SRI VENKATESWARA UNIVERSITY:TIRUPATI

MINOR

Subject: ELECTRONICS

W.E.F. AY 2024-25

COURSE STRUCTURE

Year	Semester	Course	Title of the Course	No. of Hrs /Week	No. of Credi ts
Ι	II	1	Fundamental of Electricity and Electronics	3	3
			Fundamental of Electricity and Electronics Practical Course	2	1
Π	III	2	Semiconductor devices and Materials	3	3
			Semiconductor devices and Materials Practical Course	2	1
	IV	3	Micro Control System	3	3
			Micro Control System Practical Course	2	1
		4	Microprocessor system	3	3
			Microprocessor system Practical Course	2	1

V.Balabubu BOS Chairperson. Lecturer in Physics Govt. Degree College Karvetinagaram - 517 582 Chittoor (Dist.) Signature of BOS Members: C. SUBROMONYPM. (Dr. D. VEDU GOPT REDDY) N. JAGADEESH KUMAR. M. DAGADEESH KUMAR. M. Chardtell Dr - AV - CHANDRASEKHAR

SEMESTER-IV

COURSE 3: MICRO CONTROLLER SYSTEM

Theory Credits: 3 3 hrs/wee

OBJECTIVES:

- To understand the concepts of microcontroller based system.
- To enable design and programming of microcontroller based system.
- To know about the interfacing Circuits.

<u>UNIT-I</u>: (10Hrs)

Introduction, comparison of Microprocessor and micro controller, Evolution of microcontrollers from 4-bit to 32 bit, Development tools for micro controllers, Assembler-Compiler-Simulator/Debugger.

UNIT -II: (10Hrs)

Microcontroller Architecture: Overview and block diagram of 8051, Architecture of 8051, program counter and memory organization, Data types and directives, PSW register, Register banks and stack, pin diagram of 8051, Port organization, Interrupts and timers.

UNIT-III:(10Hrs)

Addressing modes, instruction set of 8051: Addressing modes and accessing memory using various addressing modes, instruction set: Arithmetic, Logical, Simple bit, jump, loop and call instructions and their usage. Time delay generation and calculation, Timer/Counter Programming.

<u>Unit -IV: (</u>15Hrs)

Assemble language programming Examples: Addition, Multiplication, Subtraction, division, arranging a given set of numbers in largest/smallest order.

<u>UNIT-V</u> : (15Hrs)

Interfacing and Application of Microcontroller: Interfacing of – PPI 8255, DAC (0804), Temperature measurement (LM35), interfacing seven segment displays, displaying information on a LCD, control of a stepper Motor (Uni-Polar).

TEXT BOOKS:

- 1. The 8051 microcontroller and embedded systems using assembly and c- kennet j. Ayalam, Dhananjay V. gadre, cengage publishers
- 2. The 8051 microcontrollers and Embedded systems By Muhammad Ali
- 3. Mazidi and JaniceGillispie Mazidi Pearson Education Asia, 4th Reprint, 2002.

REFERENCE BOOKS:

1. Microcontrollers Architecture Programming, Interfacing and System Design – Rajkamal.

2. The 8051 Microcontroller Architecture, Programming and Application - Kenneth J.Ajala , west publishing company (ST PAUL, NEW YORK, LOS ANGELES, SAN FRANCISCO).

3. Microcontroller theory and application-Ajay V. Deshmukh OUTCOMES:

- The student can gain good knowledge on microcontrollers and implement in practical applications
- learn Interfacing of Microcontroller
- get familiar with real time operating system

SEMESTER - IV

COURSE 3: MICRO CONTROLLER SYSTEM

Practical

Credits: 1

2 hrs/week

LAB LIST:

- 1. Addition And Subtraction Of Two 8-Bit Numbers.
- 2. Multiplication And Division Of Two 8-Bit Numbers.
- 3. Largest number / smallest in an array.
- 4. Exchange Of Higher And Lower Nibbles In Accumulator.
- 5. Addition Of Two 8-Bit Numbers (Keil Software).
- 6. Addition Of Two 16-Bt Numbers (Keil Software)
- 7. Subtraction Of Two 8-Bit Numbers (Keil Software).
- 8. Subtraction Of Two 16-Bit Numbers (Keil Software).
- 9. Multiplication Of Two 8-Bit Numbers (Keil Software).
- 11. Program For Swapping And Compliment Of 8-Bit Numbers (Keil Software).
- 12. Program To Find The Largest Number In Given Array (Keil Software).
- 13. Program To Find The Smallest Number In Given Array (Keil Software).
- 14. Interfacing Led To 8051 Microcontroller (Keil Software).
- 15. Interfacing Buzzer To 8051 Microcontroller (Keil Software).
- 16. Interfacing Relay To 8051 Microcontroller (Keil Software).
- 17. Interfacing Seven Segments To 8051 Microcontroller (Keil Software).

