Programme: B.Sc. Honours in MATHEMATICS (Major)

W.E.F. AY 2024-25

COURSE STRUCTURE

Year	Semester	Course	Title of the Course	No. of Hrs /Week	No. of Credits	
Ι	Ι	1	Essentials and Applications of Mathematical, Physical and Chemical Sciences	5	4	
		2	Advances in Mathematical, Physical and Chemical Sciences	5	4	
	II	3	Differential Equations & Problem Solving Sessions	5	4	
		4	Analytical Solid Geometry & Problem Solving Sessions	5	4	
II	III	5	Group Theory &Problem Solving Sessions	5	4	
		6	Numerical Methods & Problem Solving Sessions	5	4	
		7	Laplace Transforms & Problem Solving Sessions	5	4	
		8	Special Functions & Problem Solving Sessions	5	4	
	IV	9	Ring Theory & Problem Solving Sessions	5	4	
		10	Introduction to Real Analysis & Problem Solving Sessions	5	4	
		11	Integral Transforms & Problem Solving Sessions	5	4	
III	V	12	Linear Algebra &Problem Solving Sessions	5	4	
		13	Vector Calculus & Problem solving Sessions	5	4	
		14	Functions of a complex variables & Problem solving Sessions (OR) Advanced Numerical Methods & Problem Solving Sessions	5	4	
		15	Number Theory & Problem Solving Sessions (OR) Mathematical Statistics & Problem Solving Sessions	5	4	
	VI	Semester Internship/Apprenticeship with 12 Credits				
IV	VII	16	Algebra (OR) Classical Mechanics	5	4	
		17	Real Analysis (OR) Discrete Mathematics	5	4	
		18	Basic Topology (OR) Cryptography	5	4	
		SEC				
		19	Lattice Theory & Boolean Algebra	5	4	

Year	Semester	Course	Title of the Course	No. of Hrs /Week	No. of Credits
			(OR) Finite Element Analysis		
		20	Graph Theory (OR) Mathematical Finance	5	4
		21	Advanced Algebra (OR) Elements of Elasticity & Fluid Dynamics	5	4
		22	Advanced Analysis (OR) Advanced Linear Algebra	5	4
	VIII	23	Advanced Topology (OR) Differential Geometry	5	4
			SEC		
		24	Ordinary Differential Equations (OR) Applications of Algebra	5	4
		25	Operation Research (OR) Mathematical Modelling	5	4

Programme: B.Sc. Honours in Mathematics (Major)

W.E.F. AY 2024-25

SEMESTER-IV

COURSE 9: RING THEORY

Theory

Credits: 4

5 hrs/week

Course Outcomes

After successful completion of this course, the student will be able to

- 1. acquire the basic knowledge of rings, fields and integral domains
- 2. get the knowledge of subrings and ideals
- 3. construct composition tables for finite quotient rings
- 4. study the homomorphisms and isomorphisms with applications.
- 5. get the idea of division algorithm of polynomials over a field.

Course Content

Unit – 1

Rings and Fields

Definition of a ring and Examples –Basic properties – Boolean rings - Fields – Divisors of 0 and Cancellation Laws – Integral Domains – Division ring - The Characteristic of a Ring, Integral domain and Field – Non Commutative Rings -Matrices over a field – The Quaternion ring.

Unit – 2

Subrings and Ideals

Definition and examples of Subrings – Necessary and sufficient conditions for a subset to be a subring – Algebra of Subrings – Centre of a ring – left, right and two sided ideals – Algebra of ideals – Equivalence of a field and a commutative ring without proper ideals

Unit – 3

Principal ideals and Quotient rings

Definition of a Principal ideal ring (Domain) – Every field is a PID – The ring of integers is a PID – Example of a ring which is not a PIR – Cosets – Algebra of cosets – Quotient rings – Construction of composition tables for finite quotient rings of the ring Z of integers and the ring Z_n of integers modulo

Unit – 4

Homomorphism of Rings

Homomorphism of Rings – Definition and Elementary properties – Kernel of a homomorphism – Isomorphism – Fundamental theorems of homomorphism of rings – Maximal and prime Ideals – Prime Fields

Unit – 5

Rings of Polynomials

Polynomials in an indeterminate – The Evaluation morphism -- The Division Algorithm in [x] – Irreducible Polynomials – Ideal Structure in F[x] – Uniqueness of Factorization F[x].

Activities

Seminar/ Quiz/ Assignments/ Applications of ring theory concepts to Real life Problem /Problem Solving Sessions.

Text book

Modern Algebra by A.R.Vasishta and A.K.Vasishta, Krishna Prakashan Media Pvt. Ltd.

