metal ion transport and storage in biological systems, Metal ions in Biology, Molecular mechanism of ion transport across membranes: ionophores, photosynthesis.

**Hydrolytic metalloenzymes:** Carbonic anyhdrase, carboxy peptidase, calcium in control processes, calcium and muscle contraction, calcium and secretion, calcium in blood clotting mechanisms. Therapeutic uses of enzymes.

**Importance of trace metals in biology:** Metal ions as chelating agents in medicine, trace metal ions and metal and non-metal deficiency. Biological nitrogen fixation, in-vivo and in-vitro nitrogen fixation.

# **UNIT-III: BIOORGANIC CHEMISTRY**

Carbohydrates: Structure and biological functions of mucopolysaccharides, glycoproteins, and

glycolipids- Role of sugars in biological recognition-Blood group substances

**Lipids:** Essential fatty acids-structure and function of triglycerols, Glycerophospholipids, cholesterol, bile acids prostaglandins- composition and functioning of lipoproteins

**Enzymes:** Nomenclature and classification, properties, factors affecting enzyme catalysis, enzyme inhibition- reversible and irreversible inhibition. Uses of enzymes in food drink industry and clinical laboratories.

# **UNIT-IV: BIOPHYSICAL CHEMISTRY:**

Standard free energy change in biochemical reactions, exergonic and endergonic reactions, hydrolysis of ATP, thermodynamics of biopolymer solutions, chain configuration of bio polymers, and calculation of average dimensions. Membrane equilibrium, ion transport through cell membrane. dialosis and its function. Structure and functions of proteins, enzymes, DNA and RNA in living systems, forces involved in bio polymer interactions, electrostatic forces, hydrophobic forces, molecular expansion, and dispersion forces.

# **Books Suggested**

- 1. M.N. Hughes, The Inorganic chemistry of Biological Processes, John wiley and Sons, New York 2nd Edition, 1981.
- 2. A Text book of Biochemistry, A.V.S.S. Rama Rao
- 3. Physical chemistry by Atkenes
- 4. Physical chemistry by Albertz.
- 5. Bio physical chemistry by Van Holde
- 6. Bio Physics by Narayanam
- 7. Organic Chemistry, Vol. 2, I. L. Finar, ELBS.
- 8. Chemistry of Natural Products, P.S. Kalsi, Kalyani Publishers.
- 9. Chemistry of Organic Natural Products, O. P. Agarwal, Vols., 1 & 2, Geol Pubs.
- 10. Natural products Chemistry K.B.G. Torssell, John Wiley, 1983.
- 11. Burger's Medicinal Chemistry, M.E. Wolff, John Wiley
- 12. Medicinal Chemistry, A. Kar, New Age International

<b>CHE EC 404</b>	Practical I	L-5,T-1,P-0 4 Credits					
Pre-requisite: H	<b>Environmental Chemistry Practical I</b>						

# **Course Objectives:**

- Conductometric methods of analysis.
- Colorimetric methods of analysis
- Interpretation of data from IR, HPLC, GC, AAS
- Determination of purity and alkanility by pH metry

Course Outcomes: At the end of the course, the student will be able

CO ₁	To know the basic	principles of conductometry	y and analysis of acids and halides.
-----------------	-------------------	-----------------------------	--------------------------------------

**CO2** Colorometric estimation of iron and manganese.

CO3 To have an idea about working principles of IR, AAS, Spectrofluorimetry, Gas chromatography and HPLC.

**CO4** To familiarize with interpretation of data

	Mapping of course outcomes with the program outcomes											
	PO1   PO2   PO3   PO4   PO5   PO6   PO7   PO8   PO9   PO10   PO11   PO											PO12
CO1	3	3	3	2	3	2	-	2	-	2		2
CO2	3	3	3	3	2	3	-	-	-	2	-	3
CO3	3	3	3	3	3	2	-	2	-	2	-	3
CO4	3	3	2	2	3	2	_	2	_	2	_	3

#### CHE EC-404: PRACTICAL-I- INSREUMENTAL METHODSOF ANALYSIS-II

- 1) Conductometry:
- a) Mixture of Acids
- b) Mixture of Halides
- 2) Colorimetry:
- a) Estimation of Iron
- b) Manganese
- c) Phosphate
- d) Titration of copper Vs EDTA