SEMESTER-IV

COURSE 4: MICROPROCESSOR SYSTEMS

Theory

Credits: 3

3 hrs/week

OBJECTIVES:

- To understand basic architecture of 16 bit and 32 bit microprocessors.
- To understand interfacing of 16 bit microprocessor with memory and peripheral chips involving system design.
- To understand techniques for faster execution of instructions and improve speed of operation and performance of microprocessors
- To understand RISC based microprocessors.
- To understand concept of multi core processors.

UNIT -I: (12Hrs)

CPU ARCHITECTURE Introduction to Microprocessor, INTEL -8085($_P$) Architecture, CPU, ALU unit, Register^{organization}, Address, data and control Buses. Pin configuration of 8085. Addressing modes 8086 Microprocessor: Architecture, Pin description. Instruction format, Instruction Execution timing, Addressing modes

UNIT -II: (12 Hrs)

8085 Instruction Set:

Data transfer Instruction, Logical Instructions, Arithmetic Instructions, Branch Instructions, Machine Control instructions.

UNIT -III: (12Hrs)

Assembly Language Programming using 8085, Programmes for Addition, Subtraction, Multiplication, Division, largest and smallest number in an array. BCD to ASCII and ASCII to BCD.

UNIT -IV: (12Hrs)

Basic 8086 Configurations – Minimum mode and Maximum Mode, Interrupt Priority Management I/O Interfaces: Serial Communication interfaces, Parallel Communication, Programmable Timers, Keyboard and display, DMA controller

UNIT -V: (12Hrs)

ARM PROCESSOR: Introduction to 16/32 bit processors, Arm architecture & organization, Arm based MCUs, Programming model, Instruction set.

TEXTBOOKS:

- 1. Microprocessor Architecture, Programming and Applications
- 2. with the 8085 Penram International Publishing, Mumbai.-Ramesh S. Gaonakar
- 3. Microcomputer Systems the 8086/8088 family YU-Cheng Liu and Glenn SA Gibson
- 4. Microcontrollers Architecture Programming, Interfacing and System Design – Raj Kamal Chapter: 15.1, 15.2, 15.3, 15.4.1
- 5. 8086 and 8088 Microprocessor by Tribel and avatar singh

REFERENCES:

- 1. Microprocessors and Interfacing Douglas V.Hall
- 2. Microprocessor and Digital Systems Douglas V. Hall
- 3. Advanced Microprocessors & Microcontrollers B.P.Singh & Renu Singh - New Age
- 4. The Intel Microprocessors Architecture, Programming and Interfacing Bary B.Brey.
- 5. Arm Architecture reference manual –Arm ltd.

OUTCOMES:

- The student can gain good knowledge on microprocessor and implement in practical applications
- Design system using memory chips and peripheral chips for 16 bit 8086 micro processor.
- Understand and devise techniques for faster execution of instructions, improve speed of operations and enhance performance of microprocessors.
- Understand multi core processor and its advantages

V-Bulandons (BOS CHAIRMAN)

SEMESTER-IV

COURSE 4: MICROPROCESSOR SYSTEMS

Practical

Credits: 1

2 hrs/week

List of Experiment

Programs using Intel 8085 /8086

- 1. Addition and Subtraction (8 bit and 16-bit)
- 2. Multiplication and Divition (8-bit)
- 3. Largest number in an array.
- 4. Smallest number in an array.
- 5. BCD to ASCII and ASCII to BCD .
- 6. Program To Convert Two Bcd Numbers In To Hex
- 7. Program To Convert Hex Number In To Bcd Number.
- 8. Program To Find The Square Root Of A Given Number.
- 9. Interfacing Experiments Using 8086 Microprocessor (Demo):
- 1. Traffic Light Controller
- 2. Elevator,
- 3. 7-Segment Display

