SRI VENKATESWARA UNIVERSITY - TIRUPATI Subject: GEOGRAPHY

SEMESTER - IV - W.E.F. 2024-25

(MINOR)

FUNDAMENTALS OF REMOTE SENSING AND GIS

Course Objective

- To provide knowledge on history and evolution of Remote sensing.
- To provide knowledge on the platforms and sensors and instruments used for remote sensing.
- To understand the evolution of GIS.
- To explain the types of data collection with respect to time and terrain and Data base management and retrieving the data from different sources.

Course Outcomes

After the completion of the course, Students will be able to

- Develop knowledge on history and evolution of remote sensing.
- Understand knowledge on the platforms and sensors and instruments used for remote sensing Understand the evolution of GIS.
- Focuson collection, analysing, interpretation and resenting the data related to Earth.
- Differentiate the types of data collection with respect to time and terrain and Database management and retrieving the data from different sources

UNIT-I

Introduction to Remote Sensing: History, Development and Principles Stages in Remote sensing Process. Stages in Remote Sensing Process.

Unit-II

Energy Sources and Radiation Principles - Energy Interaction in the Atmosphere. Atmospheric Windows. Energy Interaction with Earth Surface features. Electromagnetic Spectrum. Spectral reflectance patterns of Earth surface features in different wavelength.

UNIT-III

Characteristics of Indian Remote Sensing Satellites (I.R.S), LANDSAT, etc. Principles of Image Interpretation: Elements of Image Interpretation, Digital Image Processing. Applications in Land use Land Cover Mapping and Urbanisation.

UNIT-IV

GIS : Definitions and Development –Computer Components of GIS (Hardware and Software) – General Data Base concepts of Spatial and Non-spatial data - Elements of Spatial data- Sources of Spatial data- Data quality for GIS – Errors and Error variations in GIS.

UNIT-V

GIS Data Management: Data Base Management Systems (DBMS) Data Base Models. Data input methods – Spatial Data structures : Raster data and Vector data – Structures –GIS Data Analysis : Spatial measurement methods Reclassification – Buffering – Overlay Analysis.

REFERENCES:

- 1. Lillisand T.M and Keifer R.W, (1994), Remote Sensing and Image Interpretation, Jhon Willey & sons, New York.
- 2. Rampall, K.K. (1999), hand book of Aerial Photography and Interpretation, Concept Publishing Co., New Delhi.
- Sabins, F.F. Jr, (1987), Remote Sensing; Principles and Interpretation, W.h. Freeman & Co., New York.
- Jenson R. Jhon, (2003), Remote Sensing of the Environment-An Earth Resource Perspective, Pearson Education Pvt. Ltd., Indian Branch, Patparganj, Delhi, India.
- LRA Narayanan, Remote sensing and its Applications, (1999), Universities Press (India) Ltd., Hyderabad.
- 6. http://rst.gsfc.nasa.gov/Front/tofc.html.
- 7. http://earthobsevatory.nasa.gov/Library/RemoteSensing
- 8. AronoffS.GeographicInformationSystem:AManagementPerspective,DDLPu blication,Otta wa.1989.
- 9. BurroughP.A.PrinciplesofGeographicInformationSystemsforLandResource Assessment.O xfordUniversityPress,NewYork,1986.
- 10. FraserTaylorD.R.GeographicInformationSystem.PergamonPress,Oxford, 1991.
- 11. MaquireD.J.M.F.GoodchildandD.W.Rhind(eds.)GeographicInformationSystem s:Principlesan dApplication.Taylor&Francis,Washington,1991.
- Mark S.Monmonier. Computer –assisted Cartography. Prentice Hall, Englewood Cliff, New Jersey, 1982.
- 13. PeuquetD.J.andD.F.Marble,IntroductoryReadinginGeographicInformation Systems.Taylor &Francis,Washington,1990.
- StarJ.AndJEstes. Geographic Information Systems : An Introduction. Prentice Hall, Englewood, Cliff, NewJersey, 1994.

PRACTICAL

VISUAL IMAGE INTERPRETATION AND GIS DATA MANAGEMENT

Course objectives:

- To explain practical knowledge on Remote sensing applications.
- To help to understand Visual and digital interpretation of satellite Images.
- To illustrate interpretation of Aerial photos.
- To acquaint knowledge on allocation of RS in different fields and sectors.

Course Outcomes:

After the completion of the course, Students will be able to

- Explain practical knowledge on Remote sensing applications.
- Understand Visual and digital interpretation of satellite Images.
- Illustrate interpretation of Aerial photos.
- Acquaint knowledge on allocation of RS in different fields and sectors.