# **DEMONSTRATION EXPERIMENTS**

- 1 IR Interpretation of IR spectrum of alcohols, ketones, aldehydes and other standard materials
- 2 AAS: Demonstration of AAS Determination of Zn, Cd, Pb, Mn, Fe and Ni in effluents using AAS.
- 3 Spectrofluorimetry estimation of quinine and fluoroscene
- 4 Ion selective electrodes estimation of F-, S²⁻ and CN⁻ in effluents using ion selective electrode meter
- 5 Polarography and Anode stripping voltametry
  - (A)Polarography and Anode stripping voltametry behavior of Cd, Zn, Pb in a mixture.
  - (B)Determination of Pb and Cd in samples using Anode stripping voltametr
- 6 Gas chromatography- Determination of pesticides
- 7 HPLC- Determination of pesticides
- 8 pH metry
  - (A)Determination of alkalinity in a colored effluent using pH metric end point.
  - (B)Determination of purity of commercial HCl,  $H_2SO_4$ ,  $H_3PO_4$  and  $CH_3COOH$  using pH metric end point.

CHE I	EC 405		Practical II:Project Work L-5,T-1,P-0 4 Credits								3	
Pre-re	Pre-requisite: Project Work											
Cours	Course Objectives:											
Identification of problem by literature survey												
• Car	ry out th	ne proble	em inde	, pendent	ly	•						
• Inte	rpretation	on of da	ta	-								
• Cor	nmunic	ation of	research	results	through	n presen	tations a	and prep	aration	of disse	rtation	
Cours	e Outco	mes: A	t the end	d of the	course,	the stud	ent will	be able				
CO1	To idea	ntify res	earch pr	oblem, j	propose	the hyp	othesis	and to c	ollect li	terature.	i	
CO2	To per	form res	earch de	esigns &	experi	ments						
CO3	To tabu	ılate res	earch re	sults								
CO4	To con	clude re	search o	utcome	s in the	form of	disserta	tion.				
		Ma	apping	of cours	se outco	mes wi	th the p	rogram	outcon	nes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	-	3	-	2	-	2	3
CO2	3	3	3	3	2	3	_	-	2	-	_	3
CO3	3	3	3	3	3	2	3	-	2	-	3	3
CO4	3	3	3	3	2	3	3	2	3		2	3

# CHE EC- 405: PRACTIAL II/ PROJECT WORK

CHE EC 406A	Drug Chemistry	L-3,T-1,P-2	4Credits	
Pre-requisite: U	Understanding of Drug Chemistry			

# **Course Objectives:**

- To learn about the natural products as leads for new drugs
- Determination of cardiovascular drugs
- To study Autacoids
- Interpretation of Antipyretics

Course Outcomes: At the end of the course, the student will be able to

**CO1** Know about natural products.

**CO2** Know Interpretation of cardiovascular drugs.

**CO3** Know the Analyzing about prostaglandins.

CO4 Know the Definition, Classification, Nomenclature, Structure and Synthesis of antiinflammatory drugs.

	Mapping of course outcomes with the program outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	-	-	2	-	-	2	3
CO2	3	3	3	3	-	2	-	2	-	2	-	3
CO3	3	3		3	-	3	-	2	-	3	-	3
CO4	3	i	3	ı	3	2	ı	-	ı	2	-	3

CHE: EC: 406 (A): (OPEN ELECTIVE): DRUG CHEMISTRY

### UNIT - I: NATURAL PRODUCTS AS LEADS FOR NEW DRUGS

Occurrence, Structure and therapeutic uses of Drugs acting on Central Nervous System

Morphine alkaloids (morphine, codeine, thebaine, heroin, pethidine)

Cannabinoids (9-cannabinol, Tetrahydrocannabinol)

Neuromuscular Blocking Agents (Curare, Decamethonium)

Vinca Alkaloids (Vincristin and Vinblastin), Taxol and Taxotere, podophyllotoxin, Etoposide, Teniposide.

# UNIT - II: CARDIOVASCULAR DRUGS

Definition, Classification, Nomenclature, Structure and Synthesis.

Cardiac glycosides (ex: Digoxin, Digitoxin);

Antihypertensive drugs (ex: Methyl dopa, Clonidene hydrochloride);

Antiarrhythmic agents (ex: Quinidine sulfate);

Antisympathetic drugs (ex: Propranolol hydrochloride, Verapamil hydrochloride);

Vasopressor drugs (ex: Prenylamine, Buphenine).

# **UNIT - III: AUTACOIDS**

Definition, Occurrence, Isolation, Nomenclature, Classification, Synthesis, Biosynthesis and Stereochemical structures of Prostaglandins. Structural elucidation of PGE₁, PGE₂; Synthesis and biosynthesis of PGE₂, PGF_{2 $\alpha$}.