Reference books

- 1. A First Course in Abstract Algebra by John. B. Farleigh, Narosa Publishing House.
- 2. Linear Algebra by Stephen. H. Friedberg and Others, Pearson Education India

Programme: B.Sc. Honours in Mathematics (Major)

W.E.F. AY 2024-25

SEMESTER-IV

COURSE 10: INTRODUCTION TO REAL ANALYSIS

Theory

Credits: 4 5 hrs/week

Course Outcomes

After successful completion of this course, the student will be able to

- 1. get clear idea about the real numbers and real valued functions.
- 2. obtain the skills of analysing the concepts and applying appropriate meth odsfortesting convergence of a sequence/ series.
- 3. Test the continuity and differentiability and Riemann integration of a function.
- 4. Know the geometrical interpretationofmeanvalue theorems.
- 5. know about the fundamental theorem of integral calculus

Course Contents

Unit – 1

REAL NUMBERS, REAL SEQUENCES

The algebraic and order properties of R - Absolute value and Real line -Completeness property of R - Applications of supremum property - intervals. (No question is to be set from this portion) Sequences and their limits -Range and Boundedness of Sequences - Limit of a sequence and Convergent sequence -The Cauchy's criterion - properly divergent sequences - Monotone sequences -Necessary and Sufficient condition for Convergence of Monotone Sequence -Limit Point of Sequence -Subsequences and the Bolzano - weierstrass theorem -Cauchy Sequences - Cauchy's general principle of convergence.

Unit – 2

INFINITIE SERIES

Introduction to series - convergence of series - Cauchy's general principle of convergence for series tests for convergence of series - Series of non-negative terms - P-test - Cauchy's nth root test - 'D'- Alembert's Test - Alternating Series -Leibnitz Test.

Unit –3

LIMIT & CONTINUITY

Real valued Functions - Boundedness of a function - Limits of functions -Some extensions of the limit concept - Infinite Limits - Limits at infinity (No question is to be set from this portion).Continuous functions -Combinations of continuous functions - Continuous Functions on intervals - uniform continuity.

Unit – 4

DIFFERENTIATION ANDMEANVALUETHEORMS

The derivability of a function at a point and on an interval - Derivability and continuity of a function – Mean value Theorems -Rolle's Theorem, Lagrange's Theorem, Cauchy's Mean value Theorem

Unit – 5

RIEMANNINTEGRATION

Riemann Integral - Riemann integral functions - Darboux theorem -Necessary and sufficient condition for Rintegrability - Properties of integrable functions - Fundamental theorem of integral calculus - integral as the limit of a sum - Mean value Theorems.

Activities

Seminar/ Quiz/ Assignments/ Applications of Real Analysis to Real life Problem /Problem Solving Sessions.

Text Book

An Introduction to Real Analysis by Robert G.Bartle and Donlad R. Sherbert, John Wiley and sonsPvt. Ltd

Reference Books

- 1. ElementsofRealAnalysis by ShanthiNarayan andDr.M.D.Raisinghania, S. Chand & Company Pvt. Ltd., New Delhi.
- 2. Principles of Mathematical Analysis by Walter Rudin, McGraw-Hill Ltd.

Programme: B.Sc. Honours in Mathematics (Major)

W.E.F. AY 2024-25

SEMESTER-IV

COURSE 11: INTEGRAL TRANSFORMS WITH APPLICATIONS

Theory

Credits: 4

5 hrs/week

Learning Outcomes

Students after successful completion of the course will be able to

- 1. understand the application of Laplace transforms to solve ODEs
- 2. understand the application of Laplace transforms to solve Simultaneous DEs
- 3. understand the application of Laplace transforms to Integral equations
- 4. basic knowledge of Fourier-Transformations
- 5. Comprehend the properties of Fourier transforms and solve problems related to finite Fourier transforms.

COURSE CONTENT

Unit – 1

Application of Laplace Transform to solutions of Differential Equations

Solutions of ordinary Differential Equations - Solutions of Differential Equations with constants coefficients - Solutions of Differential Equations with Variable coefficients.

Unit – 2

Application of Laplace Transform to solutions of Differential Equations

Solutions of Simultaneous Ordinary Differential equations - Solutions of Partial Differential Equations.

Unit – 3

Application of Laplace Transforms to Integral Equations

Definitions of Integral Equations - Abel's Integral Equation - Integral Equation of Convolution Type - Integral Differential Equations - Application of L.T. to Integral Equations.

Unit – 4

Fourier Transforms - I

Definition of Fourier Transform - Fourier sine Transform - Fourier cosine Transform - Linear Property of Fourier Transform - Change of Scale Property for Fourier Transform - sine Transform and cosine transform shifting property -Modulation theorem.

Unit – 5

Fourier Transforms – II

Definition of Convolution - Convolution theorem for Fourier transform - Parseval's Identity - Relationship between Fourier and Laplace transforms - problems related to Integral Equations -Finite Fourier Transforms - Finite Fourier Sine Transform -Finite Fourier Cosine Transform - Inversion formula for sine and cosine transforms only - statement and related problems.

Activities

Seminar/ Quiz/ Assignments/Applications of Integral Transforms in real life problems / Problem Solving Sessions.

Text Book

B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 44th Edition, 2017.

Reference Book

- 1. Fourier Series and Integral Transformations by Dr.S. Sreenadh and others, published by S.Chand and Co, New Delhi
- 2. E.M. Stein and R. Shakarchi, Fourier analysis: An introduction, (Princeton University Press, 2003).
- 3. R.S. Strichartz, A guide to Distribution theory and Fourier transforms, (World scientific, 2003).