Ex: 1 Techniques of Visual Interpretation.

Ex: 2 Marginal Information of Satellite Imageries.

Ex: 3 Visual Interpretation of Water Resources and

Lineaments, Ex: 4 Visual Interpretation of

Landforms-Waste Land

Ex: 5 Visual Interpretation of Land use / Land cover and change detection

REFERENCES:

- 1. Curran, Paul, J.: Principles of Remote Sensing: Longman, London, 1985.
- 2. GautamN.C.etal.SpaceTechnologyandGeography; NationalRemoteSensingAgency,Hyder abad,1994.
- 3. ThomasM.Lillesandand Ralph, W.Keffer; Remote Sensing and imagesinterpretation, JohnWilley&Sons, NewYork, 1994.

SRI VENKATESWARA UNIVERSITY - TIRUPATI Subject: GEOGRAPHY

SEMESTER - IV - W.E.F. 2024-25

(MINOR)

REGIONAL GEOGRAPHY OF INDIA

Course objectives:

- To conceptualize the regional approaches and to examine regional differentiation in the study of Indian Geography.
- To expose to historical, economic, cultural, social and physical characteristics of India.
- To provide an introduction to the regions of the India in terms of both their uniqueness and similarities.

Course Outcomes

After the completion of the course, Students will be able to

- Developed the art of regionalization technique while focusing about diversity of Indian region.
- Visualized and recognized about regional identities and socio-cultural dimension of regionalization to address the issues and concern needed for regional planning.

UNIT – I:

Major Physiographic divisions. Himalayas, Great Plains, Plateaus, Coastal Plains and islands

UNIT - II

Major and Minor River Systems and their drainage pattern. Climate: Temperature and Rainfall. Trewartha's Climatic Regions of India.

UNIT-III:

Soils: Types, Characteristics and Distribution. Forest types and distribution and economic significance. Agriculture: Irrigation and Power projects. Major Food grain crops: Rice and Wheat. Major commercial Crops: Sugarcane and Cotton. Plantation Crops: Coffee and Tea. Animal Husbandry

UNIT-IV:

Mineral Resources: Coal, Iron ore, Petroleum and Natural gas. Locational pattern of Industrial Activity. Weber's theory of industrial location. Major Industries: Iron and Steel, Cotton textiles and Ship Building. Industrial Regions of India and their characteristics.

UNIT-V:

Population: Distribution, Density, Growth and problems. Urban and Rural Population – Distribution and Trends. Development and patterns of Transport Networks (railways, waterways, airways and pipelines).

REFERENCES:

- 1. Spate, O.H.K. and Learmonth, A.T.A. (1972): India and Pakistan, B.I. Publication, Madras.
- 2. Sharma and Coutino (1980): Economic and Commercial Geography of India, Vikas Publications, New Delhi.
- 3. Singh, R.L. (1976): Regional Geography of India, National Geographical Society of India, Banaras.
- 4. Memoria, C.B. (1970): India's Population Problems, KitabMahal, Allahabad.
- 5. Wadia, D.N. (1961): Geography of India, Mc.Millan, London.
- 6. Tirtha, Geography of India, 2nd Edition
- 7. Chaudhuri, Development Regional Planning

PRACTICAL

MAP PROJECTIONS

Course Objective

- To apprise the students about the art and science of map making and representation.
- To explains the usage of different types of projections.
- To focus on the importance of scale and projection in the process of representing the earth surface.

Course Outcomes:

After the completion of the course, Students will be able to

- Explain the concept of map, scale and projection.
- Student can explain the purpose of projection.
- The main outcome of this course is students can able to select different projection for different geographical areas.
- Ex: 1 Maps and scales-types, Conversion of Scales, Introduction to Map projections; Choice of Map Projection and UTM.
- Ex: 2 Conical Projections: One Standard Parallel, Two Standard Parallel; Bonne's and Polyconic
- Ex: 3 ZenithalPolar Projections: Stereographic and Gnomonic
- Ex: 4 Cylindrical Projections: Equi -Distant, Equal Area and Mercator, Ex:

5 International map projection: Sinusoidal and Mollweide projection.

References:

- 1. Khan, Z.A.: Text bookof practical geography: concept; New Delhi, 1998.
- 2. Misra, R.P. and Ramesh, A.: Fundamentals of Cartography, Concept, New Delhi, 1989.
- 3. Singh, R.L.: Map work and practical geography; central book depot; Allahabad, 1972.
- 4. Steers, J.A.: Map projections, University of London Press, London.