Structure and Biosynthesis of Thromboxane A2 and Prostacyclin (synthesis not expected).

# **UNIT – IV: ANTI-INFLAMMATORY DRUGS**

Definition, Classification, Nomenclature, Structure and Synthesis of Paracetamol, Aspirin (Antipyretic), Salol, Cinchophen, Antipyrene, Phenylbutazone, Indomethacin, Tolmetin, Ibuprofen, Diclofenac and Naproxen.

# **Books suggested:**

- 25. Medicinal Chemistry by Ashitosh Kar
- 26. Medicinal Chemistry by D. Sriram, P. Yogeeswari
- 27. Medicinal Chemistry by David A. Williams, Thomas L. Lemke
- 28. Medicinal Chemistry by V. Alagarsamy
- 29. Biochemistry by U. Satyanarayana
- 30. Natural Products Chemistry and Applications by Sujata V. Bhat, B.A. Nagasampagi, S. Meenakshi
- 31. Medicinal Chemistry by V.K. Ahluwalia, Madhu Chopra
- 32. Medicinal Chemistry by Balkishen Razdar
- 33. Advanced Practical Medicinal Chemistry by Ashutosh Kar
- 34. Chemistry of Organic Natural Products by O. P. Agarwal, Vols., 1 & 2, Geol Pubs.
- 35. Chemistry of Natural Products by S. V. Bhat, B.A. Nagasampagi, M. Sivakumar
- 36. Natural Products Chemistry by K.B.G. Torssell, John Wiley, 1983.

<b>CHE EC 406</b>	Electroanalytical Techniques	L-5,T-1,P-0	4 Credits
Pre-requisite: U	Inderstanding of Electroanalytical Technology	niques	

# Course Objectives:

- To learn about the classification of electroanalytical methods
- Determination of types of currents
- Principle, instrumentation, reversible and irreversible cyclic voltammograms...
- Interpretation of Ion selective electrodes

Course Outcomes: At the end of the course, the student will able to

**CO1** Ability to interpret potentiometry and conductometry

CO2	Interpretation of results while adhering to DC Polarography.											
CO3	Analysing and compiling the data and results in polarography.											
CO4	CO4 Familiarize Types of ion sensitive electrodes.											
Mapping of course outcomes with the program outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	-	-	2	-	-	2	3
CO2	3	3	3	3	-	2	-	2	-	2	-	3
CO3	3	3 3 - 3 - 3 - 3 - 3										
CO4	3	-	3	-	3	2	-	-	-	2	-	3

CHE: EC: 406(B): (OPEN ELECTIVE): ELECTRO ANALYTICAL TECHNIQUES

**Unit I:** Types and Classification of Electro analytical Methods.

- **i) Potentiometry-** Types of electrodes, Hydrogen gas, Calomel, Quin hydrone and glasselectrodes. Determination of pH. Potentiometric titrations.
- **ii)** Conductometry Definition of terms conductivity, specific conductivity, cell constant. Mobility of ions, Conductometric titrations.

**Unit II:** D.C Polarography: Dropping mercury electrode- Instrumentation-polarogram. Types of Currents: Residual, Migration, Limiting. Two and Three electrode assemblies. Ilkovic equation (derivation not necessary) and its consequences. Types of limiting Currents: Adsorption, Diffusion, Kinetic. Applications of polarography in qualitative and quantitative analysis. Analysis of mixtures. Application to inorganic and organic compounds. Determination of stability constants of complexes.

**Unit III:** (i) A.C. polarography (ii) Square-wave polarography (iii) Pulse polarography (iv) Differential pulse polarography(V) Cyclic Voltammetry: Principle, instrumentation, reversible and irreversible cyclic voltammograms.

**Unit IV: Ion selective electrodes:** Ion-sensitive electrodes —types of ion sensitive electrodes —metal based cation and anion sensitive electrodes, solid membrane electrodes. Liquid ion-exchange electrodes, gas sensing membrane electrodes.

### **Books Suggested**

- 1. H.W. Willard, LL. Merrit and J.A. Dean: Instrumental Methods of Analysis. Affiliated East-West).
- 2. G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denny. Vogel's Text Book of Quantitative Chemical Analysis (ELBS).
- 3. D.A. Skoog and D.M. West: Principles of Instrumental Analysis (Holt, Rinehart and Wilson).
- 4. J.G. Dick: Analytical Chemistry (Mc Graw Hill).